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The wave functions for valence or conduction electrons are given in the form proposed by Phillips and
Kleinman. The wave equation for the smooth part of the electron wave functions is rewritten as an integral
equation which is solved by using the {-matrix formalism. The smooth part of the wave function is then
given by a plane wave plus waves arising from electron scattering by the effective potential of the crystal
which might contain point imperfections. Approximate expressions for the wave functions, density and
energy of the valence electrons and the self-consistent crystal potential are given. Numerical results ob-
tained for the Fourier coefficients of the valence electron charge density in diamond exhibit covalent bonding
and are in good agreement with experimental results. The presented treatment of valence or conduction
electrons is expected to be particularly useful in determining the electronic structure and the formation and

migration energies of point defects in valence crystals.

I. INTRODUCTION

ECENTLY, a great deal of progress has been made
in the study of self-consistent valence or conduc-
tion electron distribution in metals and semiconductors.!
Cohen and Phillips presented a simple method for de-
termining self-consistently the screening of an effective
crystal potential due to valence or conduction electrons.?
By using first-order perturbation theory and the con-
cept of dielectric screening these authors derived a
simple expression for the self-consistent crystal poten-
tial. However, their simple method failed to describe
covalent bonding in valence crystals. This failure arises
essentially from the linearization of the valence electron
response to the effective crystal potential. Kleinman and
Phillips determined for diamond a valence electron dis-
tribution in good agreement with experiment by using
valence electron wave functions in the form of sym-
metrized combinations of plane waves orthogonalized
to closed-shell core electron eigenfunctions.® However,
this approach to the valence electron wave functions is
limited to symmetry points in reciprocal lattice space
and, therefore, not very useful in determining self-
consistent electron wave functions and, particularly, in
determining the electron redistribution due to crystal
imperfections.

These remarks upon previous work show that it is
desirable to develop a simple method for a systematic
determination of valence or conduction electron wave
functions from a wave equation. Therefore, the aim of
this paper is to determine systematically from a wave
equation the Bloch wave functions in the form proposed
by Phillips and Kleinman*—in a way which takes into
account a nonlinear response of the electrons to the
effective crystal potential and which can be readily
applied to imperfect crystals. Assuming that the closed-
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shell core electrons are dynamically independent from
the valence or conduction electrons and their eigen-
functions are known, then the Bloch wave functions of
the valence or conduction electrons are essentially de-
termined by their smooth part which is called hereafter
the effective wave function. The wave equation for the
effective wave functions* is rewritten as an integral
equation which is then solved by using the #-matrix
formalism. The Hamiltonian of the wave equation for
the effective wave function is split into H'=H(
+2_:AH/, where Hy represents that part of H’ which
has plane waves as eigenfunctions and AH, is the
perturbing Hamiltonian associated with the lattice ion /.
1 is summed over all atomic nuclei of the lattice. Intro-
ducing then the operator #; which describes the electron
scattering by AH/, the integral equation is solved in
terms of ¢;. The resulting effective wave function con-
sists of a plane wave plus waves involving #; which
arise from single, double, and higher multiple electron
scattering by the AH;. Assuming that the interatomic
distances are large compared to the range of the AH/,
where the main electron scattering occurs, then the
multiple electron scattering can be approximated by
multiple forward and backward scattering between the
scatterers and can be expressed in closed form.

The crystal might contain imperfections. Then, for
example, a vacancy is described in H’ by AHy'=0,
where AHy' denotes the perturbing Hamiltonian associ-
ated in the perfect crystal with the lattice site V of the
vacancy. An interstitial is represented in H' by a per-
turbing Hamiltonian AH;' located at an interstitial
lattice site. Approximate expressions for the Bloch wave
functions, charge density and energy of the valence
electrons, and for the electronic contribution to the
formation energy of point defects and the self-con-
sistent crystal potential are derived.

In Sec. II the wave equation for the effective wave
functions is rewritten as an integral equation. In Sec.
III the integral equation is solved by using the f-matrix
formalism. An approximate expression for the effective
wave function is given. In Secs. IV, V, and VI, approxi-
mate expressions for the ¢ matrix, the self-consistent
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crystal potential, and, respectively, the energy of the
valence electrons are derived. In Sec. VII the general
method is applied to diamond. The Fourier coefficients
pi11, P220, Psi1, Paze, and pso of the valence electron
charge density are calculated. The obtained results are
compared with experimental data and previous theo-
retical calculations.

The treatment of valence or conduction electrons
proposed in this paper is discussed with respect to its
limitations and applications in Sec. VIII.

II. INTEGRAL EQUATION FOR THE EFFECTIVE
WAVE FUNCTION

The Bloch wave functions for valence or conduction
electrons are determined by

Hy(r)=E(k)x(r), (IL1)
where the Hamiltonian H is given by
H=—(1*/2m)V*+V;(r)+ 4 (r,E(k))

+C(1)+A4w(r,E(k). (I1.2)

V; is the Coulomb potential of the lattice ions, e.g.,
atomic nuclei plus tightly bound core electrons. 4,
describes the exchange and correlation interaction be-
tween the tightly bound core electrons and the valence
or conduction electrons. C is the Coulomb potential of
the valence or conduction electrons. The operator 4,,
describes the exchange and residual correlation inter-
action among the valence electrons.’

Phillips and Kleinman* made for the Bloch wave
functions ¥ the ansatz

Y(D)=Ci{@x(1)— e b’ (k) o, (1)}, (11.3)
where the normalization constant Cy is given by
Cre= ((@x|Px)— Lo’ | bu (k) [2) 7172,

®y, the smooth part of the Bloch wave function, is
called the effective wave function for the valence elec-
trons. The ¢,k are closed-shell crystal core electron
eigenfunctions. ¢ is summed over all closed-shell core
electron states. The ¢, are determined by

Hgo,,k(r)=Et(k)<pg,k(r) . (IIS)

In the tight-binding approximation (LCAO) the eigen-
functions ¢, are given by

(I1.4)

1\ 12
¢t.k(f)=<ﬁ> ; Uir(r) ol (r—1), (I1.6)

where [ is summed over all atomic nuclei of the lattice.
The r; give the positions of the NV atomic nuclei of the
lattice. The functions ¢, are atomic-like eigenfunctions
associated with the /th atomic nucleus. The expansion
coefficients U,,x(r;) are determined, in general, as
shown in detail in Appendix C. In the case of a perfect

s J. C, Phillips, Phys. Rev. 123, 420 (1961).
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crystal the Uy,i(r;) are given by exp(ik-r;). The re-
quirement that ¥ is orthogonal to the eigenfunctions
ot,x and

<§03,k! got,k>=63,g (II.7)
lead to

bu (k) = (e, | ®x) . (I1.8)

In the tight-binding approximation the condition (I1.7)
is fulfilled only if the overlapping of ¢ and ¢, for
which /57" is neglected. Combining now Egs. (IL.1),
(I1.3), and (I1.5) one derives for ®x the wave equation?

H'®(r)=E(k)®«(r), (IL.9)
with the effective Hamiltonian
H'=H+Vz. (I1.10)
The nonlocal potential Vg(r,E(k)) is given by
Vr(r,E(k))2x(r)
=2 ew (E(K)— Ei(K)buw (k) e, (r).  (IL.11)

It may be noted that the indeterminacy of ®x which
can be seen from Eq. (IL.3) allows one to impose an addi-
tional constraint on ®; which can be used for simplifying
Vr. The additional constraint on ®y is usually applied
in the form of a variational principle. In accordance
with the varied quantity various expressions are ob-
tained for Vg.58

Assuming that the tightly bound core electrons are
dynamically independent from the system of valence
or conduction electrons and the core states ¢ are
known, the determination of the Bloch wave functions
Y is reduced to the determination of ®x by the wave
Eq. (I1.9).

Equation (I1.9) is now converted into an integral
equation as follows. The Hamiltonian H’ is split into

H'=H{/+AH'. (11.12)
H,/, whose eigenfunctions are plane waves, is given by

h2
Hy= 5 ViV (kk; E(k)+Ve(kk; E(k)+-Co

m

+A4,.°(r,Ey (k)), (I1.13)
with
Vi (kk; E(k)=0Xk|V/(r,E(k) k), (IL.14)
where V/(r,E(k)) is defined as
Ve BO)=Vi()+Au(mE®),  (IL15)
and with
Vr(kk; E(k)=0"k|Ve(r,E(K))|k). (IL16)
Using Eq. (I1.11) one gets
Ve(kk; E(k)
=1 zt.k'(E(k)_Et(kl))i<<Pt,k’lk)|2. (H.17)

6 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
7 F. Bassani and V. Celli, Nuovo Cimento 11, 805 (1959).
8 W. A. Harrison, Phys. Rev. 126, 497 (1962).
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Q denotes the volume of the crystal. If V/(r,E(k))
and Vg(r,E(k)) are local potentials, then V/ (k,k; E(k))
and Vg(kk; E(k)), respectively, are the space aver-
ages of these potentials. The perturbing Hamiltonian
AH' is given by

AH'=AV/4+AVr+AC+A4,, (11.18)

with
AV (LE(K)=V/(r,E(k)—-V/(kk; E(k)),
AVe(r,E(k))=Vr(r,E(k)—Vr(kk; E(k)),

AC(r)=C(r)—C,,
and

Ado(1,E(k))= Ay (1,E(k))— A4°(r,E/' (k). (I1.19)

Co and 4,,° result from C and A4,,, respectively, for
AH'=0.

The assumption that the tightly bound core electrons
are dynamically decoupled from the system of valence
electrons has the consequence that A4, is essentially
unscreened. Therefore, in the following, 4, is approxi-
mated by 44 (r,0). Then, V/(r,E(k)) and V. (k,k; E(k))
are given by V./(r,0) and V//(k,k; 0), respectively. De-
fining a Green’s function Go'(r,r',Ey’ (k)) by

{Hy—E/ (K)}Gy (r,r',E¢' (k))=—d(r—r) (I1.20)

and the requirement that G¢'(r,1’,E/ (k)) as a function
of r has the same behavior for r — 0 and » —« as the
scattered wave arising from AH’, Eq. (II.9) can be re-
written as the integral equation

Py (l’) =<I>k0 (r)—i— dsf'Gol (l’, I",Eo’ (k))

X{AH'—AE}®.(r'). (IL21)
The eigenfunctions ®° of Hy are given by
&, 0(r)=exp(ik-r). (I1.22)
AE is defined by
AEEE—EOI ) (11.23)
with
Ed (k) =074®°| H' | 240). (I1.24)

ABy (1) = / BYGY (x,¢, Ey (K){AH'— AE} () (IL.25)

is the scattered wave resulting from the scattering of
the free electron in state ®.° by AH’. Denoting by gx
the integral operator with kernel G¢'(r,t’,E¢' (k)), Eq.
(I1.21) can be rewritten as

®p=|k)+g(AH'— AE)®y,

where the state vector | k) represents ®.°.

(11.26)

III. THE SOLUTION OF THE INTEGRAL
EQUATION

The integral Eq. (I1.26) can be formally solved by
Si=[1—g(AH'—AB)TH|k).  (IIL1)
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The scattered wave Ady is then given by
Ady=gx(AH'— AE)[1—g(AH'— AE) 1| k). (II1.2)

As shown in detail in Appendix A, AH’ can be split into
AH'(r,E(k))=>; AH/(r—1;, E(k)), (IIL3)

where 7 is summed over all atomic nuclei of the lattice.
The perturbing Hamiltonian AH;' is associated with
the atomic nucleus / located at r; in the lattice. In ac-
cordance with Eq. (IIL3), one gets

AE=Y", AE,. (IIL.4)
Equation (II1.2) can now be rewritten as
A‘I’k=zl Aq)kl 5 (IIIS)

with
Ady =g (AH/—AE;)
X[1—v ge(AH,'—AE,) T k). (LIL6)

Ad,! is the scattered wave arising from AH;'. Expand-
ing the expression [1—> v gx(AHy'—AEy)]? in a
series, introducing the operator

ti=(AH/ — AE)[1—gu(AH/ —AE)T?, (IILT)

which describes the electron scattering by AH;, and
using the operator identities [1—gx(AH/—AE;)]™
=14-gi#; and

(AH{— AE)[1—ge(AH/— AE) T
=[1—(AH/—AE)g: I (AH/— AE)),

the scattered wave APy’ is expanded as

A® = (guti+ > guligulv
(l’l?fl)

+ ¥ gdigetvgdet---)|k), (IIL8)
V1

@ #L0#1)
where always successive indices are different. The
various terms in Eq. (II1.8) are interpreted as arising
from single, double, and higher multiple electron scat-
tering. For example, gif;|k) represents the scattered
wave due to scattering of an electron in state | k) by
AH/ and the scattered wave Y_rguligidr|k) results
from the subsequent scattering of the various scattered
waves gilr | k) by AH/.

The main contributions to A®y® will arise from single
electron scattering by AH;' and from multiple scatter-
ing involving beside AH;’ such perturbing Hamiltonians
AH ' which are associated with atomic nuclei 2’ in the
next neighborhood of the atomic nucleus /. Therefore,
A®,! is approximately given by

Adl=gili| )+ 2 ADL A
e

(IT1.9)

with

A = (gutigty +gutigitvgit

Fgutigidvgtigdr+- - )| k). (IIL.10)
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The physical significance of this term is illuminated by ~ and

the graphical representation given in Fig. 1. If neces-
sary, all higher-order terms in Eq. (II1.9) can readily
be written down in explicit form using their graphical
representation. For example, the two next higher-order
terms in Eq. (II1.9) denoted by

A@lll'l” (k)

2m

with

7 #2
GiTa, B (k)] —Z—m(Eo' )=V (k; )=

d3
G (' B () == / <z—:)%G°'[q’E°' (8)] explia- (r— )],

A<I>2”'l" (k)

are pictorially given in Fig. 1.

For a further evaluation of Eq. (IIL.8) the Green’s
function G¢'(r,r,E’'(k)) need be determined. Fourier
transforming Eq. (II.20). one obtains

(IT1.11)

-1
V(s ER))—Com An(0,0; B’ (k»+ie) ,
(ITL.12)

0.

The limit e— 0 is taken after the ¢ integration is per-
formed. The irreducible self-energy 4.,°(q,q; Ed' (k)) is
given by

p>kr and <0 for p<kr, kr being the Fermi wave
number, and where V,°(r—#', E¢/ (k)— po) denotes the
screened electron-electron interaction in a uniform
electron gas, one derives

(9,05 Eo' (K)=2"Yq| 40,0 (1,Es' (k) |q). (IIL.13
(@0 B/ =0 0l AL W) (1) o
Approximating 4.,°(r,E¢ (k)) by® & dpo
, . =1 —V(q—p, £/ (k)— po)
A4.(e,E () expiarn) (205 2 e
i XGo" (p,po). (II1.15)
0
=1 / [ &r'—V X (r—7, Ey/ (k)— po) It follows from Egs. (I1.24) and (II.13) that E(k)
2m is given by
XGo"(r,¥',po) exp(iq-v'), (IIL14)  E (k)= (&2/2m)2+V/{ (kk; 0)+Vr(kk; E(k))
0 . /
where the Fourier transform Go”(pipo) of the Green’s +Cot A k; Bo'(K)). (II1.16)
function Gy is given by Eq. (IIL12) with ¢>0 for Thus, Eq. (IIL.12) can be rewritten as
(#/2m)
G (0,2 () = el

2/ 2m) (¢ — )+ 400(0,; Eo (k) — 4,0 (k. k5 Eo' (K))—ie.

9 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A. Benjamin, Inc., New York, 1962).
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Performing the angular integrations in Eq. (IT1.11), one gets

2m 1
Go (r,x'; Eo (k)= ———
a2 i|r—v'|

{ f dqqGy' (¢,Ed (k)) exp(ig|r—r'|)

+ / dgq exp(ig| r—1'|)[Go' (—g, Ed' (k))—Go'(¢,Ed' (k) ], (IIL.18)

where it has been assumed that 4,,°(q,q; £¢ (k)) is not
angular-dependent with respect to q.

Then, neglecting the second integral and evaluating the
first integral by using the Cauchy theorem, one obtains

2m
Gy (r,Y'; Ef' (k)= ———
2r#? |r—1'|

XZ Res. (g exp(ig| t—1'|)Go' (g, Eo (k))) g=g; -

(I11.19)

7 is summed over all poles of Go'(g,Eo’ (k)). The ¢; are

determined by
(G (¢,Ed (k)))1=0. (I11.20)

It follows from Eq. (IT1.17) that in first-order approxi-
mation, G/ (r,t’; Eo' (k)) is given by

2m exp(ik|r—1'|)

Go (r,t'; Ey (k) ~—— ———

4rh? |r—7'|
which is the free-particle Green’s function. The cor-
rections to this approximation arise from many-body
effects. Approximating E,’ (k) by E¢’(k), and assuming
that the major contribution to the sum in Eq. (IIL.19)

(T11.21)

1
gxta| k>=§; / dq exp(iq- )Gy (¢, Eo' (k) (g k; E(k))

and

is given by the residuum associated with the pole at
g=kFk, one gets

G (r,t'; Eo' (%))

m exp(ik|r—1'])
=———aq_y(k,|r—1'| )ﬁ, (111.22)
2mh? r—r
with
a_1(k,|t—1'|)=2 Res.{gei @ PI=7IGy (¢,E( (k))} ¢= -
(I11.23)

a_; takesinto account effects due to the interaction of the
electron, described by the propagator G/ (r,t’; Eo' (£)),
with the other electrons of the system.

Using the relations

/ AN A)(A| = (2m)%(r—71) (111.24)
and
(rlgxl %)= — (2m/7*) (27)*
XGd (\Eo (k))o(y—a), (111.25)
one gets
(I11.26)

APy = / d’q eXP(iq°r){ (1/22%)? / dGd' (¢,Ed' (B)(a,v; E(R))G (v,Ed’ (R))tw (v, k5 E(K))

+(1/20% / / dydNGY (g, Ed B)a(ars ER)GY (v, B (W) (5 E)GY (VEd () K E(K))

The ¢ matrices ¢;(q,k; E(k)) are defined as
ti(g,k; E(k))=— (2m/4=1?)(q|t:| k). (II1.28)

t; is the ¢ matrix describing the electron scattering by
AH/ centered at r=r,. #; is related to #;° which is the
¢ matrix for scattering by AH; when centered at r=0 by

ti(a,k; E(k))=exp[i(k—q) - r;]t:(q,k; E(k)). (II1.29)
The terms A®#V'(k) and A®,*V’'(k) are similarly

+oee } (IT1.27)

evaluated from their graphical representation using the
rules for Feynman graphs.

For a further evaluation of the expression for the
scattered wave A®y!'(r), integrals of the type

I (r”')c) ‘Y,k)

= f P (0,0 E(K))ad (0. v; E(K))
X Gol ()\,Eol (k)) exp (ll . l'w) (11130)
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need be evaluated. Assuming that the angular depend-
ence of the integrand with respect to & is essentially
determined by exp(¢A-r;), the angular integrations in
Eq. (I11.30) are performed by putting X in the ¢ mat-
rices equal to ryp /7. The result is

47|' i I
I(ty,ovk)=— d)\)\tz"(o',)\-—; E(k))

K. H. BENNEMANN

Then, the remaining integral can be easily performed.
Using the same approximation as in deriving Eq.
(II1.22) one gets

) 93
I(rw,(r, Y,k) =2n%a_, (k,rw)tﬁ(o,k—ﬁ—; E(k))

T

| 97 exp(tkryy)
rw/o T ti"(ki,y; E(k))—p——i. (IT1.32)
o (214 Tw ’
O A
e <>\rwm E(k)) Then, making use of #°(,y; E(k))=t(— v, —%; E(k)),
all multiple scattering terms in Eq. (IIL1.27) can be
XGo' (\Eo' (k) sinhry. (IT131)  summed up and one obtains:
Again, assuming that sin\r; varies more rapidly as a AD Y (Ry) =exp(ik-1) AV Fi(Rynyp k), (I11.33)
function of A than the ¢ matrices, the ¢ matrices can be
taken out of the integral and evaluated at X equal to 2. with
AW d-1(k,r”»)[exp(ikrlp)/ru:]
Kk =
1— tzro(knul, —‘kll”l 5 E(k))llo(—kn”r, knw ’ E(k))[exp(ikm:)/m:]z(a_1(k,rn,))2
X {a-1(k,ru)Lexp (ikr) /1w 0 (— kg, k; E(k) 1 (kngy, —kmgy 5 E(k))
+exp(ik-ry ,)tp"(knu:,k; E(k))}, (III.34)
where A®Py can be expanded in a Fourier series as
n”/El‘”'/r”/ =T~ —-I'I, (III.35) .
and o A=Y ax(k) exp[i(k+K)-r], (IIL.40)

1
Fz(Rt;ntl',k)EZ—zfdgq exp(iq- R)Go' (¢, B4 (%))
n

Xt2(q,kny; E(k)), (II1.36)
where

Ri=r—r,. (111.37)

It may be noted that if all the perturbing Hamiltonians
AHp are equal, as in the case of a monoatomic perfect
crystal, then all £,°(p,q; E(k)) in Eq. (I11.34) can be
replaced by t°(p,q; E(k)). The scattered wave APyl
can now be rewritten in the form

Ayl =exp (ik-r){F,(R;, (k/k) k)
+ 3 A+ F Ry k). (ITL38)
-
)

Using the same argument as in evaluating I, Eq.
(I11.30), for large R;¢,°(q,kn;y ; E(k)) can be taken out
of the integral in Eq. (I11.36) and be evaluated at
q=kR;/R;. One gets then

k
F1<Rl—>00, - k)
k

R exp(ikR
za_l(kR,)t;"(k—R—l,k; E(k))L(_-’z
1

(IT1.39)
1

In the case of a perfect crystal the scattered wave

K#0

where K is a reciprocal lattice vector. Using Egs.
(I11.5) and (II1.38) one gets

S
ax(k)=s‘;{TK(k)+ IZ (4!t )T (knge)}
’ ) (IT1.41)

with
Tx(p)= f 0 Ryy expl—i(k-+K) Ry JF:(Ruo (0/8),8)
(p=k, knsr). (II1.42)

Qo denotes the volume of a unit lattice cell and o de-
notes any one of the lattice ions. Sk is called the struc-
ture factor and is given by

Sx=3"; exp(—iK-d)), (I11.43)

where the d; are the position vectors of the lattice ions
7 within the unit lattice cell. 7 is summed over all ions
within the unit lattice cell. Using Eq. (IIL.36), Eq.
(II1.42) can be rewritten as

Tx(p)=47GJ'(| k+K]|, EJ'(#))
Xt (k+K, p; B(K). (ITL44)
In order to get self-consistent wave functions ¥y, the
¢t matrices £°(q,k; E(k)) need be determined self-

consistently. This requires a self-consistent determina-
tion of AH;'. In the next two sections we discuss the
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self-consistent determination of the scattering ampli-
tude #°(q,k; E(k)) and the crystal potential AH/'.

IV. SELF-CONSISTENT DETERMINATION OF THE
T MATRIX #2(q,k; E (k))

It is useful for determining self-consistently the
¢ matrices #° to derive an integral equation for
#(q,k; E(k)). Because of

h] k) = (AH;’*—-AE[) l k>+ (AH;I—AEz)gk(AHl’—AEl)
X (1—gu(AHy—AE))|k), (IV.1)

one gets

2m
10(qk; E(k))= ———(q| AH/— AE | k)
dni2

2m
———(q| (AHy—AE)guta| k).  (IV.2)
472

Neglecting AE,; and evaluating the second term in Eq.
(IV.2) by using the relations (I11.24), (IIL.25), and
(IT1.28) one gets for ¢ the integral equation

t°(q,k; E(k))=— (2m/4x7*) (AH/ (¢,k; E(k))°

" [ apam! (@p; ER)Y
(27r)3h2[ 17 1 (q,P;

XGo (p,Ed ()t (p,k; E(k)). (IV.3)

2m
(g k; E(k)=——
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The matrix element (AH//(q,k; E(k))° is defined as

(AH! (g,k; E(K))Y'= f &Ry exp(—iq-Ry)

XAH! (R,E(k)) exp(ik-R;). (IV.4)
AH/(q,k; E(k)) is defined as
AH/(q,k; E(k)) =exp[i(k—q)- 1]
X (AH!(q,k; E(k)))*. (IV.5)

The integral Eq. (IV.3) can be solved by iteration.
Since (AH/)? involves ¢, the self-consistent determina-
tion of ¢, is performed as indicated by

(AH:’)O =10,

To obtain a self-consistent expression for

AH/(q,k; E(k))=(AV(q,k; 0)'+AV ! (q,k; E(k))
+ACi(q,k)+A4.,'(q,k; E(k)), (IV.7)
the matrix elements AC; and AA,,! need be determined
self-consistently. The potential AC; arises from the
polarization of the valence electron Fermi sea induced
by AH; which results from AH; for AVg!=0. This

amounts to an effective, e.g., screened one-body
potential

(IV.6)

(AV),'= (AV/+AC:. (1V.8)

(AV Y, and AA4,,! are determined in detail in the next
section.

If AH/(Ry,E(k)) is a smooth potential, then Eq.
(IV.3) is solved by

(AH{ (g.k; E(K)))°

4r?
1+

(2m)3n?

V. SELF-CONSISTENT DETERMINATION
OF AH/(q,»; E(k))

Assuming that the eigenfunctions ¢, are self-con-
sistent, then the self-consistent determination of AH/
is reduced to the self-consistent determination of AH,.
To determine self-consistently AH;(q,; E(k)), the de-
pendence of the potential AC;(r) and the operator
A4, (r,E(k)) on AH,(r,E(k)) need be evaluated ex-
plicitly. First, AC(r) is given by?

d
AC(r)= —Zi//dsr’—P—OV[r—r’I
27

X{G(,¥',po) —Go(r',Y',p0)} ,
V(t—r'|)=¢/|r—7|. (V.2)

The exact one-electron Green’s function G(r,r’,po) is
defined by
{H—po}G(1,¥',po)) = —d(r—1') (V.3)

and the same boundary conditions as imposed on the

(v.1)
with

- .
/ @G (5,4 (k) (ALY (4,05 E(K)))’

(IV.9)

Green’s function Go”. The Green’s function Go(r,r’,p,)
is defined by Eq. (V.3), replacing the Hamiltonian H by
{H/—Vr(kk; E(k))}. Converting Eq. (V.3) into an
integral equation one gets

G(l‘, r’,?o) = Go(l‘, r';PO)

+/d3r"Go(r, l'”,Po)AH (r”,PO)

XG(r",x',po).  (V.4)
Equation (V.1) can then be rewritten as
AC(1)=2_1AC(x), (V.5)
with
dpo
AC(1)= —Zi///dar’dar”—V(l r—r'|)
2
XGO (r’,r”,po)AH; (r”,po)G(l'”,I",Po) ’ (V6)

which is pictorially represented in Fig. 2. The wavy and
striped line represent the electron-electron interaction
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F16. 2. Determination of AC;.

and the interaction due to AH;, respectively. The upper
and lower half-circle represent the Green’s function Go
and G, respectively. Expressing G in terms of the wave
functions ¢, as

Gy )~9/—‘531G< Waltr (), (V.T)
) :Po"‘ (Zﬂ')s P,Po)¥» D ) .

with
G(?;P0)=[E(p)_P0_ie]_l’

where e is defined as in Gy, Fourier transforming the
potential V and G, then the matrix element AC:(q,2)
is given by

(V.8)

dpo d3p d3p’
ACi(g,0)= —sz/f-g e 1;3 (Zp)sv
T T
XGo(?I:PO)G(P;?OX‘pP l p,+3'— q)
X{(p'|AH:|¥),

(la=2])

(V.9)
with

V(la=aD=tre/la=a2.  (V.10)
Approximating G by Gy yields the random phase ap-
proximation.? Assuming momentum conservation one
obtains p=p’+3—q. This result would follow auto-
matically from the evaluation of the matrix element
W»| '+ 2—q) in the case of a uniform electron gas and
in the case of a perfect crystal when momentum ex-
change between lattice and electrons is neglected.’® The
integration over po in Eq. (V.9) yields the factor
fo(1— forq—n), where fp and fpiq—r denote the Fermi
distribution function. This implies that the matrix
element {¥,|p) can be taken out of the integral in Eq.
(V.9) and can be replaced by (¥, p)av, which is aver-
aged over values of p within the Fermi sea.! It follows
then for AC; the approximate expression

ACi(q,0)=—22V (|q—2])

X Wl m/[ r(w)

XG(p,po)(p+a—A|AH:|¢,). (V.11)

10 F, Bassani, J. Robinson, B. Goodman, and J. R. Schrieffer,
Phys. Rev. 127, 1969 (1962).

Go(|p+a—2|, p0)

BENNEMANN

Using formula (II1.24), Eq. (V.11) can be rewritten as
ACi(q,2)=—2iQV (|q—2[)

d’
X! P)av f W(ﬂl'l’ﬁav

[ [

XG(p,po)AH:(p+q—2, 0; po),

where (o|¥p)av is averaged over all values of p within
the Fermi sea.

The sum of the potentials (AV})’ and AC; yields an
effective, e.g., screened, one-body potential denoted by
(AV Y. The screening of the one-body potential (AV %)’
arises from the polarization of the valence electron
Fermi sea induced by (AV )’ itself. As was shown by
Ehrenreich and Cohen," this screened potential is, to
first order in the external potential (AV})’, equivalent
to AH, obtained within the Hartree approximation.

The dependence of AA,'(q,2; E(k)) on AH; is
evaluated as follows. The operator AA4,.(r,E(k)) is
defined as

AA,,(1,E(K)) exp(ir-1)

——Go(|p+q—2|, po)

(V.12)

- [ PP (e, EQ)—Zo(r, ¢, Ba(k))

Xexp(ir-r'), (V.13)

where = and 2y denote that part of the irreducible
valence electron self-energy which is not taken into
account in the Hartree approximation. 2 results from
the Hamiltonian H and 2, from H, which is obtained
from Hy for Vr(kk; E(k))=0. The self-energies are
determined according to the diagram given in Fig. 3.
The wavy line represents a screened electron-electron
interaction and the straight double line represents the
exact one-electron Green’s function G. One gets®

2(r,v'; E(k))
dpo
=i/—-2—V,(r,r’,po)G(r, v, E(k)—po), (V.14)

where V, denotes the screened electron-electron in-
teraction which is determined in detail later on in
this section. Zo(r,r’; Eo(k)) is obtained from Eq.
(V.14) replacing V, by V.° which refers to the case

F1e. 3. Diagram for the
self-energy

Z.

l——_——‘v——;

11 {, Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
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of a uniform electron gas, and G(r, r’, E(k)— po) by
Go(r, v/, Eo(k)— po). Using then Eqgs. (V.4) and (V.7),
approximating the term V,Go by VG, Fourier trans-
forming V, and G, and using formula (II1.24), one
obtains

A44,'(q,%; E(K))

=m/ / / / d?? (j:s (Z:p),a (Z:av'(p"? v

XGo(|q—p], Eo(k)—p0)G(p, E(K)— po){o|¥p)
XWp | A—p)AH (q—p, 0; E(k)—po). (V.15)

Assuming momentum conservation, one gets q=2x
=p+p’. Then Eq. (V.15) can approximately be re-
written as

Ao (0 E(K) N
=10(2m)*% (q— —p | A= Plav | T A\O|¥g—p
000843 pncsl 4 [l

Do Tl op0Go(la=l, Eolh)—po)
X/ 2 (@) +(D,20)Go(|a—p|, Eo bo

XG(q—p, E(k)—po)AH:(q—p, 0; E(k)—po)
(V.16)

where the matrix elements are averaged over values of
p within the Fermi sea. In a further approximation the
Green’s function G(q— p, E(k)— po) can be approached
by Go(|a—p|, Eo(k)— po).

The wave functionsy, in the matrix elements involved
in the formulas for AC;(q,2) and A4,,(q,2; E(k)) can
be approximated by the wave functions y, which result
from approximating AH; by (AV.Y)’.

It follows from Egs. (V.11) and (V.15) that
AH (q,; E(k)) is self-consistently determined by

AH(q,; E(k))

= (AVHg2; 0))'+ f / / % (Z:s (Z:;“

X { e (‘l;%?oyp,")AHl(P'l‘ q— 3‘; g, PO)

+T'(q, 2, E(k)—po, p, 0)AH(q—p, 0; E(k)— po)} ,
(V.17)
with
C) (‘l,a-,POP:") =— 21'QV( I q— A I )
X DavGo(| p+a—2|, p0)G(D,p0)(o|¥p)  (V.18)

and
P(q: 3"7 E(k)"'?oi b, 0‘)
=iQ(27)*8(q—X) V(p,00)Go(| a—p|, Eo(k)— p0)
XG(q—p, E(k)—Pﬂx(’l‘pq——px‘/’q—pl q—p). (V-lg)
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F16. 4. Screening
of electron-electron
interaction in ran- +
dom-phase approxi-
mation.

The local part of AH;, denoted as (AV.%),, is then
approximately given by

(AVi(q—2;0))

(AVHg—2;0)) =—————, (V.20)
k(q—2;0)
with
dsp d"’o' dpo
k(q—a;0)=1— —_
(a=%;0) //f(Zw)a (27)3 2x
X 0(q,Mp0p,0). (V.21)

x(g@—%; 0) can approximately be rewritten as

k(q—2;0)=14+iQV (|q—2])

d
X / ¥s| PYavie|¥p)erPo(g—2; 0),

(2x)3
(v.22)
where Po(q—2;0) is given by
dpo dsﬁ
Poy(q—x;0)=2 —
0(@=%;0) / / 21 (2m)3
XGo(|p+a—2, p0)G(p,p0). (V.23)

If the Green’s function G is approximated by Gy then
P, is the polarization propagator in the random-phase
approximation for a uniform electron gas. An explicit
expression for this polarization propagator is given by
Lindhard.?

In the general case, where the potential AH; is not
local, AH(q,2; E(k)) can be determined approximately
by substituting on the right-hand side in Eq. (V.17)
for AH, the expression for (AV,),". In the limit p — 0,
see Eq. (V.17), AH, is given by (AV ),

The screened interaction V, among the valence elec-
trons is determined as indicated by the diagram in
Fig. 4. In Fig. 4 the wavy light lines represent un-
screened electron-electron interaction and the wavy
heavy lines represent screened electron-electron inter-
action. Using Eq. (V.7) and assuming momentum
conservation one gets

Ve(a,90=V(g)/e(a,90), (V.29)
where the dielectric function e(q,g0) is given by
6(‘1;90) = 1+5V(4)P(q,90) . (st)

2], Lindhard, Kgl. Danske Videnskab, Selskab, Mat.-Fys.
Medd. 28, 8 (1954).
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The polarization propagator P(q,qo) is determined by

P(g,q0)=2 g di)(’(;( G
q4,90)= //(2#)3 o p;?()) (p+q: P0+qo)

X{¥p|exp(—iq-1) [¥peq)
X Ppt+q| exp(iq-1)[¥y).

Since the integration over po yields the factor f,
X(1—fp+q), one gets for P(q,po) the approximate

(V.26)

K. H. BENNEMANN

then P(q,q0) is given by

r (q,qo) = (Sl’p I eXP(— iqer I ‘l’p+q>av
X Wptq|exp(ig-1|¥p) avPo0(4,90) ,

where Py is given by Eq. (V.23) putting G=G.

(v.28)

VI. ELECTRON ENERGIES

The energy of a valence or conduction electron with
momentum k is given by ReE(k) where it follows from
the wave Eq. (IL.9) that E(k) is determined by

expression

P(q,90)=2(¢p|exp(—iq 1) |¥piq)av
X ¥pralexp(q-r) [¥p)a
@p dpo

b
—G(p,p0)G , . (V.27
2y 2 (p,20)G(p+q, potgo). (V.27)

E(k)=(®x| H'| @1}/ (@x| D). (VL)

Then, using Eqs. (I1.12), (IIL.3), (IIL.24), (IV.4), and
(IV.5), one obtains

E(k)=EJ(k)+X(AE(K)):, (VL2)
where (k| H¢'| k)/(®x|®x) has been approximated by
EJ/(k)=0Yk|H(| k), (VL3)
and where (AE(k)); is given by

The matrix elements are averaged over values of p
within the Fermi sea. Approximating the Green’s
functions G in Eq. (V.27) by the Green’s functions Go,

(AE(K)):= " (ady| k "
= (Ad| )+c.c.)+2—m/

[ - i P2(AD: | p)(p| A®w)
(@ | @) | 2m Qo §

d3
+ / (2:;3[<Aq>kz| P A.0(p,k; B (K))+(p| ABt) A0 (k,p; Ed (K))

daq l 0 . / dsp dgq
+ f APl 804,000 o <k>>]+ / / o

Due to AH/(q,p; E(k)), the energy E(k) is given by Eq. (VL.2) implicitly. Equation (VI.2) can be solved by
iteration.’® In first-order approximation E(k) can be approximated in AH; by E¢ (k). Equation (VL.2) can be
rewritten in the form

(@] (0| 2AHY (0,03 E(k»} . (VL4)

E(k)=Ey' (k)+

hZ
Dlx*kax' k ——k szxl Awok K,k K'; o'k
s 5 Jac (W (0] 0k Ko+, K, ke K3 5 |

N
S (g™ (K)) G- () (A (k- K, K+ K E(k)))v} +Ex(K), (VLS)
S

where s denotes the number of atoms per unit lattice cell and where Er(k), denoting the change in energy of the
perfect crystal due to crystal imperfections, is defined as

Er(k)=2r(AE(K)y—Z:(AE(K), .

(AE(K));© refers to the perfect crystal, e.g., (AE(k)); in the case of a perfect crystal. /' and / are summed over all
atomic nuclei in the imperfect and perfect crystal, respectively. For example, in the case of a vacancy at a lattice
site I=V it is (AE(k)) »—y=0. However, the vacancy at the lattice site /= V is created by bringing the lattice atom
which occupies in the perfect crystal this lattice site  to the surface and, of course, the term (AE (k)) v associated
with the surface atom appears in the sum over /. An interstitial is created by bringing a surface atom into an
interstitial position in the interior of the crystal. Thus, the term (AE(k));© associated with this surface atom is
omitted in the sum over ¥ and instead of it the term due to the interstitial appears. In first-order approximation

(VL6)

18P, 0. Lowdin, Suppl. J. Appl. Phys. 33, 251 (1962).
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(AE(k)), is given by

252

—(nR)tect T ak(k)-——(k+ K)*(a| k+ K)+ f

AE(k)):=
(AE(K)) @lon 2 2n)

XL(a2!| D)o (05 B/ () +(p| A2 (s B (1)) + T ax(k){A2| 0) Ao’ (p, kt-K; Eo'(R))]
+ 2 Oxotax(K) Groax (k) expl —i(K—K)-rJ(AH (k+ K, k+ K5 BR)Y [ (VLT)

If multiple electron scattering is neglected, then (AH,")° becomes independent of r;. The redistribution of the elec-
tronic energy levels due to the imperfections is determined by Er(k). This is of importance in determining the
optical properties of imperfections. The single-electron energy E(k) given by Eq. (VI.2) includes correlation among
the valence electrons. E(k) is in general complex. The imaginary part of E(k) determines the lifetime of the elec-
tron state ®y.

The total energy of the system of valence or conduction electrons is given by

E=Zk‘,{Eo'(k)——[Co+Aw°(k k; E/ (k))]}+z AE;, (VL.8)

with

A Lrdr
(ot 1p><p|Aq>k>+2 f

{_k(Aqak’[ k)+c.c. +—* / (2m)?

( K| @iy L 2
! (] AB) A (p,q; Eo <k>>]

[(AWI A" (p.k; Ed' (k))+(p| A®x) 4. (k,p; Eo

dq
/ / 2 2 )3 qu><plf1>k>[(AVi’(q,p;0))’+AVR’(q,p;E(k))+%(ACz(q,p)+AAv»’(q,p;E(k))]]-
(VL.9)

The summation over k includes spin summation. Equation (VI.8) can be rewritten as

h?
E=§{E0'<k>— (Corb 4003 BT [laKao12(%<k+1<>2+%Aw°<k+K, k‘l‘K;Eo'(k)))

K ($x|®Bi)

+Z (5K otax* (k) 0xr,o+ax: (k) exp[i (K—K')- 1, ]{ (AV 4 (k+ K, k+K'; 0))’

+AvRto(k+K, K+K'; E(R)+3[ACk (k-+K, k-+K)+Ad,o(k+ K, k+K'; E(k))]}]]+EF, (VL10)

where Er denotes the formation energy of imperfections. In first-order approximation AE; is given by Eq. (V1.9),
putting all A®,Y due to interstitials equal to zero and using for A®” and A®y the expressions obtained for a
perfect crystal.

VII. VALENCE ELECTRON CHARGE DENSITY WITH APPLICATION TO DIAMOND

The charge density of the valence electrons is given by

w020 [ [ 2200 pa0, om0 (VILY)
(2m)3 2w
Performing the integration over po one gets

p(r)=20 (Dp*(x). (VIL2)

7r)
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If one expands p(r) in a Fourier series, one obtains

p(r)= %. px exp(iK-1), (VIL3)

with

1
px=§ / dirp(x) exp(—iK-r). (VIL4)
Using Eq. (VIL2) and writing ¢, as

¥ (=G, % x(p) exp[i(p+K)-r], (VILS)

with
x(p) =0k, 0+ax(p)+Bx(p) , (VIL6)

where ax(p) is given by Eq. (IIL.41) and Bx(p) is given by

1
BB = b (B / 8 1.y (1) exp[—i(p+ K) 1], (VIL)

one gets

ds
20T / ; Safplcpl"’rx'*(ll)rxwx(ll)- (VILS)

Using Eq. (VIL6) one obtains

d3
px=20 / a%fpl Cp|2{5K.o+ax(l’)+a—x*(l))+ﬂx(l))+ﬂ—x*(p)+§I [ax*(p)Bxr4x (p)+Bx* (P)ax +x (D)

+Bx*(p)Bxr4x (p)+ax *(paxx(p) ]} .  (VILI)

The normalization factor |C,|? is expressed in terms of ax(p) by

1 1
[Cpl?==(14+ 2 |ax(p)[*—=2 | bip (D) [)7". (VIL10)
Q K50 Qo

To perform the angular integrations in Eq. (VIL9) the quantities Cx, ak, and Bx are expanded into spherical har-
monics. One gets then

00

px =29 / dpp* fo{0x.0N 00 (P)+ 2 Nom(p)[ (a—x(£)) om*+ (— 1) (ax ($)) om+ B-x (p)om*+ (— 1) (Bx (£)) om ]

g,m

+KZ 2 a(g'g"g,m' (m—m"Ym)N grs nm) (?)E(ali' ) oem* (ﬂK'+K(17))ﬂ’M’+ Bk (P))vm* (axr4+x(P)) grm

! By
4 B (1)) gm* Brr4x (9)) grmr + (axs () m* (x4 x($))gmr I}, (VIL11)
with
Nm(?)=/dﬂlcplzym*(0p, ‘Pp) , (VIL.12)

(ax(p))om= / 00k (D) Y on* (0 02) (VIL13)

Be(®)) o= f 1B (D) Y on* (O 03) (VIL14)
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where always 8, and ¢, refer to the same coordinate system, and

N 2 I A
o(gg"gm (m m)m)-( pe— ) (

! 1! ! ol

C(g'g"g,m' (m—m")m)C(g'g''g,000). (VIL15)

The C’s are usual Clebsch-Gordan coefficients.* The remaining integration over  in Eq. (VIL.11) has in general
to be performed numerically. (ax($))m and (Bx(p)),m are evaluated in more detail in Appendix B.

To demonstrate the usefulness of the above results, some Fourier coefficients of the valence electron charge
density in diamond are calculated. The scattering amplitude #°(q,k; E(k)) is determined by Eq. (IV.9).
(AH/(q,k; E(k))) is approximated by the sum of AV.}(|q—k]|;0)/e® (|q—k|;0) and AVe!(qk; E(k)). e de-
notes the free-electron gas dielectric constant.? AV,;? and AVg! are determined using earlier results obtained by
Herman'® and Kleinman and Phillips.! It is now £ (K,E(%))=#°(K,E(%)) and t;,*(k+ K, kn;; ; E(%)) is approximated

by the first terms in the expansion (B1) with g=0and g=1. (AH,/ (kK ; E(k))),n is given by

(AH) (k,K,nuy 5 E(k)))gn’= (AH{ (R, ‘knll’—K] 5 E(8))) oY om™ (0k 010K, 0K 0yy"—K) 5

with

(AHY (b, | B —K | 3 E(8))) 0= / d0AHY (k-+K, knuy; E(R)P,(cosbi apr—z)-

P, are Legendre polynomials. (Bx (%)) ¢m is approximated
by the first term in the curly brackets of Eq. (B12).
fx is approximated by

fe=1, for k<Kmux
=0, for k>kmax,

with Zmax=1.31 in atomic units. ¢_; is approximated in
the formulas by 1.
The obtained numerical results are given in Table I

TasLE I. Fourier coefficients px of valence electron charge
density in diamond given in units of electrons per atom. Column 2
presents the results of the calculations of the present paper.
Column 3 presents the results obtained by Kleinman and Phillips
(Ref. 3) and column 4 presents the experimental results obtained
by Géttlicher and Wolfel (Ref. 16).

(a/2m)K PK PK PE
(111) 091 0.88 0.98
(220) 0.12 0.01 0.18
(311) —0.10 —0.14 —0.04
(222) —0.13 —0.15 +0.15
{400) —0.11 —0.13 —0.14

& Measured by Renninger [M. Renninger, Z. Krist. 97, 107 (1937);
M. Renninger, Acta Cryst. 8, 606 (1955)].

and are compared with theoretical ones obtained by
Kleinman and Phillips? from a plane-wave calculation,
and with experimental results obtained by Géttlicher
and Wolfel's from x-ray scattering due to diamond
powder. Our results are generally in good agreement

4 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).

15 F. Herman, Phys. Rev. 93, 1214 (1954).

185, Gottlicher and E. Wélfel, Z. Elektrochem. 63, 891 (1959).

(VIL16)

(VIL.17)

TaBLE II. Fourier coefficients px of valence electron charge
density in diamond given in units of electrons per atom. Column
2 presents the results following from the approximation ¢=2,AH,.
Column 3 gives the results obtained by using the approximation
t=2t. Column 4 gives the results following from the exact -
matrix, see column 2 of Table I.

(e/2m)K PK PK PK
111) 0.78 0.86 091
(220) 0.26 0.27 0.12
3115 0.07 0.07 —0.10
(222) 0 0 —0.13
{400) 0.02 0.02 —0.11

with the earlier ones listed in Table 1. Note, however,
that for paso the various results disagree.

To demonstrate the significance of the i-matrix ap-
proach in Table II the Fourier coefficients resulting
from the approximations =Y ;AH; and {=Y i, re-
spectively, are compared with the results obtained in
Table I. The covalent bonding is demonstrated by
the difference between the corresponding p; listed in
columns 3 and 4.

VIII. LIMITATIONS AND APPLICATIONS

A general method is presented for a systematic deter-
mination of the effective valence or conduction electron
wave function in static crystals of arbitrary structure.
The tightly bound core electrons are treated as dynam-
ically independent of the valence electrons. The neglect
of correlation between core and valence electrons is
valid if electron transitions between tightly bound core-
electron states and valence-electron states are negligible
and if the excitation energies of tightly bound core
electrons are large compared to excitation energies of
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the valence electrons, for example, the plasma energy.
Under these two conditions the core-valence electron
interactions are essentially unscreened and thus can be
treated within the Hartree-Fock approximation. This
is the case, for example, for small ion cores. Correlation
among the valence electrons is taken into account. A
major advantage of the {-matrix approach is its ease of
physical interpretation which is very useful in finding
good approximations for the wave functions, self-
consistent crystal potential, and electron energies. Fur-
ther, with respect to previous work, the present treat-
ment of valence electrons offers the advantage that the
determination of the wave function is not limited to
symmetry points of the lattice. This, consequently,
permits a more systematic determination of a self-
consistent valence electron density. The determination
of the valence-electron response to the effective crystal
potential includes nonlinear screening, e.g., local field
corrections. Therefore, it is expected that this treat-
ment of the valence electrons will be useful particularly
for describing the electronic structure of a variety of
crystals, for example, covalent bonding. Actually, the
performed determination of the valence-electron charge
density in diamond yields covalent bonding.

The scattering of the valence electrons by the crystal
potential is treated by taking into account the atomic
configuration of the lattice. Thus, the proposed method
is adopted to imperfect crystals and can be used for
determining the electronic structure, for example, of
interstitials, vacancies, and color centers. The special
electronic structure of a crystal is manifested by the
interference of the scattered waves due to the lattice
atoms. This aspect is of importance in studying the
validity of various approximations applied to valence
electrons, for example, orthogonalized plane wave
method, tight-binding approximation, etc.

The main assumption made in deriving explicit ex-
pressions for the ¢ matrix and the valence-electron wave
function, which are the basic quantities in the present
treatment of valence electrons, requires that the per-
turbing Hamiltonian AH/ scatter the valence electrons
mainly in the core region and that the AH; do not
overlap appreciably. Then, the multiple electron scat-
tering is essentially given by multiple forward and back-
ward scattering between lattice ions. In some crystals
the above basic assumption may not be valid for those
AH/ associated with next-neighbored lattice ions. Then,
a more careful analysis of the corresponding multiple
electron scattering need be performed.

It will be interesting, in particular, with respect to
imperfect crystals, to extend the present method by
taking into account electron-phonon interaction.’”

The presented method will be used in a continuing
paper to calculate the formation and migration energies
of vacancies and interstitials in valence crystals.

17y, W. Wilkins, thesis, University of Illinois, 1963 (un-
published).
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APPENDIX A. THE PERTURBING
HAMILTONIAN AH/

In this Appendix, it is shown how the perturbing
Hamiltonian AH’ given by Eq. (II.18) can be split into

AH'=%", AH/. (A1)
First, the potential V; can be written as
Vin=21Vi(r—n), (A2)

where V! is the Coulomb potential due to the ion core !
centered at r; in the lattice. Using for the eigenfunctions
o1, the expression given by Eq. (IL.6), then 4, is

given by

A0(tEK) =3 4:'(r,E(K), (A3)
with
Aot (1, E(K)) Py (1)

1 1/2
=(—) S Vs () / PPV (e—, ER)od(1—1)
N, t,k’

Xoww* (F)(r), (A4)

where Vg’ denotes the screened interaction between
core and valence electrons. Thus, AV, (r,E(k)) can be
written as

AV (r,E(K)=2(AVH(r,E(K)),  (AS)
with
QAVHrEK))=Vi(n)—o k| Vi k)
+ A4 (r,E(k)—Q (k| At k). (A6)
Using again Eq. (I1.6) one gets for AV R
AVr(r,E(kK) =2 AVR(r,E(K)), (A7)

with
AV g{r,E(K) =V g!(r,E(k)) -2 k| V' k), (A8)
where V! is defined as

1/2
VR’(r,E(k))%(r)=<%>l > Vs (1) ()~ Eu(K)
Xbuw (k) o' (r—11).  (A9)
AC and A4,, can in general be expanded as
AC=ACV4 (ACO—ACD)+--- (A10)

and

Adpy=AA O+ (Adpy®@— A4, ®)4---. (A1)
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AC® and AA4,,® are determined using the wave func-
tion Yy resulting from approximating AH’ by the sum
of AV and AVg. AC® and AA,,® are determined
using the wave function g resulting from approximating
AH’ by the sum of AV, AVg, ACW, and A4,,V. The
higher terms in the expansions (A10) and (Al1) are
determined in this manner. This implies then, that AC
and A4,, can be written as

AC=Y1 AC; (A12)

and
Ado=31AA . (A13)

Hence, Eq. (A1) is shown to be valid. In summary, it is
AH/=(AVH'+AVR+ACHA4,!.  (Al4)

A1059
APPENDIX B. DETERMINATION OF
(ox (£))gm AND (8K (£))gm

To perform the integration in Eq. (VII.13) ax(k)
need be expressed in terms of 6x and ¢x. It follows from
approximating E(k) by E(k) and Egs. (IV.3) that
t°(k+XK, k; E(k)=t2(K,E(k)). For t2(k+ K, knyp ; E(k))

one gets

0 (k+K, knyw 5 E(k)) =22 (—1%)°Y gm (05, o)

X (tlo(k,K7n”' )E(k))am ) (Bl)

where (12(k,K,ny; E(E)))om is approximately given by

(AHY (&K, ; E(R))) o’

2m
@k, Kny 5 E(R)))gm= ———
Anh?
1+

) (B2)

m
/ @*pGo' (p,Ed (k) (AHY (k,p; E(k)))°

(2r)3n?

with

(AH (&, K,nu; E(E)))gm =41r/d3RYm(0R,¢R)j,(kR) exp(—iK-R)AH/ (R; E(k)) exp(tkn;+R).  (B3)

Using these results and Eqs. (II1.41), (IIL.44), (II1.34), one obtains

(ax (B))gm= (Sx/Q0) {4nt; 0 (K,E(E)) (G0’ (2,K ; Eo ())) dm,o+H gm(B,K)+ - - - }.

(Go'), is given by

(G (6,K ; Ed (1)))g= f 4G (|k+K|, B ()Y o0 (0 x,0).

H i (k,K) is given by

Hpm(kK)= 2

’

l s,t,r
@' #lo) pov.f,8

X {07,r8s,0t1(knygrr, — kg 5 E(k)) (41,2 (k, K=0, knygyr 5 E(E))) 01

(B4)

(BS)

2 v (B)Aser (B, K mygr) (—2) 4T gy 51,18

eikr”'

[g74

4w 2 170 (r£,080) 74 (krigw) (10 (k, K=0, —knyp 5 E())) ¥ ys* 0k niyrr, ox,mgr)},  (BO)
v

with
ke . ) _
[1IN7 (k)E a_lm[l——t;ﬂ(knzoy, —knzoz» 5 E(k))ho,(—knlolr, knz,,p ; E(k))(M)Z(a_l)z:l l , (B7)
T E{ [87Y4

Aﬂt"(k) K)nlol’)E (tloo(k,K)knlol' 5 E(k)))stGOI (k)K)EOI (k))f ’ (BS)

Tom,uv,st.5=2_ o (sfn, 18(t48))o (ung, v(t-+8)m) (B9)
and

(2S+1) (2f+ 1)\ 12
g ) 8))=s{ —— .
(s ) =(— o ) Closn, B+Cs000 (810)
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jv is the ~th spherical Bessel function. The quantity H,(k,K) represents local-field corrections to the valence
electron-charge density and reflects the crystal structure. It describes, for example, in covalent crystals the
hybridization.

It follows from Eqs. (VIL.7) and (I1.6) and writing

Pol(Ry)

o (Ry)= ZA: VENCINZY) (B11)

l

that (Bx(k))¢m is given by

" NN

2 ol gt
W8y

S
(ﬂK(k))am=—§‘Z{Itmw(k;K)bl(k)‘l'% 2 (=DNe('g'n, —Nm' (m'—N))o (vng, N(m—N)m)

X Dyt ma"(axr 5,8 ,x,0) (@ (k) gmS—xr L ny (B K) I nr v * (B, K')} . (B12)

The function Iimy,(k,K) is defined as

2#_|,_1 1/2 o
Izm“.,(k,zos(—i)"ﬂ@w)z( w) o (tug,mOm) / ARRP oo (R)ju(KR)jo(kR). (B13)

b, (k) is given by
by(k)= / Brou (D). (B14)

The function Dpr_yr m-2"(axr x,0x x,0) results from using the formula
Vin(0,0) =2 Dan'(08,0) Vi (¢, , (B15)
which describes the transformation of spherical harmonics under the rotation of the axis of the polar coordinate

system. a is the azimuthal angle and 8 the polar angle of the new polar axis, to which 6’ refers, with respect to the
original axis. The matrix Dpmm! is given by

D' (0,8,0) = €™ 2, (B) (B16)

with

_1 q 2 214m—m/—2q[ _ 1 2 m’—m+2,
dm'ml(ﬁ)=((l—l—m)!(l—m)!(l—l—m')!(l—m')!)l/z(%:( il[j:,(ﬁ/q;‘](lw_q)ll(qi:;(’ﬂ_/ ’E‘q' ') (B17)

where the sum is over the values of the integer ¢ for which the factorial arguments are greater or equal to zero.
In first-order approximation (Bx(k))m is given by the first term in the curly brackets of Eq. (B12). The cor-
rections are typically of the order of 10%,.

APPENDIX C. DETERMINATION OF THE Fy(rs,1;) and M (1,,1;) are defined by
EXPANSION COEFFICIENT U,k (r7)
Writing Fy(r,m)=(e¢|H'| o) (C3)
H=H0+El(5H)l) (Cl) and
where H° denotes that part of the Hamiltonian H M(ro,1)=—2 10| GH)r| o). (CY)

which is associated with the perfect crystal, it follows
from Egs. (IL5) and (IL6) for U;x(r;) the set of Defining then U.(1;) by
1 18
equations e BT () ¥ Pt ) Uei(t)—Ed(R)Ue0(x) =0 (C5)
Fo(ro,x) U k(1)) — Ei(k)U i (2
2Bl r) U t=Z‘le(l/I¢(rs,rz)U¢ (). (C2) and a Green’s function G(r;,rr,E:(k)) by

18 G, F. Koster, Phys. Rev. 95, 1436 (1954). Z;{F,(r,,rz)—Eg(k)&,‘,,,}G(rl,rp,Eg(k)) =0r1r 5 (C6)
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one obtains

Uei(t)=U0 i ®(r)+ 21 Te (1) G (1, Ei(K)),  (CT)
where the T, x(r;) are determined by the set of linear
inhomogeneous equations

Zl’ {6rmf1"-zl Mt(rnrl)G(rhrl’;Et(k))}

XTsx(tr) =21 Mi(te,r) U, (1), (C8)
For a vacancy U, (ry)=0. It follows that in the case of
a perfect crystal the U, "(r;) are given by exp(ik-r;).

Assuming that the (8H),; are well localized, then the
matrix elements M(r,,1r;) can be approximated by

IN CRYSTALS A1061

M (xs,15)8¢, .1, Then, in first-order approximation, which
neglects coupling between different T',x(1;), one gets

Mt (rc,rs) Ut,ko(rc)
1 —'Mt(ra,ra)G(rs; rtyEt (k)) .

Tsx(rs)= (C9)

G(t,,11;,E;(k)) can be determined similarly as Uy, (rz)
using the Green’s function
G"(r,,,rz,E;(k))
=3p exp[ip- (r,— 1) 1G°(p,Ee(K)),

to which the Green’s function G(rs,ri,E:(k)) reduces in
the case of a perfect crystal.

(C10)



