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The wave functions for valence or conduction electrons are given in the form proposed by Phillips and
Kleinman. The wave equation for the smooth part of the electron wave functions is rewritten as an integral
equation which is solved by using the t-matrix formalism. The smooth part of the wave function is then
given by a plane wave plus wives arising from electron scattering by the eftective potential of the crystal
which might contain point imperfections. Approximate expressions for the wave functions, density and
energy of the valence electrons and the self-consistent crystal potential are given. Numerical results ob-
tained for the Fourier coefBcients of the valence electron charge density in diamond exhibit covalent bonding
and are in good agreement with experimental results. The presented treatment of valence or conduction
electrons is expected to be particularly useful in determining the electronic structure and the formation and
migration energies of point defects in valence crystals.

I. INTRODUCTION

ECENTI Y, a great deal of progress has been made
in the study of self-consistent valence or conduc-
~

~ ~ ~

~

tion electron distribution in metals and semiconductors. '
Cohen and Phillips presented a simple method for de-
termining self-consistently the screening of an effective
crystal potential due to valence or conduction electrons. ~

By using first-order perturbation theory and the con-
cept of dielectric screening these authors derived a
simple expression for the self-consistent crystal poten-
tial. However, their simple method failed to describe
covalent bonding in valence crystals. This failure arises
essentially from the linearization of the valence electron
response to the effective crystal potential. Kleinman and
Phillips determined for diamond a valence electron dis-
tribution in good agreement with experiment by using
valence electron wave functions in the form of sym-
metrized combinations of plane waves orthogonalized
to closed-shell core electron eigenfunctions. ' However,
this approach to the valence electron wave function. s is
limited to symmetry points in reciprocal lattice space
and, therefore, not very useful in determining self-
consistent electron wave functions and, particularly, in
determining the electron redistribution due to crystal
imperfections.

These remarks upon previous work show that it is
desirable to develop a simple method for a systematic
determination of valence or conduction electron wave
functions from a wave equation. Therefore, the aim of
this paper is to determine systematically from a wave
equation the Bloch wave functions in the form proposed
by Phillips and Kleinman' —in a way which takes into
account a nonlinear response of the electrons to the
eGective crystal potential and which can be readily
applied to imperfect crystals. Assuming that the closed-

* Supported by the U. S. Atomic Energy Commission.
' V. Heine, Proc. Roy. Soc. (London) A240, 340 (195/); L.

Kleinman and J. C. Phillips, Phys. Rev. 116, 880 (1959); Phys.
Rev. 117, 460 (1960); Phys. Rev. 118, 1153 (1960).' M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961).' L. Kleinman and J. C. Phiihps, Phys. Rev. 125, 819 (1962).' J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
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shell core electrons are dynamically independent from
the valence or conduction electrons and their eigen-
functions are known, then the Bloch wave functions of
the valence or conduction electrons are essentially de-
termined by their smooth part which is called hereafter
the effective wave function. The wave equation for the
effective wave functions4 is rewritten as an integral
equation which is then solved by using the t-matrix
formalism. The Hamiltonian of the wave equation for
the eGective wave function. is split into H'= Ho'
+Q~ddZ~', where Zo' represents that part of B' which
has plane waves as eigenfunctions and LUVg' is the
perturbing Hamiltonian associated with the lattice ion /.
l is sulzuried over all atomic nuclei of the lattice. Intro-
ducing then the operator I,~ which describes the electron
scattering by ddt'', the integral equation is solved in
terms of t~. The resulting effective wave function con-
sists of a plane wave plus waves involving I,g which
arise from single, double, and higher multiple electron
scattering by the AHA'. Assuming that the interatomic
distances are large compared to the range of the ~P~',
where the main electron scattering occurs, then the
multiple electron scattering can be approximated by
multiple forward and backward scattering between the
scatterers and can be expressed in closed form.

The crystal might contain imperfections. Then, for
example, a vacancy is described in H' by dZXy'=—0,
where ~y' denotes the perturbing Hamiltonian associ-
ated in the perfect crystal with the lattice site V of the
vacancy. An interstitial is represented in H by a per-
turbing Hamiltonian lDEq' located at an interstitial
lattice site. Approximate expressions for the Bloch wave
functions, charge density and energy of the valence
electrons, and for the electronic contribution to the
formation energy of point defects and the self-con-
sistent crystal potential are derived.

In Sec. II the wave equation for the effective wave
functions is rewritten as an integral equation. In Sec.
III the integral equation is solved by using the t-matrix
formalism. An approximate expression for the effective
wave function is given. In Secs. lU, V, and VI, approxi-
mate expressions for the f matrix, the self-consistent
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crystal potential, and, respectively, the energy of the
valence electrons are derived. In Sec. VII the general
method is applied to diamond. The Fourier coeKcients
p111 p220 p311 p222 and p400

charge density are calculated. The obtained results are
compared with experimental data and previous theo-
retical calculations.

The treatment of valence or conduction electrons
proposed in this paper is discussed with respect to its
limitations and applications in Sec. VIII.

II. INTEGRAL EQUATION FOR THE EFFECTIVE
WAVE FUNCTION

crystal the Ut, k(rt) are given by exp(sk ri). The re-
quirement that fk is orthogonal to the eigenfunctions
pg, » and

(pt, kI pt, k&=8a, t

lead to

ftts (k)=(pt, k IC'k&. (II.S)

In the tight-binding approximation the condition (II.7)
is fulhlled only if the overlapping of y~' and q

' for
which /Wl' is neglected. Combining now Kqs. (II.1),
(II.3), and (II.5) one derives for C k the wave equation'

H'C k(r) =E(k)C k(r), (II.9)

The Bloch wave functions for valence or conduction
electrons are determined by

with the effective Hamiltonian

H'= H+ Vt—t. (II.10)

HA(r) =E(k)4 k(r) (II 1) The nonlocal potential Vtt(r, E(k)) is given by

where the Hamiltonian II is given by

H—=—(hs/2m) V'+ V;(r)+2;.(r E(k))
+C(r)+A.„(r,E(k)) . (II.2)

V; is the Coulomb potential of the lattice ions, e.g.,
atomic nuclei plus tightly bound core electrons. 3;,
describes the exchange and correlation interaction be-
tween the tightly bound core electrons and the valence
or conduction electrons. C is the Coulomb potential of
the valence or conduction electrons. The operator A„
describes the exchange and residual correlation inter-
action among the valence electrons. '

Phillips and Kleinman4 made for the Bloch wave
functions fk the ansatz

ilk(r)=ck{Ck(r) —gtk btk (k)pt, k (r)), (II.3)

where the normalization constant C» is given by

C», the smooth part of the Bloch wave function, is
called the e6'ective wave function for the valence elec-
trons. The q~, » are closed-shell crystal core electron
eigenfunctions. t is summed over all closed-shell core
electron states. The q ~, » are determined by

Hpt k(r) =E,(k) pt, k(r). (II.5)

In the tight-binding approximation (LCAO) the eigen-
functions q ~, y are given by

Vtt(r, E(k))C k(r)
=g, ,, (E(k)—E,(k'))f „(k)„,,„(). (11.11)

It may be noted that the indeterminacy of C» which
can be seen from Eq. (113)allows one to impose an addi-
tional constraint on C» which can be used for simplifying
Vg. The additional constraint on C» is usually applied
in the form of a variational principle. In accordance
with the varied quantity various expressions are ob-
tained for Vg. '—'

Assuming that the tightly bound core electrons are
dynamically independent from the system of valence
or conduction electrons and the core states q~, » are
known, the determination of the Bloch wave functions
pk is reduced to the determination of Ck by the wave
Eq. (II.9).

Equation (II.9) is now converted into an integral
equation as follows. The Hamiltonian II' is split into

H'=He'+ hH'. (II.12)

H0', whose eigenfunctions are plane waves, is given by

h2

Vs+ V,'(k, k; E(k))+V,(l,l; E(k))+C,2'
+A,,s(r,Es'(k)), (II.13)

with

V (k,k; E(k))—=(I-'(kI V (r,E(k)) I k&, (II.14)

where V (r,E(k)) is defined as

V (r,E(k))—=V;(r)+A,„(r,E(k)), (II.15)

where l is sulnmed over all atomic nuclei of the lattice.
The r~ give the positions of the X atomic nuclei of the
lattice. The functions q ~ are atomic-like eigenfunctions
associated with the lth atomic nucleus. The expansion
coefficients Ut k(r,) are determined, in general, as
shown in detail in Appendix C. In the case of a perfect

' J. C, Phillips, Phys. Rev. 123, 420 (196j.).

V, (k,k; E(k))—=n-'(k
I
V, (r,E(k)) I

k&. (11.16)

Using Eq. (II.11) one gets

Vtt(k, k; E(k))
=D '2 k (E(k)—Et(k'))I(«, 'Ik&I' (III&)

' M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
t F. Bassani and V. Celli, Nnovo Citnento ll, 805 (1959).
%. A. Harrison, Phys. Rev. 126, 497 (j.962).
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0 denotes the volume of the crystal. If V (r,E(k))
and Vip(r, E(k)) are local potentials, then V (k,k; E(k))
and Vz(k, k; E(k)), respectively, are the space aver-
ages of these potentials. The perturbing Hamiltonian
le/ is given by

DH'=hV +AVri+hC+bA„, (II.18)
with

aV (r,E(I))—= V, '(r,E(1))—V (k,k; E(1)),
AVii(r, E(k))=—Va(r, E(k))—Vii(k, k; E(k)),

DC(r) =—C(r) —Cp, »=p(»i.
Equation (III.2) can now be rewritten as

(III.4)

The scattered wave AC 1, is then given by

ACk ——gk(~' —»)L1—gk(AH' —»)] '~ k). (III.2)

As shown in detail in Appendix A, LUF can be split into

~'(r,E(k))=P, AV, '(r—r„E(k)), (111.3)

where / is surruned over all atomic nuclei of the lattice.
The perturbing Hamiltonian hH~' is associated with
the atomic nucleus l located at r~ in the lattice. In ac-
cordance with Eq. (III.3), one gets

AA, „(r,E(k))—=A,„(r,E(k))—A„„'(r,Eo'(k)) . (II.19) ACk ——Pi ACk', (III.S)

hE is de6ned by

Ck (r)=exp(ik r). (II.22)

with
~=—E—Ep',

E,'(k) =n-i(C, p
i
H, 'i C,o).

(II.23)

(II.24)

ACk(r)= d'r'Go (r,r', Eo (k)){AH —»)4k(r') (II.25)

is the scattered wave resulting from the scattering of
the free electron in state C»' by ~P'. Denoting by g1,

the integral operator with kernel Gp'(r, r',Ep'(k)), Eq.
(II.21) can be rewritten as

4,=
~
k)+g, (AH' »)4„—

where the state vector
~
k) represents Ck'.

(II.26)

III. THE SOLUTION OF THE INTEGRAL
RQVATION

The integral Eq. (II.26) can be formally solved by

Ck=L1-gk(~H —»)j- ~k). (111.1)

Cp and A„„' result from C and A.„respectively, for
dH'=—0.

The assumption that the tightly bound core electrons
are dynamically decoupled from the system of valence
electrons has the consequence that A,„ is essentially
unscreened. Therefore, in the following, A;, is approxi-
mated by A;„(r,0).Then, V (r,E(k)) and V (k,k;E(k))
are given by V (r,0) and V (k,k; 0), respectively. De-
fining a Green's function Gp'(r, r', Ep'(k)) by

{Ho'—Eo'(k)) Gp'(r, r', Ep'(k)) = t'i(r r') —(II.2—0)

and the requirement that Gp'(r, r',Eo'(k)) as a function
of r has the same behavior for r -+ 0 and r —+ as the
scattered wave arising from hH', Eq. (II.9) can be re-
written as the integral equation

P (r) =P '(r)+fd'r'G, 'O, r',P, '(k))

X{&H' »)4 „(r'). —(II.21)

The eigenfunctions c 1,
' of Ho' are given by

the scattered wave Ac 1,
' is expanded as

5@k (gktl+ Q gktlgktv
l'

(l' gl)

+
j,
'r g&, i gr-)

gktigktvgktv'+ ' ' ')
l k) ~

(III.8)

where always successive indices are different. The
various terms in Eq. (III.8) are interpreted as arising
from single, double, and higher multiple electron scat-
tering. For example, gkti~k) represents the scattered
wave due to scattering of an electron in state

~
k) by

BHi' and the scattered wave pigkt&gkt& ~k) results
from the subsequent scattering of the various scattered
waves gktv

~
k) by bHi'.

The main contributions to AC 1,
' will arise from single

electron scattering by hH~' and from multiple scatter-
ing involving beside ddEg such perturbing Hamiltonians
BEE'p' which are associated with atomic nuclei l' in the
next neighborhood of the atomic nucleus l. Therefore,
dC 1,

' is approximately given by

AC k' ——gkti
~
k)+ Q 54 +k. (III.9)

l'
(~' WL)

with

6@k = (gktlgktv+gktlgktvgkti

+gktigktvgktigktv+ ~ ) ~
k). (III.10)

with

AC k' ——gk (ddf t' —»i)
XL1—Pi gk(~v' —»v)1 '~k). (III.6)

AC 1,
' is the scattered wave arising from DHg'. Expand-

ing the exPression P1—Pv gk(AHv' —»i)j ' in a
series, introducing the operator

ti= (AHi' —»i)t 1—gk(AHi' —»i)g—', (III.7)

which describes the electron scattering by hH~', and
using the operator identities L1—gk(b Hi' —»i)j '
= 1+gkti and

(AHi' —»i)L1—gk(AHi' —»i)1 '
=L1—(~'-»)g.3-'(~'—»)
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FIG. 1. Graphical representation of
(a) gpss& IK), (b) Kq. (III.10); (c)
gyI""'(Ic), and (d) gy2""(k)

The physical signi6cance of this term is illuminated by
the graphical representation given in Fig. 1. If neces-

sary, all higher-order terms in Eq. (III.9) can readily
be written down in explicit form using their graphical
representation. For example, the two next higher-order
terms in Eq. (III.9) denoted by

aC o""(k)

are pictorially given in Fig. 1.
For a further evaluation of Eq. (III.S) the Green's

function Gp'(r, r', Ep'(k)) need be determined. Fourier
transforming Eq. (II.20) one obtains

2m d'q
Gp'(r, r', Ep'(k)) =- Go'[q, Eo'(k) j exp[iq (r—r') j,

k' (2or)'

iI' ) ll' q
—1

Gp'[q, Ep (k)$= —
~

Ep (k) — q
—V (k,k;0)—Vg(k, k; E(k))—Co—A „'(q,q;Eo'(k))+io

~

2m ( 2'
(III.12)

The limit e —+ 0 is taken after the q integration is per-
formed. The irreducible self-energy A„„'(q,q; Ep'(k)) is

given by

p&kr and o&0 for p&kp, kr being the Fermi wave
number, and where V,o(r r, Ep (k) —Pp) den—otes the
screened electron-electron interaction in a uniform
electron gas, one derives

A„„'(q,q; Eo'(k)) —=0-'(q~ A„'(r,Eo'(k)
~ q). (III.13)

A-'(q, q; Eo'(k))

Approximating A„,o(r,Eo'(k)) by'

A„P(r,Eo'(k)) exp(iq r)

p

=i d'r' V.p r—r', Ep' ~ —
p

2'
XGp" (r, r', pp) exp(iq r'), (III.14)

where the Fourier transform Gp" (yrpo) of the Green's

function Gp" is given by Eq. (II1.12) with o&0 for

op dpp
V'(q —p, Eo'(k) —po)

(2or)o 2or

&&Go"(p,po) (III.15)

It follows from Eqs. (II.24) and (II.13) that Ep'(k)
is given by

Ep'(k) = (iI'/2m)k'+ V,'(k)k; 0)+Va(k, k; E(k))
+Co+A„'(k,k; E,'(k)). (III.16)

Thus, Eq. (III.12) can be rewritten as

(k'/2 sos)

Gp'(q, Ep'(k)) =
(j's'/2oss) (q' —k')+A„'(q, q; Ep'(k)) —A»'(k, k; Ep'(k)) —ic

L. P. Kadanoif and G. Baym, Qrcaocsasa Stacososcal Mechamccs lW. A. Benjamin, Inc. , New York, 19621.

(III.17)



ELECTRON D I STRI BUTION I N CRYSTALS

Performing the angular integrations in Eq. (III.11),one gets

2851
Go' (r, r', Ep'(k)) = —— dqqGp' (q,Eo' (k)) exp (iq ) r—r'

~ )
4pr'ko i[r-r'[l

+ dqq exp(iq) r—r'()LGo'( —
q, Eo'(k)) —Go'(q, Eo'(k))], (111.18)

where it has been assumed that A„„o(q,q; Ep'(k)) is not
angular-dependent with respect to g.
Then, neglecting the second integral and evaluating the
first integral by using the Cauchy theorem, one obtains

is given by the residuum associated with the pole at
g=k, one gets

Gp'(r, r'; Ep'(k))

2811
Go'(r, r', Eo'(k)) =-

2o.k'
(
r—r'~ (III.19)

with

'm exp(ik(r —r'))
=——o-, (k, lr —r'I) (III.22)

2g A' [r—r'f

XP Res. (q exp(iq~ r—r'()Go'(qEo'(k)))p p,

j is summed over all poles of Go'(q, Ep'(k)). The q; are
determined by

(Go'(q, Ep'(k)))—'=0. (III.20)

It follows from Eq. (III.17) that in first-order approxi-
mation, Gp'(r, r', Ep'(k)) is given by

2m exp(ik)r r'~)—
Gp'(r, r', Eo'(k))~ ——— (III.21)

4~&'
~

r-r')
which is the free-particle Green's function. The cor-
rections to this approximation arise from many-body
effects. Approximating Ep'(k) by Ep'(k), and assuming
that the major contribution to the sum in Eq. (III.19)

and

dpi X)(Xi = (2 )'ti(r —r') (III.24)

(Vlg. l ~)= —(2~/&')(2 )'
XGo'(li, Eo'(k))8(y —X), (111.25)

one gets

a i( k(r r'(—)=—2 Res (qe'«. "&~' "~G 'p( qE o'(k))) p p

(III.23)

u ~ takes into account effects due to the interaction of the
electron, described by the propagator Gp'(r, r'; E,'(k)),
with the other electrons of the system.

Using the relations

g&ti~ k) =—d'q exp(iq r)Go'(q, Eo'(k))«(q, k; E(k))
2x'

(III.26)

Ac k"= d'q exp(iq r) (1/2s')' d'&Go'(q, Eo'(k))ti(q, y; E(k))Go'(y, Eo'(k))tv(y, k; E(k))

+(1/2m')P doyd9Gp'(q, Ep (k))ti(q, g; E(k))Gp (p,Eo (k))tp(p, X' E(k))Go'(X,Eo'(k))ti(X, k; E(k))

+" . (III.27)

The t matrices ti(q, k; E(k)) are defined as

ti(q, k; E(k))—=—(2rip/4n. h')(q
~
ti~ k). (III.28)

tI, is the t matrix describing the electron scattering by
le~' centered at r= r~. t~ is related to t~' which is the
t matrix for scattering by ddt~' when centered at r=0 by

t&(q, k; E(k))=expLi(k —q) rtftio(q, k; E(k)). (III.29)

The terms 64i""'(k) and ACp""'(k) are similarly

evaluated from their graphical representation using the
rules for Feynman graphs.

For a further evaluation of the expression for the
scattered wave dC»"'(r), integrals of the type

1(rii,e,y, k)

d9t)' o,X;E k tpo X,y,'E h.

XGp'(X,Ep'(k)) exp(G, r i ) (III.30)
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Then, the remaining integral can be easily performed.
Using the same approximation as in deriving Kq.
(III.22} one gets

need be evaluated. Assuming that the angular depend-
ence of the integrand with respect to 2 is essentially
determined by exp(iX rgv), the angular integrations in
Eq. (III.30) are performed by putting 0 in the t mat-
rices equal to Xrn /ru Th. e result is «v

&(~ir, ,v}}=2'u—,(&iw}&P(~P '&(k}
l

~»Vrlv
I(r„.,~,~,k)= dV, ~,

o ~P~; E(k)
~

«v 0

' «v' rgv )exp(lk«v)
,,;E(k}

~

. (III.32}
& «v' ~ «v

Again, assuming that sinXr»z varies more rapidly as a
function of X than the t matrices, the t matrices can be
taken out of the integral and evaluated at X equal to k. with

DC},"(R()=exp(ik «)A},"'F)(R(,n}v,k), (III.33)

rzz'

,q; E(k)
Then, making use of }!P(X,y; E(k))=}}P(—y, —X;E(k)),
all multiple scattering terms in Eq. (111.27) can be

XGO (~ EQ (&))»»«v (11131) summed up and one obtains:

a g(k, r}v)[exp(ik«v)/«v j
Zl' =

1—tvo(kn)v, —kn(v., E(k))}'p(—kn(v, kn)v, E(k)}[exp(ikrn )/rg. ]'(a }(}j,,rn ))'

y {a g(k, «v) [exp(ibm. )/rn ]tP(—kn(v, k; E(k))t('(kn(v, —kn(v, E(k))

+exp(ik rvg)tv'(knn. ,k; E(k))}, (III.34)

nn = rtv/«—v, «v = r& rv—, —(III.35)
EC q can be expanded in a Fourier series as

&4'},= Q ox(k) exp[i(k+K) r$, (III.40)

where K is a reciprocal lattice vector. Using Fqs.
X(p(q, &n„, ; E(k)), (11136) (III.S) and (III.38) one gets

Rz—=r—r». (III.37)

It may be noted that if aH the perturbing Hamiltonians
AB» are equal, as in the case of a monoatomic perfect
crystal, then all tv'(p, q; E(k)) in Eq. (III.34) can be
replaced by }!P(p,q; E(k)). The scattered wave EC'},'

can now be rewritten in the form

F» R»~, —

R( exp(ikR))
=a g(kR()tP k—,k; E(k) . (III.39)

~l Rz

In the case of a perfect crystal the scattered wave

AC},' ——exp(ik r}){Fg(R},(k/k), k)

+ P (A},"+ )Fg(Rg, ngv, k)}. (III.38)
p

(z' &z)

Using the same argument as in evaluating I, Eq.
(III.30), for large R~ tP(q, kn~v, E(k)) can be taken out
of the integral in Eq. (III.36) and be evaluated at
q=kRg/R~. One gets then

~K
(k)=—{& (k)+ Z (~ "'+" )& (& o )},

00
(z' g4) (II1.41)

with

Tx(p) = d'E(, exp[—i(k+K) R},1Fg(Rt„(y/p), y),

(y=k, kn), v). (III.42)

00 denotes the volume of a unit lattice cell and to de-
notes any one of the lattice ions. SK is called the struc-
ture factor and is given by

Sx——Q; exp( —iK d,), (III.43)

where the d; are the position vectors of the lattice ions

j within the unit lattice cell. j is summed over all ions
within the unit lattice cell. Using Eq. (III.36), Kq.
(III.42) can be rewritten as

TK(y) =4xGO'(i k+Ki, Eo'(p))
yt„o(k+K, y; E(k)). (II1.44)

In order to get self-consistent wave functions f},, the
t matrices IP(q, k;E(k)) need be determined self-
consistently. This requires a self-consistent determina-
tion of dH»'. In the next two sections we discuss the
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(tI(H&'(q, k; E(k)))'=— dpR& exp( —iq R&)

IV. SELF-CONSISTENT DETERMINATION OF THE
T MATRIX t)'(q, k; E(k)) XAHt'(R~, E(k)) exp(ik R~). (IV.4)

AHt'(q, k; E(k)) is defined as

t)Ht'(q, k; E(k)) =expLi(k —q) r&]

x(AH, '(q, k; E(k)))p. (Iv.5)

The integral Eq. (IV.3) can be solved by iteration.
Since (AH~') p involves t p, the self-consistent determina-
tion of t~' is performed as indicated by

(AHg')P+~ tP. (IV.6)

To obtain a self-consistent expression for

t)H((q, k; E(k))=—(hV (q,k; 0)'+hV&'(q, k; E(k))
+AC((q, k)+AA„„'(q,k; E(k)), (IV.7)

the matrix elements ACg and hA„' need be determined
self-consistently. The potential hC& arises from the
polarization of the valence electron Fermi sea induced

by AB& which results from hII&' for b, V&'=—0. This
amounts to an effective, e.g., screened one-body
potential

It is useful for determining self-consistently the
matrices I,~' to derive an integral equation for

t'(q, k; E(k)). Because of

t(
~
k) = (AH(' t),E() (

k—)+ (t(.H)' —AE))g),(t) Hg' —t) E))
X(I—g„(AH, ,—AE,))- ~k), (IV.&)

one gets

2'
4xtIg'

t('(q, k; E(k))=—

2m
(qI (AH( —t)E()g~«lk) (Iv 2)4''

Neglecting hE~ and evaluating the second term in Eq.
(IV.2) by using the relations (III.24), (III.25), and
(III.28) one gets for tP the integral equation

t('(q, k; E(k)) = —(2m/4prh ) (AH, '(q, k E(k)) (A V ),'=—(A Vj)'+ACg. (IV.S)

2m (A V,'),' and AA„„' are determined in detail in the next

(2pr)PAP
section.

If hH&'(R&, E(k)) is a smooth potential, then Eq.
XGp'(p, Ep'(k))tp(p, k; E(k)) . (IV.3) (IV.3) is solved by

dpp(t) H)'(q, y; E(k))'

self-consistent determination of the scattering ampli- The matrix element (AH& (q,k; E(k)) is defined as
tude tP(q, k; E(k)) and the crystal potential AH(.

t)p(q, k; E(k))=-
4n.k'

&+ d'pGp'(p, Ep'(&))(AHt'(q, u' E(k)))'
(2pr) Pt't'

(IV.9)

V. SELF-CONSISTENT DETERMINATION
OF Lb''(ps'; E(k))

Assuming that the eigenfunctions q ~, ~ are self-con-
sistent, then the self-consistent determination of hH~'
is reduced to the self-consistent determination of hB~.
To determine self-consistently AH&(qP. ; E(k)), the de-
pendence of the potential AC~(r) and the operator
AA„„'(r,E(k)) on tI)Hq(r, E(k)) need be evaluated ex-
plicitly. First, AC(r) is given by

Green's function Gp". The Green's function Gp(r, r', pp)
is defined by Eq. (U.3), replacing the Hamiltonian H by
(Hp' —Vs(k, k; E(k))). Converting Eq. (V.3) into an
integral equation one gets

G(r, r', pp) =Gp(r, r', pp)

+ d'r"Gp(r, r",pp)AH(r", pp)

XG(r",r', pp) . (V.4)

AC(r) = —2i
(fpp

d'r' V( r—r'[
2x

X (G(r', r', po) —Go(r', r', po)), (V.I)

Equation (V.1) can then be rewritten as

AC(r) =Pt EC((r),
with

(V.5)

with ~ 0)'([r—r'[)=e'/[r —r'[. (V2) aCe(r)= —2e f rpr'rpr" )r([r—r'[)
The exact one-electron Green's function G(r, r', pp) is
defined by XGp(r r pp)AH~(r p,)G(r",r', pp), (V.6)

H pG rr', p = br —r'— —V.3
which is pictorially represented in Fig. 2. The wavy and

and the same boundary conditions as imposed on the striped line represent the electron-electron interaction
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rewritte»sD1 24), Eq.. (V.11) can be rewUsing formula (

ECi(q, k) = —2iQV(l q —x

d a

p avx8 Ip)-

,Go(l p+a —&I, po)
(2s)' (2m)'

Bi p+il —X, e; po), V.

Fze..2 Determination of hc).

r
i

d over all values of y wit inis average ov

L

where (elegy).
'

ov
t

t ti 1 (hV;
i sea.

~ ' ' and AC~ yie
res ectively. The uppe

. . sc eened, one- o en

d the interaction

e6ective e g

lf le represe
1 E ssi gGint msand 6, respectively. xp

'
in terms

(V.7) F '

' ' M

as

G(r, r',p,)=Q ~, , r
7r

wit'h

The o erator 6as follows eansforming the evaluated as
)

is defined as in 0, an
Go then the matrix e epo en

't ntial V and

b,A„r,
i

G(p, po) = I:E(p)—po—~~ —,

s given by

—v(lil —zl)~c(q» , ,2m=f—f
o, o 4'ilp+& —il)XGo(p', po)G(p, po

x(y'I ~e&14p),

~

~

,
' E k )—Zo(r, r', Ea(k)))d'r'{Z (r,r'; E(k

Xexp(ik r'),

with

th

ECi(q, X)= —2iQV(l q —X

—Ga(ly+ q —al, paxQ'I y).

+ il—0. I EHi lips). (V.11)

Fn. . i the. 3 Diagram for the
self-energy

xG(y yo)(p

ni „. ' B. Goodman, and J. R, Schrieffer,Robinson,"F Basaan&,
Phys. Rev. 127, 19 a Rev. 1H, 786 (1959).nd M. H. Cohen, Phys. Rev. 1"H. Ehrenreich and M.

t art of the irreducibleZan 0 p~here
valence electron se-

ation. re

ao' for Va(k, k;E(hase ap- from Hoppp
roximation. .~ Assuming

1

Green's func
' . e-l

all from t e e
uniform e ec ron

and electrons is neglec

V, rr, a, ', k —0,

s d lectron-electron in-
'1 1

lmre V.
(

'h' h Fof p wit in ea.

14 replacing, V w(V.

age
the approxima een for ACED e
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I E(Q) —ps) byand G r, r,
Eqs. (V.4) and (V.7),

d foV and Go, anforming
obtains

~A„„'(q,~; Z(l ))

Spreening
f electron-elect

IG '
ron

in ran-1nteractlon ln
dom Phase aPP
mation.

+ (Q

,V.(p,ps)
s ' 2s)s2s (2s) (2 ) (

XGs(lq —pl, Es(k) —s G y, e

hA„.'(»,0; E(lr))

(2 )'('-')('- I'-'-
(,.)

,V. p, o)Go(l» —pl, ~s(&)—psX

—s)»i(q —p, e;8( )—s,XG(q—y, E(k)—p,

—y, e; E(k) pp)X(6 l~—y&»i(» —p, e;

one ets q=X
c m tely be e
ervation, o

V.15) can approxim=p+y'. Then Eq. V.
written as

s hV ),', is thenart of AHg, denoted asThe local p
approxim ately giv y

(a
(hV'(q —X; 0)),'=

V'(q —3;0))

a(q —X; 0)

d p do' dpp
o) i , f f—

)

o . (V.21)XO(q, k,pp, y,o).

ximately exim y b rewritten as«(q —&; c xim y0) can approxim y

«q —0;0)=1+QV(l q—X

d'0
Q. l p&,( I~,&,~.(»-;—X;0),

(2~)sf
(V.22)

—X'0) is given bywhere Ep(»—

= (hV'(q 3 0))'+

with

I p)G(y ps)(~IA&

=—2~V(l q—~l)
X(Alp&.as(lp+q —&, s

=iQ m s Gs(lq —yl, Zs(k) —ps=iQ(2m)'8(q —X)V.(p,p
— ~(1)-p.)( l~, ,&(~,—,q- .XG(q—p, ~

of
dpp dsp

d over values o
h ~0)

y, . (V.23)X o y G y,pp). V.

ated by Go thenG is approxUna e

e functions ~

n ex licit

r ACi(», X) and M„
functions f w ic r

approximation

E ii)) is self-consisten. y»i(», 0; E is s —
'

en.

~H, q, Z;Z(i))

dps d'p dse.

2s (2s)s (2s.)3 3

ne in
'

amongt ev'd' tdb
l

screened electron-e ec ro
'

ion an
+1 (qh, —,, »i q—ye,

(V.7) d i o m
conservation one ge

s, (V.24)V (» qo) = V(q)/s(» qo

here the ie e
'

tion s q, qs) is given bywhere the dielectric function s q, s b

s) —=1+iV(q)P(q, qs .

d

K 1. Danske VkIenskab, Selska,~ J. Lindhard, Kgl. Dans e
Medd. 28, 8 {1954).
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The polarization propagator P(q, qo) is determined by then P(q, qo) is given by

~op dpo
G(p, po)G(p+ », po+qo)

(2«r)o 2«r

X&a. lexp( —«» r) Ip,+o)

X(&o+olexp(«q r) lou& (V.26)

P(q, qo)
—=2

P(q, qo) =29«I exp( —«q r) I4~o&-

XQo+, l exp(iq r) lg, ).

Since the integration over po yields the factor fo
X (1 fo+o), one gets for P(q, Po) the approximate
expression

P(q, qo) =&Alexp( —«q rIA+o&-
XQ p+q I exp (iq r

I fp) slrP oo(q, qo), (V.28)

where Poo is given by Eq. (V.23) putting G= Go.

VI. ELECTRON ENERGIES

The energy of a valence or conduction electron with
momentum k is given by ReE(k) where it follows from
the wave Eq. (II.9) that E(k) is determined by

E(k) =&+.lH'Ie. &/(e. le,). (VI.1)

Then, using Eqs. (II.12), (III.3), (III.24), (IV.4), and

(IV.5), one obtains

d«P dPo
X G(p, po)G(p+q, po+qo) (V 27)

(VI.2)E(k) =Eo'(k)+gg(«(k)) (,

(VI.3)

2~~' 2~ where (kIHo'Ik&/&C'olCq) has been approximated by

The matrix elements are averaged over values of y Eo'(k) =0-'&k
I
Ho'I k),

within the Fermi sea. Approximating the Green's
functions G in Eq. (V.27) by the Green s functions Go, and where («(k)) & is given by

A2k2 f«' d'p
(«(k)) ~= (&~c"'Ik)+ )+ p'&~c"'I p)(p I

™)
&CHIC'o& 2m 2«««(2«r)'

+ (AC g'I p&A„'(p, k; Eo'(k))+(pl AC, '&A,„o(k,p; Eo'(k))
(2n-)'

dSg+,(&c"Ip)(ql~c. &A-'(p, q; E '(k)) +
(2«r)'

$«p d«q

(c"I «&&plC.)~Hi'(q, p; E(k)) (VI 4)
(2«r)« (2«r)«

Due to hH& (q,p; E(k)), the energy E(k) is given by Eq. (VI.2) implicitly. Equation (VI.2) can be solved by
iteration. " In first-order approximation E(k) can be approximated in AH&' by Eo'(k). Equation (VI.2) can be

rewritten in the form

fi2

E(k) =Eo'(k)+ P nx*(k)nx (k) fl (k+ K)gx, x +AsÃ(k+ K, k+ K'; Eo'(k))
&~ l~ ) 25$

E
+—Sx x. (bx, o+nx*(k)) (bx', o+nx. (k))(AH&o'(k+K, k+K') E(k)))' +E+(k), (VI.5)

where s denotes the number of atoms per unit lattice cell and where Es (k), denoting the change in energy of the

perfect crystal due to crystal imperfections, is dered as

Eo (k) —=Pp(«(k)) (.—P )(«(k)) g&o'. (VI.6)

(«(k)) &&" refers to the perfect crystal, e.g., («(k)) & in the case of a perfect crystal. i' and f are summed over all

atomic nuclei in the imperfect and perfect crystal, respectively. For example, in the case of a vacancy at a lattice
site f= V it is (d E(k)) & v =—0. However, the vacancy at the lattice site /= V is created by bringing the lattice atom

which occupies in the perfect crystal this lattice site f to the surface and, of course, the term («(k)) & associated

with the surface atom appears in the sum over I'. An interstitial is created by bringing a surface atom into an

interstitial position in the interior of the crystal. Thus, the term («(k)) ~&'& associated with this surface atom is

omitted in the sum over l and instead of it the term due to the interstitial appears. In erst-order approximation

'3 P. O. Lowdin, Suppl. J. Appl. Phys. SB, 251 (1962).
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(DE(k)) ~ is given by

fi2

(&E(k))~= &AC 'lk)+c.c.+P n (k) (k+K)'(AC 'l @+K)+
&C, lc,& Zm

'
x~ Zm (Zpr) P

XL(ae, l y)A, „o(y,k; E,'(k))+(yl ac, )A„„o(l,y; E,'(l ))+g nx(l )&~C, l y)A.„o(y, %+K;E,'(k))]
X&0

+ P (&xp+,nx*(k))(5x,p+nx (k)) expl —i(K—K') r&](AP&'(k+K, k+K'; E(k)))' . (VI.7)
X,K'

If multiple electron scattering is neglected, then (AHA )' becomes independent of r~. The redistribution of the elec-
tronic energy levels due to the imperfections is determined by E~(k). This is of importance in determining the
optical properties of imperfections. The single-electron energy E(k) given by Eq. (VI.Z) includes correlation among
the valence electrons. E(k) is in general complex. The imaginary part of E(k) determines the lifetime of the elec-
tron state C ~.

The total energy of the system of valence or conduction electrons is given by

E=g(Ep'(k) ——',LCp+A„„P(k,k; Ep'(k))]}+P 6E&, (VI.S)

with

1 O'O' 5' d'p 1 d p
aE,=P &&4" I

k)+c.c.+ p'&&4 "Iy)&yl &I'.)+-
I &C I, l

C 1,) Zm Zm (Zpr)' 2 (Zvr)P

g
X (Ac'k'l y)A..'(y, k; Ep'(k))+(yl AC'l, ')A,„'(k,y; Ep'(k))+ &Aek'l y)(ql Ac 1)A y'(yq; Ep'(k))

(Zpr)'

d'p d'q
&@~l q)&ylc'~)L(~l'"(q, y 0))'+~lr~'(q y E(k))+l(~Ci(q, y)+~A-'(q y' E(k))]

(Zvr)' (Zx)'
(VI.9)

The summation over k includes spin summation. Equation (VI.S) can be rewritten as

n - qaE=Z Ep'(k) —;(Cp+A P(k k. Ep. (k)))+g l .«) lPl (k+K)'+lA-'(k+K, k+K; Eo'(k))
Ix &C', IC',) EZm

~K-K
+Z (8x,p+nx*(k))(8x, p+nx (k)) expl i(K—K') r&,]((AV,"(k+K, k+K', 0))'

00

+b Vp'p(k+K, k+K'; E(k))+-,'LAC(, (k+K, k+K')+ AA„„'p(k+K, k+K', E(k))]} +Ep, (VI.10)

where E& denotes the formation energy of imperfections. In 6rst-order approximation hE& is given by Eq. (VI.9),
putting all AC~' due to interstitials equal to zero and using for AC~' and AC~ the expressions obtained for a
perfect crystal.

VII. VALENCE ELECTRON CHARGE DENSITY WITH APPLICATION TO DIAMOND

The charge density of the valence electrons is given by

p(r) =20

Performing the integration over pp one gets

~pp ~pp
(y,po)A(r)A*(r) .

(Zm)P Zm

(VII.1)

p(r) =20 fp|P, (r)|P,*(r) .
(Zn) P

(VII.2)



K. H. BENNEMAN N

H one expands p(r) in a Fourier series, one obtains

p(r)=g pxexp(iK r), (VII.3)

with

Using Eq. (VII.2) and writing go as

1
pz= — d'rp(r) exp( —iK r).

0

u. (r)=C, Z «(y) exp[i(y+K)'3.

(VII.4)

(V11.5)

with

«(y) =~x.o+«(y)+Px(y), (V11.6)

where nx(y) is given by Eq. (III.41) and Pz(y) is given by

1
Px(y) = ——g b~~ (y) d'rqr~, o. (r) exp[ i(y—+K) r],

0~u'

one gets

pop
ex=2~2 foICol'rx*(y)«+*(y)

(2m) o

Using Eq. (VII.6) one obtains

(VII.7)

(VII.S)

pK= 2Q f l Col'(bx, o+ax(y)+ x*(y)+Px(y)+P x*(y)+2 [ax*(y)Px+x(y)+Px*(y) x+x(»
(2s)o X'

+Px (y)Px''+x(y)++x' (y)«'+x(y)1} ' (VII'9)

The normalization factor
l C, l' is expressed. in terms of «(y) by

ICol'=-(1+2 l«(y)I' —Zlb'(»I') '
Q K~ Q ~2'

(VII.10)

To perform the angular integrations in Eq. (VII.9) the quantities Cz, «, and Pz are expanded into spherical har-
monics. One gets then

~PP'f. (~x,o&»(P)+2 &~(P)[(~-x(P))o-*+ (—1)"(«(P))~+ (P-x(P)o-*+(—1)"(Px(P))o-I

with

+Z 2 ~(gY'g, ~'(~—~')~)&"
&—&(P)l («(p))~*(Px+x(p))o-+(Px (p))~*(«+x(p))g

K' g,m
g, tÃ
gil

+(Px.(p)),„*(px x(p)),. +( (p)) *( ~ (p)), .j), (VII.11)

&~(p) = ~
I Co I'I'~*(~o &o) (VII.12)

(VII.13)

(Px(P))~= dflPx(y) I'~'(~.,o.), (VII.14)



~here always 8~ and q ~ refer to the same coordinate system, and

f(2g'+1)(2q"+1) '"
o (g'g"g, erg'(egg —erg')erg) =

~

C(g'g"g, erg'(rN —Ng')egg}C(g'g"g, 000) .
4gr(2g+1)

(VII.15)

The C's are usual Clebsch-Gordan coeflicients. g4 The remaining integration over P in Eq. (VII.11) has in general
to be performed numerically. (ggx(p)), and (Px(p)) o„are evaluated in more detail in Appendix B.

To demonstrate the usefulness of the above results, some Fourier coeKcients of the valence electron charge
density in diamond are calculated. The scattering amplitude tg (gl,k;E(k)) is determined by Eq. (IV.9).
(DHg'(gl k; E(k))) is approximated by the sum of hV'(( q—k(; 0)/et &(( q—k); 0) and AVggg(q, k; E(k)). et" de-
notes the free-electron gas die1ectric constant. "hV and AVE' are determined using earlier results obtained by
Herman" and Kleinman and Phillips. ' It is now 1go(KE(k)) =—tgo(EE(k)) and tgo(k+K, kngg, E(k)) is approximated
by the first terms in the expansion (B1) with g=0 and g=1. (AHg'(k, K,ngg, E(k))),„'is given by

(DHg'(k, K,ngg, E(k)))o o=(AHg'(k, (kngg —K); E(k)))ooF~*(8gt,„g. gt, sox, „g K), (VII.16)

(aH '(k,
~
kngg —K~; E(k))),'= dQaH '(k+ K, kngg, E(k})P,(coseg,„, x) . (VII.17)

I'
o are Legendre polynomials. (Px(k)) o is approximated

by the first term in the curly brackets of Eq. (B12).
fk is approximated by

fg ——1, for k&k .„
=0, for k&k

TAsI.E II. Fourier coefBcients pg of valence electron charge
density in diamond given in units of electrons per atom. Column
2 presents the results following from the approximation 3=Zgd, Hg.
Column 3 gives the results obtained by using the approximation
t=Z~t~. Column 4 gives the results following from the exact t-
matrix, see column 2 of Table I.

with k =1.3i in atomic units. c ~ is approximated in
the formulas by j..

The obtained numerical results are given in Table I
(111)
(220)

(400)

0.78
0.26
0.07
0
0.02

0.86
0.27
0,07
0
0.02

0.91
0.12—0.10—0.13—0.11

(u/22') K

(111}
(220)
(311)
(222)
(400)

0.91
0.12—0.10—0.13-0.11

0.88
0.01—0.14—0.15—0.13

0.98
0.18—0.04
0 15a—0.14

a Measured by Renninger LM. Renninger, Z. Krist. 9V, 107 (i93V);
M. Renninger, Acta Cryst. 8, 606 t,'1955)).

TmLz I. Fourier coefhcients p~ of valence electron charge
density in diamond given in units of electrons per atom. Column 2
presents the results of the calculations of the present paper.
Column 3 presents the results obtained by Kleinman and Phillips
(Ref. 3) and column 4 presents the experimental results obtained
by Gottlicher and %'olfel (Ref. 16).

with the earlier ones listed in Table I. Note, however,
that for p220 the various results disagree.

To deIDonstrate tlM slgn16cance of tlM f-IDatrlx ap-
proach in Table II the Fourier coefficients resulting
from the approximations t=gghHg' and 1=+gag, re-
spectively, are compared with the results obtained in
Table I. The covalent bonding is demonstrated by
the difference between the corresponding pI, listed in
coluIDns 3 and 4.

VIII. LIMITATIONS AND APPLICATIONS

and are coxnpared with theoretical ones obtained by
Kleinman and Phillips' from a plane-wave calculation,
and with experimental results obtained by Gottlicher
and WolfeP' from x-ray scattering due to diamond
powder. Our results are generally in good agreement

"M. E. Rose, E/erggerggory Theory of Agggllor Moogeggglog (John
Wiley 8c Sons, Inc. , New York, 195'l).

"F.Herman, Phys. Rev. 93, 1214 (1954).
'g $, Gottlicher and E. Wolfel, Z. Elektrochem. 6S, 891 (1959).

A general method is presented for a systematic deter-
mination of the effective valence or conduction electron
wave function in static crystals of arbitrary structure.
The tightly bound core electrons are treated as dynam-
ically independent of the valence electrons. The neglect
of correlation betvreen core and valence electrons is
valid if electron transitions between tightly bound core-
electron states and valence-electron states are negligible
and if the excitation energies of tightly bound core
electrons are large compared to excitation energies of
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the valence electrons, for example, the plasma energy.
Under these two conditions the core-valence electron
interactions are essentially unscreened and thus can be
treated within the Hartree-Fock approximation. This
is the case, for example, for small ion cores. Correlation
among the valence electrons is taken into account. A
major advantage of the t-matrix approach is its ease of
physical interpretation which is very useful in finding
good approximations for the wave functions, self-
consistent crystal potential, and electron energies. Fur-
ther, with respect to previous work, the present treat-
ment of valence electrons offers the advantage that the
determination of the wave function is not limited to
symmetry points of the lattice. This, consequently,
permits a more systematic determination of a self-
consistent valence electron den'sity. The determination
of the valence-electron response to the effective crystal
potential includes nonlinear screening, e.g., local 6eld
corrections. Therefore, it is expected that this treat-
ment of the valence electrons will be useful particularly
for describing the electronic structure of a variety of
crystals, for example, covalent bonding. Actually, the
performed determination of the valence-electron charge
density in diamond yields covalent bonding.

The scattering of the valence electrons by the crystal
potential is treated by taking into account the atomic
configuration of the lattice. Thus, the proposed method
is adopted to imperfect crystals and can be used for
determining the electronic structure, for example, of
interstitials, vacancies, and color centers. The special
electronic structure of a crystal is manifested by the
interference of the scattered waves due to the lattice
atoms. This aspect is of importance in studying the
validity of various approximations applied to valence
electrons, for example, orthogonalized plane wave
method, tight-binding approximation, etc.

The main assumption made in deriving explicit ex-
pressions for the t matrix and the valence-electron wave
function, which are the basic quantities in the present
treatment of valence electrons, requires that the per-
turbing Hamiltonian AH~' scatter the valence electrons
mainly in the core region and that the AHA' do not
overlap appreciably. Then, the multiple electron scat-
tering is essentially given by multiple forward and back-
ward scattering between lattice ions. In some crystals
the above basic assumption may not be valid for those
AH~' associated with next-neighbored lattice ions. Then,
a more careful analysis of the corresponding multiple
electron scattering need be performed.

It will be interesting, in particular, with respect to
imperfect crystals, to extend the present method by
taking into account electron-phonon interaction. "

The presented method will be used in a continuing
paper to calculate the formation and migration energies
of vacancies and interstitials in valence crystals.

APPENDIX A. THE PERTURBING
HAMILTOHIAN LLH&'

In this Appendix, it is shown how the perturbing
Han&iltonian 8 H given by Eq. (II.18) can be split into

hH'=Q hH '

First, the potential V; can be written as

V;(r)=g& V (r—r&),

(A1)

(A2)

where V is the Coulomb potential due to the ion core l
centered at r~ in the lattice. Using for the eigenfunctions

q&, & the expression given by Eq. (II.6), then A;. is
given by

with

A;„(r,E(k)) =P& A;„'(r,Z(k)), (A3)

A;, '(r,E(k))C „(r)

X y, &,.*(r')C &,(r'), (A4)

where V8' denotes the screened interaction between
core and valence electrons. Thus, AV (r,E(k)) can be
written as

SV (r,Z(k)) =g,(aV (r,Z(k)))', (A5)

with

(~V; (,E(k))) -=V; ()-~-(kl V; I»
+A '(r,E(k)—0 '(k(A '~k). (A6)

Using again Eq. (II.6) one gets for hV~

a V»(r, E(k)) =P & aV~'(r, E(k)), (A'/)

with

AV&'(r Z(k)) =—V~'(r, Z(k)) —0-'(k) Vg'~ k), (A8)

where V~' is de6ned as

) 1q'&'
V~'(r, Z(k))C &, (r) =

~

—
~ P Ug, & (r&) (&(k)—K(k'))

Xb», (k)y, '(r—r&). (A9)

AC and AA„can in general be expanded as

DC = hC&'&+ (ACo& —hC &'&)+ (A10)
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and

hA..=DA. &'&+ (AA &'& —hA„."&)+ . (A11)
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hc&'~ and hA, „('& are determined using the wave func-
tion Pg, resulting from approximating hH' by the sum
of hV and AV~. AC&'& and dA„&'& are determined
using the wave function |It g, resulting from approximating
AB' by the sum of AU, DUAL, dc&'&, and AA„('). The
higher terms in the expansions (A10) and (A11) are
determined in this manner. This implies then, that hC
and d,A„, can be written as

APPENDIX B. DETERMINATION OF
(nK(k))o AND (tgK(k))o

To perform the integration in Eq. (VII.13) nx(k)
Deed be expressed in terms of 8~ and q ~. It follows from

approximating E(k) by E(k) and Eqs. (IV.3) that
t o(k+ K, k; E(k) = t '(K,E(k)).For tg'(K+K, kng p, E(k))
one gets

and
EC=+g ECg (A12) tgo(k+K, kngv E(k))=Z(—i) F (ttg, yg, )

aA„„=P aA„g. (A13)
X (tgo(k, K,ngp, E(k))o„, (81)

Hence, Eq. (A1) is shown to be valid. In summary, it is

BHg'= (EV,g)'+AVggg+ACg+AA„g. (A14) where (tgo(k, K,ngp, E(k)))~ is aPProximately given by

with

(tgo(k, K,ngp, E(k))), =-
Ark'

(aHg'(k, K,ngg, E(k)))o '

uopG, '(p, E,'(k)(aHg'(k, p; E(k)))'
(2gr)'lg'

(B2)

(tgHg(k, K,ngv, E(k))),„o=4gr O'RFo (8gg, gpa)j, (kR) exP(—iK R)bHg'(R; E(k)) exP(ikngP R). (B3)

Using these results and Eqs. (III.41), (III.44), (III.34), one obtains

(nx(k))o„——(SQQo) {4n tg, (K,E(k)) (Go'(k, E;Eo'(k))) ot'g„,o+Ho„(k,E)+
(Go'), is given by

(Go'(k, X;Eo'(k)))o= dQGo'(~ k+K~, Eo'(k))I'oo*(8g x,0).

(B4)

(BS)

H, (k,Z) is given by

H~(k, E)= P g ag, p(k)A, g, (k, K,ng, p)(—i)o+ r,„„„„,,g

~ikrll
&

X{&t,.egg, otp'(»g, g, —kng, g, E(k)) (tg, '(k, E=0, kng, p, E(k)))„„a g

+4gr Q i go(ref OM)j „(krgop)(tpo(k E=O kn«p, E(k)))»F'~P(0„,«g, &pz «g, ))~ (B6)

with

exp(ikrg, p) t exp(ikrgop))'
ag, p(k)—=a g 1—tpo(kng, p, —kng, p,'E(k))tg, '(—kng, p, kng, g, E(k))~

~
(a g)'

rgv - Eg[rgv

A, g, (k, K,ng, g )—= (tg,'(k, K,kng, v,' E(k))).gGo'(k, E,Eo'(k)). ,

r~,„„,g,rg=Q gr(sfrt, tb(t+5))o. (ggrtg, v(t+b)egg),

(B7)

(BS)

(89)

and

t'(2S+1) (2f+1)) 'g'

a(sfrg, $(t+8))=i C(sf', $(t+b))C(s frt, 000}.
4gr(2gt+1)

(B10)
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j„is the pth spherical Bessel function. The quantity H, (k,E) represents local-6eld corrections to the valence
electron-charge density and reflects the crystal structure. It describes, for example, in covalent crystals the
hybridization.

It follows from Eqs. (VII.7) and (II.6) and writing

that (Px(k))~ is given by

Pgxg(Rg)
q gg(Rg) =p &gg, (&Rg gggggg)

gq
(811)

SK
(Px(k)) =——g (Ig„„,(k,E)b, (k)+P P (—1)"'o (v'g'q, X'—ggg'(ggg' l%.)—)o (vgg, lg. (gl —'A)gN)

00 &gP

XD ), , g, "(~K,K,PK,K,0) (~K (k)) v ~-x Igg v. (k,&)rgb v "*(»&')) (812)

The function Ig „,(k,Z) is de6ned as

(2p+1) gg2

Ig„„,(k,E)= (—i)"+—'(4gr)'l l o(tjgggggg0tgg) dRRPg~gg(R)j„(KR)j, (kR).
k4 X)

bg(k) is given by

(813)

bg(k) —= d'r gggg, g*(r)Cgo(r) . (814)

The function D ~ g,. g, &(nx. ,x,px,x,0) results from using the formula

I'g (!!,v)=Z D '(gr P0)I'g (|!'v') (815)

which describes the transformation of spherical harmonics under the rotation of the axis of the polar coordinate
system. og is the azimuthal angle and p the polar angle of the new polar axis, to which 0' refers, with respect to the
original axis. The matrix D ~' is given by'

with

D,,g(gr P 0) —o im'ggd, g(P)- (816)

( (—1)~[cos(8/2)]"+ ~' 'gg[ —sin(P/2)$~'~+'
d ~ '(8) = ((l+ggg)! (l—ggg)! (l+ggg')! (l—ggg')!)'"l P (817)

($—ggg' —q)!(l+ggg —q)!(q+ggg' —ggg)!q!

where the sum is over the values of the integer q for which the factorial arguments are greater or equal to zero.
In 6rst-order approximation (Px(k)), is given by the 6rst term in the curly brackets of Eq. (812). The cor-

rections are typically of the order of 10/q.

APPENDIX C. DETERMINATION OF THE
EXPANSION COEFFICIENT U~, q(rg)

Writing
H=H'+pg(SH)g,

Fg(r„rg) and M, (r„rg) are de6ned by

F (., )—=(v 'l&'lv ')

(C1) and

(C3)

where B' denotes that part of the Hamiltonian H
which is associated with the perfect crystal, it follows

from Eqs. (II.5) and (II.6) for Ug. g, (rg) the set of
equations"

Zg Fg(r„rg)Ugg(rg) Eg(k), U ~(—g)r
=Qg Mg(r„rg)U, g(rg). (C2)

' G. F. Koster, Phys. Rev. 95, 1436 (1954).

M, (r„rg)—=—g p(q g'l (!!H)p l ipgg).

De6ning then Ug, g,'(rg) by

(C4)

Pg Fg(r„rg) Ug, g,'(rg) —Eg(k) Ug g,'(r,) =0 (C5)

and a Green's function G(rg, rg, E,(k)) by

Pg(Fg(r„rg) —Eg(k)!!,„„)G(rg,rp, E,(k)) =l!,„gg. , (C6)
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one obtains

U, ,g(r~) = Ug, g'(r;)+Pg Tg, g(r))G(r;, rg, Zg(R)}, (C2)

where the T~,q(rg) are determined by the set of linear
inhomogeneous equations

3E~(r„r,)8,„„.Then, in 6rst-order approximation, which

neglects coupling between different T~,~(r~), one gets

(C9)

G(r„rq,E,(k)) can be determined. similarly as Ug, q(rq)
using the Green's functionPp{h,„„.—Pg Mg(r„r()G(rg, rp, Z, (k)))

X&i,~(rv) =Z~~~(r. ,ri)«, t*'(ri) (Cg) G„@,))G'(r„rg, Zg(

For a vacancy U~,q(r~)=—0. It follows that in the case of =g expLip (r, -rq)/GO(y, g~(h)), (Clo)
a perfect crystal the U~q'(r, q) are given by exp(ik rg)

Assuming that the (BH) ~ are well localized, then the to which the Green s function G(r„rg,Z~(k)) reduces in

matrix elements M~(r„r~) can be approximated by the case of aperfect crystal.


