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Here if has been defined in (2) and q, q„, and q, are the
components of a wave number vector q. The triple
integral in (3) can be easily reduced to a single integral.
This single integral was evaluated by an electronic
computer. The results' for various g are shown in Table
I. Inserting the numerical values, T~=0.37,

~
Ji~/k=3,

S=—,'into (3) and using Table I, we obtain if =0.01.
The expression for Tz obtained by the modified

molecular field theory or the Bethe-Peierls theory con-
tains only the number of neighbors z. Consequently,
these theories do not take account of dependence on
structure. On the other hand, the expression of Tz by
the Green function method contains ptl, where tl is the
wave number vector. This indicates the Green function
method takes account of structure much more precisely

9 Dr. E. W. Montroll informed me that he has calculated the
triple integral analytically. )Proceedings of the Third Berkeley
Symposium oe Mathematical Statistics and Probability, December
1954 and June and july 1955 (University of California Press,
1955), p. 209.) The numerical values in Table I are in quite good
agreement with his results.

TABLE I. Numerical values for the integral I(p).

1
0.1
0.01
0.001

I(n)

0.505
1.963
6.405

20.323

than the other theories. In the present problem the
structure dependence is essentially important. In other
words, the magnetic property of Cu(NHs)4SO4 HsO is
well described by the linear chain model, but it is
slightly modified by the exchange interactions between
the chains. This is the reason why the Green function
method can give a reasonable value for

( Js) j~ Ji),
although the other theories fail.
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The so-called "forbidden" hyperf'me transitions of the S-state ion Mn++ with selection rules ~nM ( =1,
Am =+1have been observed in the cubic field of MgO. These transitions are shown to be observable in cubic
fields because of the mixture of the zero-field splitting parameter a with the off-diagonal hyperfine terms in
the spin Hamiltonian which mixes neighboring hyperfine levels. Until now the intensities of these transitions
had been calculated only in crystals of axial symmetry and were due to the mixing of levels with axia]-fie]d
splitting D. The intensity for the cubic-field case is calculated and shows an interesting (sin4p)2 dependence,
as compared with (sin28)' in the axial field case. The splittings of the "forbidden" doublets are calculated
to third-order perturbation theory and both the intensities and the splittings agree well with the experimental
data.

INTRODUCTION

HE electron paramagnetic spectra of divalent
manganese in several single crystals of axial

symmetry have shown weak lines occurring between
the usual intense main hyperhne lines. ' 7 These were

* Present address: Hebrew University, Jerusalem, Israel.
' E. Friedman and W. Low, Phys. Rev. 120, 408 (1960).' L. M. Matarrese, J. Chem. Phys. 34, 336 (1961).
3 B. Bleaney and R. S. Rubins, Proc. Phys. Soc. (London) 77,

103 (1961).
4 V. J. Folen, Phys. Rev. 125, 1581 (1962).
5 J. Schneider and S. R. Sircar, Z. Naturforsch. 17a, 651 (1962).
6 F, Waldner, Helv. Phys. Acta 35, 756 (1962).
7 M. Odenhal, Czech. J. Phys. 813, 566 (1963).

first observed by Sleaney and Ingram' and are due to
the mixing of hyperhne levels by the interaction of the
axial-held splitting D with the hyperfine interaction A.
Bleaney and Rubins, however, point out that this
mixing should occur whenever the magnetic held is
not directed along an axis of twofold or higher sym-
metry. ' In the present paper, we have observed the
forbidden lines in the cubic held of MgO and have
shown that they are due to hyperhne mixing with the
zero-held cubic splitting u.

8 B. Bleaney and D. J. E. Ingram, Proc. Roy. Soc. (London)
A205, 336 (1951).
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The intensity calculation for the cubic Geld case is
presented and is based on the simpler example of the
axial-Geld case. The forbidden doublet splitting is also
evaluated to third-order perturbation using the operator
equivalent notation. A comparison between theory and
experimental results is made.

THEORY

So-called forbidden hyperfine transitions occur
through the mixing of neighboring hyperfine levels by
off-diagonal matrix elements in the spin Hamiltonian.
Allowed transitions induced by the component of the
rf magnetic field perpendicular to the axis of quantiza-
tion are those for which ~AM~ =1, Am=0, where M
and e are, respectively, the electron- and nuclear-
magnetic quantum numbers. Forbidden hyperfine tran-
sitions are then those for which ~dM~ =1, Am= &1,
+2, etc. Whether or not a transition is considered as
forbidden depends upon the manner in which the energy
states are labelled. For this paper, we choose a repre-
sentation in which the external magnetic Geld 8 forms
the axis of quantization. Off-diagonal matrix elements
arising from other terms in the spin Hamiltonian are
then treated by perturbation theory and lead to an
admixture of zero-order wave functions.

Apart from transitions induced by the parallel com-
ponent of the rf Geld, for which 63f=+1, 6m=&1,
two other mechanisms are known to produce forbidden
hyperfine lines. These are through the nuclear-quadru-
pole interaction, the effects of which should not be
observable in a cubic Geld, and second-order crossterms
between the hyperfine and Gne-structure operators in
the spin Hamiltonian. The latter have been considered

by Bleaney and Rubins for the case of a second-order
axial term in the crystalline field. The method depends
upon the presence of crystal-field terms containing odd
powers of 5, and S„which may form operators to raise
or lower M by unity, without aGecting m.

Intensity

To illustrate the calculation, we Grst consider the
simpler case of an axial Geld with the magnetic field

along the s' axis and at an angle 0 to the crystalline axis
in the x's' plane. The relevant part of the nondiagonal
term is then equal to

D
Kt=—(S,S++S4 +S+S,+SM,) cos8 sin8, (1)

2

where S~——(S,+iS„) The first-. order admixtures of the
states ~M+1, m) to ~M,m) are given by the perturba-
tion expression

(Mai, ml3CtlM, m)/(Ear, —Esrpt, ), (2)

where Esr E3r+, WgpH. In th—e second—order, it
is possible to mix neighboring hyperfine levels ~M,m)
and ~M, m&1) by use of off-diagonal elements in the

IN+1, mv

I M+1, m+1~

AM
I M, rn -1~

—91-IM. + IM, +1 +PIM, 1

IM, m+1&

gQH

hfs interaction, written for simplicity as

Xs ASJ,+-,'——A (S~I +S I~) . (3)

The second-order admixture may be written immedi-
ately as

(M, m~1 l~ I M~1, m&(M~1, mix. lM, m&
(4)

(EM, m EM, m+1) (EMmEsr+, I,m)

E~, —Ej/I, +j is only +AM, so that the denominator
is proportional to AM(gPH) and the numerator to AD.
The admixture of neighboring hyperfine levels is thus
proportional to D/gPH. Although obtained by a second-
order calculation, the magnitudes are eGectively an
order lower. It is, of course, possible to take X~ and X2
in the reverse order. In Fig. 1, the operations connecting
states ~M,m) and

~
M, m+1) are shown schematically.

A similar sequence of operations connects ~M, m) and
~M, m —1). If only these admixtures are considered,
the perturbed function

~
M,m) may be written

lft= ~M,m)+ce~ M, m+1)+P~ M, m —1). (5)

If the transition between the levels
~
M,m) and

~
M—1, m) is considered to have unit probability, then

that between
~
M,m) and the perturbed level

fs ~M —1, m+1)+y~M —1, m)+8~M —1) m+2) (6)

must have probability (er+p)'. The same expression
can be shown to hold for the transition between the
unperturbed levels ~M, m+1) and ~M—1, m). An
alternate though equivalent formalism was used by
Bleaney and Rubins who combined BC& and K& to form
an equivalent operator to connect neighboring hyperfine
levels. Thus, in the axial Geld, the oB-diagonal terms
DS,S+ and (A/2)SM~ are combined to form an equiva-
lent operator proportional to (AD/gPH) (S,S+S )I+. In

—+2= IM-1, m+1+ + y I M-1,my+ 6 IM- f,m+2p

IM-1, rn~

FIG. 1. An example of the mixing of neighboring hyper6ne
states. The operations shown form 0., where XI is a raising operator-
like S+ and X2 is S I+. Similar operations will form P, 8, y, and 8.
When the "allowed" selection rules

~
AM [

= l, am=0 are applied
between levels QI and $2, the intensity is then seen to be propor-
tional to (n+y)'.
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the remainder of this section, we calculate (cr+y)' for
the case of a cubic fourth-order crystal held.

The spin Hamiltonian describing the d' (S state) ion
in a cubic crystalline field may be vrritten

X=gpH. S,+AS I+V,„b;, g„p„—H,I„ (7)

where the terms are given in the order of magnitude
observed for Mn'+ in cubic oxide lattices. ' V,„b;,
represents the fine-structure term and may be written

where the three fourfold axes of the cube lie in the
x', y', and z' directions. Alternatively, in the notation
of Jones, Baker, and Pope, te the cubic term is

U,„b;,=84'(04o+504'),

8
V,„;.=-[S.'+S„'+S,'

6
—sS(S+1)(3S'+3S—1)g, (8)

where Bee= a/120, and quantization is along one of the
three fourfold axes.

For the relative-intensity calculation, we consider
the case when the magnetic Geld H, lies in the x'z'

plane of the cube, making an angle 8 vrith the z' axis.
Then, vre have x=x' cos8—z' sin8, y=y', z=z'cos8
+z'sin8, which, when substituted into Eq. (8) and
considering only odd terms of S, and S„,gives

vr here

and

V«bt, t,aa& = tt(P —E) sin48/24,

P= (S,'S,+S&g,s+S,'Sg,+S,S,')

R= (S,'S +SQQ.'+S,sSQ,+SQ.') .

(10)

In the operator equivalent notation, the terms of P—R
that raise and lower the electronic wave function by
one step are proportional to 04' and form the operator
X&, which is substituted into Eq. (4) together with
Xs=AS I. Equation (4) has then been evaluated to
give

a sin48 [S(S+1)—M(M+1)](2M+1)[3S(S+1)—7M' —7M—6]

1923f ~M ~M+1

[S(S+1)—M (M—1)](2M —1)[3S(S+1)—7M'+ 7M —6j
[I(I+1)—m(m+1)1't'. (11)

For the case of the central electronic transitions
M= —', ~M= ——,

' with S=—',, Eq. (11) reduces to

5u sin48
[I(I+1)—m(m+1)$'", (12)

2gPH

so that the relative intensity of the transitions

)
-', ,m) ~ [

——,', m+1) and
~

—',, m+1) ~ (
——,', m) is given

by
25u'

I= [I(I+1)—m(m+1)$(sin48)s. (13)
(gpH)'

The distinguishing feature of these forbidden transi-
tions is their (sin48)' angular dependence, which may be
contrasted with the (sin28)' variation from forbidden
transitions in an axial Geld. Their intensities relative
to allowed transitions are proportional to as/(gPH)'.
Consequently, they diminish in intensity as the meas-
uring frequency is increased. Taking the particular
case of Mn'+ in MgO, a/gPH is approximately 1/150
at 3 cm wavelength, so that the relative intensities of
the central pair of forbidden lines P, +-,') c-o

~

——,', Wq)
should be (sin48)'/100 to that of the allowed. transitions

9%'. Low and R. S. Rubins, in Proceegegs of the First Inter-
national Conference on Paramagnetic Resonance (Academic Press
Inc. , ¹wYork, 1963).

'o D. A. Jones, J. M. Baker, and D. F. D. Pope, Proc. Phys.
Soc. (London) 74, 249 (1959).

Doublet Splitting

Here, we shall conGne our discussion to the central
electronic transition 3f=~+-+M= ——',. The spectrum
is basically the same as that described for axial-Geld
cases: a pair of small "forbidden" lines lying between
each tvro main hyperfine lines. Figure 2 shows an
example of the allowed lines

~

—',,m) ~~ —-'„m) and
—',, m+1) ~~ ——',, m+1), with the forbidden lines
sr,m) ~

~

—L m+1) and
~
xs, m+1) ~

~

—s,m) between
them. For comparison vrith experiment, vre shall be
concerned with the separations 8H (in gauss) of the
two forbidden lines as a function of m. To the second
order, the splittings are given by

A'
8H= [2S(S+1)—-', $+2g„P„H, (14)

2gpHp

where gpHe=ho. Third-order contributions to 8H have
been considered for the case of an axial Geld by Folen,
Schneider and Sircar, s Waldner, ' and Odenhal. '

The relevant contribution of third-order energy term
may be written

(X —X )iX
(s) = p

nrem (E —E„)s

as no terms proportional to X „X„sXs (my'-ttWk)
are present. There are only tvro terms in third order
vrhich vrill contribute to the splitting. The most impor-
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m+1

m-1

M-"—1
2

M=--1
2

FIG. 2. Schematic of
the &=~2' fine-struc-
ture levels split by the
hyperfine interaction.
The outer two transi-
tions shown are allowed
while the center two are
so-called "forbidden. "
The spectrum is shown
below the energy levels
with arbitrary scale.

operated near 10 Gc/sec with the signal klystron locked
to the sample cavity with a 22-kc/sec feedback loop.
The magnetic field was modulated at 390 cps and was
phase-detected such that the first derivative of the
absorption signal was recorded. All field measurements
were made with a nuclear magnetic resonance proton
probe.

EXPERIMENTAL RESULTS

From Eqs. (14), (16), and (18), the splittings of the
forbidden doublets in the central electronic transitions
for S=—', may be written as

84'(-,'+goocos48)04', (17)

tant of these is"

25 A'
bH'= ——L2S(S+1)——',](2so:+1). (16)» (gW.)'

The second term will be proportional to A'a/Hoo
and has not previously been calculated. Clearly, the
off-diagonal matrix elements ~X„„~' are produced by
the hfs operator AS I and the diagonal operator
(5C —X ) by the diagonal part of the cubic Geld.
When the axis of quantization is at an angle 0 to acubic
axis, Table 5 of Ref. 10 shows that this operator is
given by

17 A' g.P 25 A'
8H= —+—2 H —(2—m+1)

2 Ho gP 2 Ho'

A'u 25 15—cos48+—(2m+1), (19)
Hp' 4 4

where Ho has been substituted for gPHo. The Grst term
is the only constant term and gives the main contribu-
tion to the splitting. Table I shows the contributions

TABLE I. This table shows the contribution in gauss to each
term in the equation for the splitting of the forbidden doublet.
The calculated total is compared to the experimentally measured
value.

where B4o a/120. Ma——trix elements of 04' have been
tabulated by Stevens. "This contribution to the split-
ting is then calculated to be

5A'u
8H"= — LS(S+1)—4]

4(gPHo)'
)& (2m+1) (o+-', cos48) . (18)

8FI

17A'/2H p 17.6~0.1
2(&p„/g p) II 2.6—(25A'/2Ho') (2m+1) —2.5—(15A'a/4Hoo) (2m+1) 0.2

Theoretical total 8H 17.9~0.1
Experimental BH 18.0+0.5

17.6 17.6
2.7 2.7—1.2 0
0.1 0

18.8 20.3
19.0 20.2

17.6 17.6
2.8 2.9
1.2 2.5—0.1 —0.2

21.5 22.8
21.9 23.2

In the above, only the first-order contribution of the
nuclear Zeeman term g+„H.I has been considered.

EXPERIMENTAL APPARATUS

The sample crystal was mounted in the center of a
TEpi~ cylindrical reQection cavity with the longitudinal
axis perpendicular to the magnetic field such that there
would be no component of the rf Geld HI parallel to the
steady magnetic Geld Ho. The Q of the cavity was about
10000 and most measurements were made at room
temperature. The system was also suitable for liquid-air
temperature by the insertion of a quartz Dewar Gnger
into the cavity. The spectrometer used was a high-
sensitivity superheterodyne X band system and was

"Equation (16) contains the correction to third order which is
obtained from the second-order contribution by replacing H by
Hp+Am in the denominator of the 6rst term of Eq. (14).Waldner
had neglected the contribution from the erst term in Eq. (15) but
it is given in his corrigendum, Helv. Phys. Acta (to be published).
The calculation of Schneider and Sircar appears to give the correct
result."K. W. H. Stevens, Proc. Phys. Soc. (London) A65, 209
(1952).

of each term and compares the total to a typical experi-
mental run. The m value signifies the next main hyper-
Gne line below the doublet; i.e., m= ——', means the
doublet which occurs between the hyperGne lines
m= —-', and m= —-', . The second term varies only with
the changing magnetic Geld and the last two terms
change with the different m values. Only the last term
varies with angle, but in such a way that the maximum
and minimum splittings are at positions of zero intensity
(zero, 45, 90 degrees) and the splittings of the forbidden
doublets are the same at each position of maximum
intensity (22-,', 67—,'degrees). Because of the highly
anisotropic behavior of the fine-structure pentad of
Mn'+ in MgO, the doublets were easily observable only
over small ranges of angles of about 10—14 degrees each
in several positions; but, fortunately, these are at the
most interesting positions: namely, zero, 22-,', 45, 67—'„
and 90 degrees. The value given for this term in Table I,
therefore, has not taken into account the angular part
as cos48 is zero at the maximum intensity positions.
Because of the small value of a in MgO: Mn'+ the magni-
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tude of the term is comparable to the experimental error
and, therefore, the magnitude of the change in separa-
tion due to angle is unnoticable.

Figure 3 shows the low-Geld half of the usual spectrum
of MgO:Mn'+ with the magnetic Geld oriented about
25 degrees from the s' axis in the x's' plane. The arrows
point to the positions of the "forbidden" hyperfine
doublets. Figure 4 shows the doublet between m= —

&

and m= —-,'on an expanded horizontal scale and a
signal-gain increase of 28 dB. The entire spectrum
shows the doublets to have the usual relative intensity
ratios to each other of 5:8:9:8:5and the relative
intensity to the main hyperfine line of about 1:100as
predicted. Runs were made at liquid-air temperatures,
but no changes within experimental error were observed.

DISCUSSION

FiG. 3. The low-
Qeld half of the usual
spectrum for Mn2+
impurities in MgO.
The arrows point to
the positions of the
very low intensity
"forbidden" hyper-
Gne transitions. The
magnetic field is ori-
ented at about 25
degrees from the g'
axis in the x's' plane. '3/

2
- 5I2

The most distinctive feature of the forbidden doublets
is the angular dependence of their intensity. Unlike the
axial case, there is an intensity minimum at 8=45'
and equivalent orientations. As may be seen from the
experimental data, the intensities are extremely small,
which is probably why these lines have previously es-
caped serious consideration. Also, because of the small
magnitude of a, the lines are centered between the main
hyperGne lines and are almost isotropic.

In the case of a field of tetragonal or trigonal sym-
metry, both cubic and axial components will be present,
so that the angular variation of intensity will be more
complicated. For example, in a tetragonal field the in-
tensity will vary as A (sin28)'+B(sin48)'. In the lower-
symmetry cases considered, the axial component has
been much greater than the cubic component so that
the forbidden transitions produced by the sixth-order
cubic field may be calculated in a similar manner to

Fro. 4.An example
of the data showing
the forbidden doub-
let between the
re= —$ and m= —&

hyper6ne lines. This
is the same doublet
as shown in Fig. 3
but on an expanded
horizontal scale and
a signal-gain increase
of 28 dB.

that of the fourth-order Geld, and the intensity variation
would again be as (sin48)'.

The calculations carried out in this paper have been
those which could be compared directly with experiment.
For this reason, the results for forbidden lines in the
outer electronic transitions have not been given here.
Their approximate positions have been indicated by
Bleaney and Rubins.

The agreement with the theory, which was well
within the experimental error, ruled out any need to
extend the calculations to higher order. The fourth-
order contribution to the splitting is probably well
within 0.5 G, and, like the second-order, probably
does not produce terms proportional to (2m+1). Also,
because the symmetry is cubic, the eRect of the man-
ganese nuclear quadrupo&e moment should not be ob-
servable; this term, therefore, does not appear in our
Hamiltonian. The good results would therefore indicate
that the method of Folen, Waldner, Schneider and
Sircar, and Odenhal in Gtting their data with an eRective
Q is basically valid. However, our results have shown
that there is a small cubic contribution which should be
considered for accurate work or narrow-line spectra in
order to improve the results of the eRective quadrupole
determination. Measurements at higher frequencies to
reduce the magnitude of the second- and higher-order
eRects would improve the degree of certainty of the
result.
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