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Tin is an exception probably because of its complicated
electronic structure and the complexity of the induced
field, discussed above. The very large induced Gelds in
Au and Re" dissolved in Fe are probably particularly
significant, as both elements have 6s electrons with as-
sociated large fields. The internal Geld in atomic copper
in the 4s'Slf2 state is 1.3X10 G and that of atomic
gold in the 6s'S~/2 state is 21&10 G. These Gelds can be
derived by using Eq. (15.5) in Ref. 36 and appropriate
data from atomic spectroscopy. ""Thus the internal
6elds of Cu and Au in Fe would correspond to 16%and
7% polarization of the conduction electrons, respect-
ively. The internal Geld in atomic Ag in the 5s'S~/2
state is 4.9&(10' G.' It would be interesting to deter-
mine the induced Geld at Ag atoms dissolved in Fe,
which should be 400 kG by analogy with Cu and Au.

'8 R. Ritschl, Z. Physik 79, 1 (1932).
sr R. E. Sheriff and D. Williams, Phys. Rev. 82, 651 (1951).
~ G. Wessel and H. Lew, Phys. Rev. 92, 641 (1953).

bootes added in proof. (a) Dr. A. de Shalit (private
communication) has informed us that newer data on
transition rates in Au" would lower the core-excitation
estimate of tti7 from +0.60 nm to about the experi-
mental value of +0.37 nm. From calculations on the
quasiparticle model, L. Kisslinger and R. A. Sorensen
have also predicted a very low value ( 0.12 nm) for
this moment (private communication).

(b) The unusual low-field behavior of our samples
was reversible. If this behavior is the result of spin
orientation, a more significant zero-Geld splitting may
be obtained by extrapolating back the high-Geld slopes.
We acknowledge a discussion of this point with Dr.
R. J. Elliott.
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The low-temperature drift mobility of the polaron is calculated in perturbation theory with the aid of the
Kubo formula. The result is y =pa (1—n/6), where pe is the weak coupling mobility tse = (e/2ncum) exp (the/kr).
A comparison is made with the perturbation expansion of various intermediate coupling mobility theories.
The expansion of Osaka, p, =p0(1 —0.173m+ ~ .), agrees most closely with the exact perturbation expansion.
It is concluded that the Osaka formula is probably the best in the intermediate coupling range of&6. It is
explicitly shown to lowest nontrivial order in n that various quasiparticle concepts are valid, viz. , that
ts =er/m*, and that the electron density is a momentum integral over f(E(p)).

I. INTRODUCTION

~HE drift mobility of a slow electron in the conduc-
tion band of a polar crystal has been the subject

of much theoretical investigation. '—' There exist a large
number of expressions for the low-temperature drift
mobility, which unfortunately diBer considerably in
the experimentally interesting range"" of coupling

* Supported in part by the U. S.Army Research Ofhce, Durham.
' A. Morita, Science Rep. Tohoku Univ. 38, 1 (1954);A. Morita,

C. Horie, and K. Hasegawa, ibid. 38, 158 (1954).' F. E. Low and D. Pines, Phys. Rev. 98, 414 (1955); see also
T. D. Lee, F. E. Low, and D. Pines, ibid. 90, 297 (1953).

3 T. D. Schultz, MIT Tech. Report No. 9, 1956 (unpublished).
4 T. D. Schultz, Phys. Rev. 116, 526 (1960).
5 Y. Osaka, Progr. Theoret. Phys. (Kyoto) 25, 517 (1961).' F. Garcia-Moliner, Phys. Rev. 130, 2290 (1963).
7 R. P. Feynman, R. H. Hellswarth, C. K. Iddings, and P. M.

Platzman, Phys. Rev. 127, 1004 (1962).
D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc.

(London) A219, 53 (1953).
,
' L. P. KadanoG, Phys. Rev. 130, 1364 (1963).
' See F. C. Brown in Polaris and Excites, edited by C. G.

Kuper and G. D. Whitaeld (Oliver and Boyd Ltd. , Edinburgh,

constant (ot 3) This spr.ead of results is illustrated for
several representative theories in Fig. 1. Notice that at
o.=3, the results of Low and Pines di8er from the
results of Schultz by a factor of 6. Clearly it would be
desirable to find out which of the various theories is
most reliable. We attack the problem here by obtaining
a perturbation expansion of the mobility in a power
series in the coupling constant; we then compare the
exact perturbation expansion with the power series
expansion of the various intermediate coupling theories.
This is done in the belief that the best intermediate
coupling theory is likely to have a power series expan-
sion which corresponds quite closely to the exact
expansion.

Thus, the main body of this paper is concerned with
finding the Grst nontrivial term in the expansion of the

1963), pp. 323—355, for a summary of the values of e expected for
various different materials.

"Reference 6 summarizes experimental mobility data on the
intermediate coupling materials AgCl and AgBr.
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mobility. Green's function techniques"" are used for
this purpose. In Sec. II the self-energy of the one-
particle Green's function is expanded in a power series
in n. In Sec. III, the Kubo formula" for the mobility is
expanded in terms of the one-particle Green's function,
and the mobility is then obtained to the first nontrivial
order. Finally, in Sec. IV we compare our exact pertur-
bation expansion with the various intermediate coupling
theories.

3.0

II. EXPANSION OF THE SELF-ENERGY

Ke begin with the Frohlich"" Hamiltonian for the
single electron in the crystal:

ps
H= —+P a ta +P ~

—1[a e(s r+a te—is r]

1.0

V&(r, t) = U&(r, t) = i ——[(N+ 1)e "+Ne "]. (3)

Here N=[ee —1] ' is the equilibrium number of
phonons in the state g. In this paper, we shall restrict
ourselves to the case in which 1/P, the temperature
measured in energy units, is much smaller than the
phonon energy. Then N=e t'((1.

In this section, we shall find the spectral weight
function for the one-electron Green's function,

r(p, )
A(p, (0) = (4)

[(o—p'/2 —ReZ (p,(o)]'+[I'(p,(o)/2]'

by expanding the self-energy,

Z(p, po) =
d(o' 1'(p,(o')

2rr pp —(o

%'e eliminate the electron-phonon interaction in favor
of a retarded "electron-electron" interaction'~

V(1—1')= V&(1—1') for itr) it t.
= V&(1—1') for itr&itt,

with

0
0

Fro. 1. Comparison of various mobility theories. Here s(/s(o
is the predicted mobility divided by the weak coupling mobility
[pp =e/(2aVrr((o) g.

tions appropriate to the low-density case. In general,
single-electron propagation is described by the two
functions G&(p,(o) and G&(p,(o) defined by

G'(p ~) =A(p ~)L1—f(~)],

f((o) = [ee(~o)+1]—r

where p, is the chemical potential. " However, in the
low-density limit, Pt( ~ —~, f((o)&&1, and

G&(p,(o) ~A (p,(o)

G&(p, (o) =A(p, (o)e
—e(»«G&(p, (o). (7)

Thus, in the evaluation of Z, we shall set G (p,(o) =0.
With this simplilcation, Z(1—1 ) may more easily be

expanded in a power series in n. This expansion to
second order is diagrammatically indicated in Fig. 2.
Here, the solid lines represent the free propagator

esP (I'1—r1')—i)P&(t1—t1')Gp(1, 1') = —iin a power series in n. Since there is only one particle
in the crystal, we can make use of a variety of simplifica- (2rr) s

for it~& it~'

for itr &it;, (8)=0

while the dashed lines represent the retarded potential
V. The first-order diagram, indicated in Fig. 2(a),
gives

Zt(1 —1')=iV(1—1')Go(1—1')
ol

(t(o Ft(p, (o )

2sr pp
—(o

Z (p,po)=

18 Although we use the symbol p for both the mobility and the
chemical potential, no confusion should arise.

"P.C. Martin and J. Schwinger, Phys. Rev. 118, 1342 {1959).
'3 L. P. KadanoB and G. Baym, Quantum Statistical Mechanics

{%'.A. Benjamin, Inc. , New Vork, 1962)."R.Kubo, Can. J. Phys. 34, 1274 (1956).» H. Frohlich, Advan. Phys. 3, 325 (1954).
"We follow the notation of R. P. Feynman /Phys. Rev. 97,

660 {1955)j in using units in which A, the electron band mass,
and the phonon frequency are all set equal to unity.

»This retarded interaction was used at zero temperature by
V. M. Galitskii and A. B.Migdal, Zh. Eksperim. i Teor. Fiz. 34,
139 (1958) Ltranslation: Soviet Phys. —JETP 7, 96 (1958)g and
A. B. Migdal, ibid 34, 1438 (1958.) Ltranslation: ibi(t 7, 996.
(1958)j. It has been applied to the Gnite temperature polaron
problem by R. D. Puff and G. D. %'hitfield in Polurons and
Erre@orrs, edited by C. G. Kuper and G. D. Whit6eld (Oliver and
Boyd Ltd. , Edinburgh, 1963), pp. 171-190.
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in the denominator of Eq. 4), so that

P(y, ~)
for ru(E(0) . (15

(c)

()

er .%'e calculate the efkcts Of
2 an c, f 2(d) or 2(e), since t ed2() h t oto

ish when the density goes to zero.latter necessarily vanis w e

E(y) = —n+ p'/2m'+0 (17)

1+ /
'

n renormallzation constant iswhile the wave function ren
for small p,

z(0) = 1—n/2.

ith the low-momentum
'«1) '

th
st concerned wit e - turn

quasi
ta esw ia d tlow temperatulRbl excite R

fh q 'p 1We can determine the properties o es

find that for small y and co

ReZ(y, a) = —nL1+, (o—,j
e well-known results thatUsing Eq. , ws' . 11) we recover the we-

for p'/2«1,

r, (y, )= , ,P'~(~+1 p"/2)—
(2w)' (u —y')'

(8+1)b(au —1—p"/2) $.

d (19) in our laterWe shall need Kqs. ( ), (, r
lscus olaron mo 1 y

(1o) necessary for us o
of electrons

~(y, )= (y)
b(y)1 '

(12)

'
e lifetime defined bywhere' y is the quRslpRl tlcle e

r(y) =«(y) P(y, E(y)) .

tion renormal-called the wave functioThe quantity z(y), ca e
ization constan,nt is defined y

s(y)= 1——ReZ(y, a)
Bop

the appearance of F(y,a&
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mobility which is

eP doo O'P d'P' 2o"ore
p y'e &'" »(NA (y,oo) ReG(y', oo+1)LA (y,oo) ReG(y', &o+1)

3n 2or (2or)' (2or)' (y—y')'

+ReG(y, oo)A (y', oo+1)j+ (7+1)A (y,oo) ReG(p', a)—1)LA (y,oo) ReG(y', oo —1)+ReG(yp&)A (y', oo —1)j), (41)

ReG(p, oo) = (P

doo' A (y,&o')

2g M

picture which would predict

eo.(0)
[1—n/6+0(n') j.

m* 2' (45)

We neglect the terms in Eq. (41) proportional to g and
notice that the only important contribution to Eq. (41)
comes from the term involving $A(y, a&)|', which we
evaluate with the aid of Eq. (36). Thus,

Hence, 6nally,

go=-', ae7 (0)= (e/2nÃ)-', n, (43)

I =w.+uo= yo(1 ~j6), (44)

where po is the weak coupling mobility Lyo= e/2nNj.
Again, wc scc a vcr16catlon of thc quaslpalticlc

TABLE I. Expansion of the various moblllty
theories in powers of o..'

Underlying
theory

Lee, Low, and Pines

I'eynman model

Perturbation theory

Mobility
theory

Low and Pines
Osaka (Kadanoff)
Schultz

~

~~

Garcia-Molinerb
Moritab
Present theory

o/vo
for

%=3

0.34
0.53
2.0
039
0.1

PIPo
fol

a-+0

1—0.500N
1—0.173m
1+1.05m
1—0.250m
1 2.22@
1—0.167m

a The dc mobility of Ref. 7 is not included in this table, because it has
the wrong temperature dependence in the low-temperature limit.

b In theories which do not specify m+, we have used the Feynman-model
values calculated by Schule (Ref. 4).

ep dp dp p'p
p o (2"——~—n) r (0)

3n (2~)' (2~)' (p —p')'

j ~ 2

S(o ol& —~)+0(o) (42)
1+p"/2

We have explicitly verified that t,r(0)/ooo* is a correct
expression for the mobility in the 6rst nontrivial order
in 0.; as mentioned earlier, however, preliminary
calculations indicate that the quasiparticle picture of the
polaron is gcneraDy valid at low temperatures for the
description of polaron states with en,ergies below the
phonon emission threshold, so that t,'r(0)/ooo* is probably
correct to all orders in n at low temperatures. However,
these speculations about the correctness of the quasi-
particle picture are irrelevant to our main purpose here:
the derivation of a perturbation theoretic formula for
the mobility, as given by Eq. (44). This result is an
exact perturbation expansion of the mobility which is
appropriate for weak coupling, 0./'6&&1, and low temper-
atures, P

—'(&1. The next corrections to this formula
will be terms pqP

' and p, o(n/6)' times numerical
coeKcients of order unity. Equation (44) is then
inappropriate in the intermediate coupling domain
&~6.

IV. CONCLUSI05S

One possible criterion for the reliability of a weak
and intermediate coupling polaron mobility theory is
that its expansion in powers of n correspond quite
closely with the exact expansion. Ke have thus com-
puted the 6rst nontrivial term (proportional to n) in
the expansion of y/po for the various theories; the
results are displayed in Table I. Ke see immediately
that, according to the above criterion, the mobility
formula which was orglnally derlvvoed by Osaka (and
recently derived in another way by one of us) is exceed-
ingly good. The coeflicient of the a term of p/po given
by Osaka diBers from the exact codFicient by only about
4%%u~. For this reason, we conclude that the Osaka
formula is probably the most reliable low-temperature
mobility result that we presently have.


