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The physical periodicity of a space lattice is not destroyed by the presence of a uniform magnetic Geld.
It is shown that a ray group of unitary operators, isomorphic to pure translations, commutes with the
Hamiltonian in this case. Such a group has the characteristic property that AB =expL+(A, B)gC, where A,
B, and t" are elements of the group and @is a numerical factor. Representation theory applied to this group
yields the characteristic degeneracies of levels in magnetic Gelds, as well as the transformation properties of
eigenfunctions. By means of these it is possible to construct an effective Hamiltonian appropriate to Gnite
magnetic Gelds in crystals.

1. INTRODUCTION

'HE theoretical understanding of the behavior of
electrons in crystalline potentials is enormously

simplified by virtue of the invariance properties of the
Hamiltonian under the operations of the space group.
The well-known Bloch form of the eigenfunctions is a
consequence of invariance under lattice translations.
Although these solutions are no longer appropriate
when the solid is perturbed, it is often possible to take
advantage of the periodic part of the Hamiltonian by
use of the effective Hamiltonian formalism. ' In its
simplest form this procedure consists of replacing the
effect of the unperturbed. Hamiltonian by an operator
E(P) obtained from an energy band E(hk). This
procedure is not directly applicable to the case of
magnetic fields. Onsager' had suggested an effective
Hamiltonian of the form H, fr(P+cA/c), where A is the
vector potential in some arbitrary gauge. Kohn' demon-
strated the validity of such an expression, if one allows
the functional form of the Hamiltonian to depend on
the magnetic field S.His paper and similar more recent
ones" make use of an expansion in powers of the
magnetic Geld strength 8, so that the results may be
valid only in an asymptotic sense.

A different approach has been taken by Wannier and
Fredkin. ' Their procedure makes use of the fact that,
in a certain sense, periodicity is not destroyed by a
uniform magnetic field. Thus, they postulate the
existence of Bloch-type eigenfunctions, which reduce to
Bloch functions when the magnetic Geld is reduced to
zero. These functions were Grst introduced by Harpers
who showed that they have transformation properties
appropriate to a periodic lattice in a uniform magnetic
field.
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The present paper is similar in approach to that of
Wannier et a/. , in that it makes use of the periodicity
that exists in the presence of a uniform magnetic Geld.
There is a simple physical way to see why there should
be a type of translation operation under which the
Hamiltonian is invariant, even though it is not invariant
under pure spatial translation. Classically, if one were
to transport a particle of charge q from one point of a
periodic lattice to an equivalent one, it would be
necessary to exert a force along the way, given by

F= —q(vXS/c),

in order to cancel the eGect of the magnetic Geld, so
that the charge is in an equivalent state of motion at
the new site. Integrating Eq. (f.) with respect to time
yields an expression for the impulse which must be
provided in transporting an electron through a lattice
displacement R„,

I= —q(R„X8/c) . (2)

This impulse corresponds to the shift in kinetic
momentum ~=P—qA/c which must be provided, in
addition to the shift in position, to leave the charged
particle in an invariant condition. In a quantum
mechanical formalism one should therefore expect
that the operators which commute with the Hamiltonian
are not pure spatial translations, but rather, those
which incorporate the corresponding momentum shift.
This turns out to be the case. The form of the operator
which carries this out is the product of the translation
operator and the Peierls' phase term. ' These operators
will be referred to as magnetic translation operators,
since they depend on the Geld and become pure trans-
lations as the field approaches zero.

The set of magnetic translation operators does not
quite form a group since the product of any two of
them is not necessarily one of the set. However, in all
cases the product only divers by at most a multipli-
cative factor of magnitude unity. The operators may
be said to form a group up to a factor, or more simply
a ray group. It thus turns out to be possible to make
use of all the powerful tools of the theory of group
representations in the treatment of electrons in uniform

R. Peierls, Z. Physik 80, 763 (1933).
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magnetic fields and periodic potentials. It is the object
of this paper to exploit these methods to show: (1) to
what extent degeneracy of energy levels is a function
of the magnetic field 8, (2) the transformation proper-
ties of the energy eigenfunctions, (3) the existence of
an effective Hamiltonian of the Onsager form. Some
of these results have been reported elsewhere. " In a
recent paper, Fischbeck" has made use of magnetic
translations to investigate points (1) and (2). &he
approach used in the present treatment is group
theoretical and in a form more convenient for general-
ization.

One of the obstacles encountered by Wannier and
Fredkin, ' in establishing the existence of an eGective
Hamiltonian, was the lack of an orthonormal set of
basis functions on which to base the formalism. The
group theoretical approach used here clearly establishes
the existence of such a set of functions, which are the
magnetic analog of Wannier functions. This makes the
existence proof simple for arbitrary fields. Still a further
benefit from formulating the problem on a group
theoretical basis stems from the fact that the results
are independent of any approximation. Thus, for
example, the results may be carried over to a many-
particle formulation.

2. THE MAGNETIC TRANSLATION OPERATORS

The Hamiltonian for an electron in a periodic
potential and a uniform magnetic field is

II= (1/2m) (P+eA/c)'+ V(r), (3a)

A= ——,'(rX B), (3b)

where A is the vector potential. This gauge is selected
for convenience. There is no loss of generality in this
choice, since the results for an arbitrary gauge may be
obtained by performing a gauge transformation on the
resulting eigenfunctions. We shall use this gauge
throughout this paper. The components of (P+eA/c)
do not commute with one another. This fact is re-
sponsible for the peculiar structure which the eigen-
functions have. However, a direct calculation yields"

[(P eA/c), , (—P+eA/c);7=0; i, j=1,2, 3, (4)

from which it follows that an arbitrary function of
P+eA/c commutes with one of P—eA/c.

We define a magnetic translation operator,

T(R„)=exp[—iR„(P—eA/c)/A], (5)

which clearly commutes with the Grst term in the
Hamiltonian. In the absence of a magnetic field, A
vanishes and this reduces to a pure translationoperator

T(R„)=exp[—iR„P/h], (6a)

'r(R-)4 (r) =0(r—R-) (6b)
"E.Brown, Bull. Am. Phys. Soc. 8, 256 (1963)."H. J. Fischbeck, Phys. Stat. Solidi 3, 1082 (1963).
"This result is valid in the gauge of Eq. (3b).

Using Kqs. (3), (5), and (6) we have, for an arbitrary
function P(r),

T(R„)$(r)= exp[ ieR„(rXB)/2ch7iP(r —R„)
=exp[+i(R„Xg) r/27$(r —R„), ('i)

where )=eB/Ac. This result follows from the fact that
the two terms in the exponen. t of Eq. (5) commute with
one another. It then follows that

[T(R„),H]=0, (8)

where R„ is an arbitrary lattice vector. This important
result allows one to make use of group theory in this
problem. The situation divers from the zero-Geld case
in two important ways: (1) the magnetic translations
do not commute with one another and (2) the product
of an arbitrary two magnetic translations is not
necessarily one of them. In order to see this we write

T(Ri) T(R2)
= exp[(i/2) (R,X y) r]r(R,)

Xexp[(i/2)(R, Xy) r]r(R,)
= exp[(i/2)[(Ri+ R2) Xg r]T(Ri)T(R2) (9)

Xexpf( —i/2)(R2Xg) Ri]
= T(Ri+R2) exp[(—i/2) (RiX R2) (Q.

Using Kq. (9) twice we find

T(Ri)T(R2)=T(R2)T(Ri) exp[—i(RiXR2) g7. (10)

It follows from Eq. (9) that the product of any sequence
of magnetic translations that form a closed path is
e'&, where p is a real number proportional to the mag-
netic flux through the path; &=flux (e/2hc).

The ray group of magnetic translations is as basic
to the study of magnetic-Geld problems as the simple
translation group is to the perfect crystal. It follows
from Eq. (8), if an energy eigenvalue is 3II-fold de-
generate, with eigenfunctions i/i, that

T(R„)f„=gDi„(R )fi.

From Eqs. (9) and (11) it follows that the matrices
D(R„) satisfy

D(Ri)D(R2) =D(Ri+ R2)

Xexp[(—i/2) (RiX R2) g (12)

and thus form a ray representation of the translation
group.

Up to this point we have been dealing with an infinite
crystal and an infinite group. It is convenient to work
with Gnite groups for the purpose of examining ir-
reducible representations. To this end it is worthwhile
to explore the possibility of applying appropriate
boundary conditions to a Gnite crystal so as not to
destroy the group properties. We, therefore, restrict
our attention to a finite lattice of dimensions 37yay,
E2a2, X3aq, where a~, a2, a3 are primitive translation
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4-= T(R-)4, (14)

are then also eigenfunctions. Then from Eq. (10) it
follows that

T(E;a,)jj5„=expL —iE,(a;X R„)~ gP . (15)

From this it follows that Eq. (13) can be satisfied for
all functions simultaneously only if

E;(a;XR„) )=Multiple Of 22r. (16)

It follows from Eq. (16) that magnetically periodic
boundary conditions" can only be invoked if g is of the
form

)= R22rD
—'i/E (17)

where 0 is the volume of a primitive cell, R is some
primitive lattice vector, "and l and E are integers with
no common factor. The magnetic 6eld must therefore
be in the direction of some lattice vector.

We shall assume Eq. (17) to be fulfilled and examine

its consequences in the next section.
The artificial conditions expressed by Eqs. (13) and

(17) are imposed for the sake of dealing with a finite

group and should be regarded in the same spirit as the
imposition of Born-von Karman boundary conditions
in the zero-6eld case. The physical boundary condi-

tions in a 6nite crystal are quite diferent from those
imposed here. However, if one seeks bulk properties
the actual boundary conditions are of little consequence.
It is necessary, of course, to recognize for weak mag-
netic 6elds, for which the classical orbits of electrons
can be large, that the physical size of the specimen
should be large in order for the results of such a theory
to be applicable even at the absolute zero of tempera-
ture. It is shown in Sec. 4 that the boundary conditions

yield the correct number of states.

"In what follows we refer to the condition of Eq. (13) as
magnetically periodic.

"Any lattice vector of the form Z rI;a;, for which there is no
factor common to all e;, is primitive.

vectors. The natural generalization of the Born-von
Karman boundary conditions is to restrict the eigen-
functions to go into themselves under magnetic trans-
lations corresponding to the full 6nite lattice.

T(E;ar)j/r= jlr; i= 1, 2, 3. (13)

In the zero-field case Eq. (13) reduces to the Born-von
Karman boundary conditions. There is an essential
difI'erence between the magnetic and the zero-6eld
cases, however. In the zero-6eld case, if one of the
eigenfunctions in the infinite lattice goes into itself
under some macroscopic translation, then so do all the
functions obtained from it by lattice translations. This
result does not carry over to the magnetic translations.
This can be seen from the following. Assume )jf is an
eigenfunction satisfying the boundary conditions of Eq.
(13).The functions,

3. IRREDUCIBLE REPRESENTATIONS

The magnetic translations are unitary operators.
From this it follows that the matrix representations
are unitary, if the basis functions are orthonormal. It
is a straightforward matter to show that all the theo-
rems leading to the derivations of the orthogonality
relations for unitary representations of groups" are
also applicable to the ray representations discussed
here. These derivations are carried out in the Appendix.

One of the consequences of the orthogonality rela-
tions is that the sum of the squares of the dimensionali-
ties of the irreducible representations equals the order
of the group. Moreover, if the sum of the squares of
the magnitudes of the traces of the matrices of a given
representation equals the order of the group, the repre-
sentation is irreducible. These two statements are
sufhcient to determine all the irreducible representa-
tions of the 6nite group under discussion.

Assuming Eq. (1/) to hold, there is no loss in choos-

ing the primitive vector a3 to be along the magnetic
6eld,

(1g)y = (2~/fl) (i/E) a, .

The commutation relations between the magnetic
translations corresponding to the primitive translations
are then given by

LT(a,),T(a,)3=P'(ae) T(as)3=0
T(at)T(as) =e "r'I T(a2)T(ai). (19)

D;2(as) = &;,2= D;2(0),

D;2(ai) =3;,se'&& ')sr)I"; j) )'2=1, 2, ~ E, (20)

D;, (a2) =8; j,; (modE).

The remaining matrices in the representation can be
found by application of Eq. (12). Thus,

D .2 (re)at) —32e
(j' 1)2r ln&/r, r—

DJjc ('@2a2) 3j,2-» ~

From these we can find the general matrix

Djk (221al+N2a2) =expf~rel 222) (aiX a'2)/2$

Xp D; (22iat)D 2(222as),

ln).
=exp 2-ii L222+2(j—1)) 8&,jj»', (modE). (22)

"See, for example, E. P. Wigner, Greepper)fheoree (Frederick
Vieweg und Sohn, Braunschweig, Germany, 1931)LEnglish transl. :
J. J. GrMin, Group Theory (Academic Press Inc., New York,
1959)j.

The smallest crystal size for which it is possible to
impose magnetically periodic boundary conditions is
essentially two dimensional, being one unit cell thick
in the a3 direction. It is X by S in the a~, a2 plane. The
group thus consists of E' operations. This domain,

being the smallest one for which periodic boundary
conditions can be applied, is conveniently called the

magnetic umt cell.
For this special case consider the Ã by E matrices
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fs(r) '9 Z R D11 (R-)T(R-)g(r) (23)

where g(r) is an arbitrary function, "and rf is a normal-
ization coefficient. The labels of the partners are chosen
from zero to N —1, rather than unity to N, for con-
venience in what follows. Making use of Eq. (22) we
find

These matrices form a representation of the given
group. Moreover the traces of all the matrices are
zero, with the exception of the one corresponding to
the identity, which has a trace of N. The sum of the
squares of the traces is thus N2, which is the order of
the group. The representation is therefore irreducible.
Moreover, the square of its dimensionality is also N,
which means there can be no other nonequivalent ir-
reducible representation.

In summary, for the group of X' elements corre-
sponding to putting magnetically periodic boundary
conditions on the magnetic unit cell, we find only one
irreducible representation of dimensionality N. For this
special case all the eigenvalues are N-fold degenerate.
A set of partner functions for this representation may
be obtained by use of group projection operators. "

The 6rst partner will be of the form

where the possible values of q; are given by

q;= 2wC;/(X;a;); i = 1, 2, 3

C1=0, 1, , Mr —1; Cs=0, 1, ~ ~, Ms —1; (28)

Ca=0, 1, ~ ~, Na —f.
It should be noted that the spacing of the q vectors is
the same as the zero-Geld k vectors, being governed
by the crystal dimensions. However, the domain of q,
is reduced in the a& and a2 directions by a factor N.
It is seen that this result is consistent with the identi-
fication of the domain of dimensions Naj, Na2, as as
a magnetic unit cell.

Using projection operators once again, it is found
that

fs'(r) = ri 2 s, , n, ,~,

XexP/+i(qrntat+qsesus+qsndVas)]
X T(rs,a,)T(rssas) T(rsdt as)g(r), (29)

which is a generalization of a Bloch sum. In addition

f &(r) =e '"&1'sT( mas) f—ss(r). (30)

From these relations it follows by a straightforward
calculation that

(24) T(—R„)f„s(r)
=exp(itq+(m+ts, /2)(gXas)) R„)f ~&(r), (31)

The other partners of the given representation are
simply related to one another by

T( mar) f„(r—) =f~„(r); (mode),

T(a1)f„(r)=e'"'~' ~If„(r),

(25)

(26)

"The function g(r) is not completely arbitrary. If it were
orthogonal to the Grst partner by virtue of symmetry, its pro-
jection would be zero,

The choice of basis functions for a degenerate repre-
sentation is not unique. The fact that Eqs. (25) and
(26) place translations along a1 and as on a different
footing is due to the special choice of D(a1), D(as). An
equivalent representation could be found which inter-
changes the roles of a~ and a2.

The limitation to a single magnetic cell is easily
relaxed. Consider a crystal, with magnetically periodic
boundary conditions, of dimensions Nja~, N2a2, N3aa,
where fqt=iV1X, Es Ms', and the ——magnetic Geld
is oriented as before. %e can form new representations
for the larger group of F1X~s operations from the
one already discussed. For this group there are 3f1M~1
representations of dimensionality N. The matrices cor-
responding to the translations aq, a2, and ae differ
from those already given only by a phase factor. These
representations can be labeled by a vector with re-
ciprocal space components of q~, q2, qa. Thus

D&(a)= e '&~'rD(a) J=1—2-3 (27)

B(r; q+mgXas) =f„s(r).
In terms of these functions Eq. (31) becomes

(32)

T(—R„)B(r;k)
=exp{iLk+gXNsas/2] R„)B(r;k+gXnsas). (33)

The domain of k and q are different. The vector q is
restricted to a magnetic zone, which is a Brillouin
zone, for a lattice in which the magnetic cell plays the
role of unit cell. It is thus smaller than the Brillouin
zone by a factor 3P. The domain of k is extended in
the u& direction by a factor N, so that its domain is
smaller than the Brillouin zone by a factor N.

It is to be emphasized that the form of Eq. (31) is
a result of the special choice of gauge, and the arbitrary
choice of basis functions within a degenerate set. The
function B(r; tl) goes into itself, times a phase factor,
under the magnetic translations which are con6ned to
the lattice plane normal to a2*. Under magnetic trans-
lations to the mth neighboring plane, the vector index
k changes to k'=k+)Xsssas+x. The last term in the
sum corresponds to a translation in reciprocal space
necessary to bring h' into the erst zone.

where R„=n rat+I sas+nsas This e.quation comPletely
specifies the transformation properties of the basis
functions of the irreducible representations.

There is an alternative way of labeling the functions
so as to show their super6cial resemblance to Bloch
functions. For this purpose we de6ne
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It is instructive to examine what happens in the
limit as the size of the crystal becomes infinite. In this
case the spectrum of allowed wave vectors q (or k)
becomes quasicontinuous, being a function only of the
crystal dimensions. The energy is then a continuous
function of k. This can be called a magnetic subband.
Thus, a band splits, under the inQuence of a magnetic
field; into E-magnetic subbands.

In general one can expect these subbands to group
into clusters. This follows from the fact that S, and
the domain of q can change drastically for infinitesimal
changes in B.For example, if B changes to B(M—1)/M,
where M is a large integer such that l(M 1) a—nd NM
have no common factor, then the degeneracy changes
from Ã to E3f. The number of subbands has thus
been changed by a factor M. However, the level
density really hasn't changed much since the perturba-
tion is small. This effect has an analog in the zero-Geld
case. Suppose, for example, in a one dimensional lattice
every 3fth cell had its potential altered infinitesimally.
The lattice constant would increase by a factor M and
the domain of k would be reduced by the same factor.
Thus, there would be M of the newer bands in place
of the original one with only an infinitesimal change in
the density of states. In the energy range occupied by
a single band there then would be 3f bands of smaller
extent. The resulting energy spectrum would then
consist of clusters of M bands. In the magnetic case
we may expect a similar phenomenon in the clustering
of magnetic bands. The empty lattice results of the
next section support this point of view.

4. THE EMPTY LATTICE

We pick a Cartesian unit cell of sides a, b, c. The
operations T,(a), T„(b), T,(c) designate magnetic
translations along x, y, s of amounts a, b, and c
respectively,

T,(a)f(x,y, s) = f(x a,—y, s) e 'e &",

T„(b)f(x,y, s) = f(x y b—e)e'e'*/2,

T.()f(*y, ) =f(*,y, s—e).
(36)

T//(b) iI//, „/,z"=P/ z+///, kz" z (37b)

T (e)p„n e—i—kzzp n (37c)

Since the z dependence is of no interest, being the
same as in the zero-Geld case, we shall neglect it. If we
want the eigenfunctions to be invariant to T (N~a),
we must restrict k, to be a multiple of 2ir/(N~a) as in
the zero-field case. In addition, we must require
(i'i,+Pb) to be of this form also, so that

Pab=2~l~/N&=27/&lN z' (38)

where l/N is the reduced form of l&/N& From .Eqs.
(37) and (38) it is found that

T//(Nb) il//, ."=g /. p2. i/(z". (39)

This function has the same transformation properties
under T, and T, as does pi.,n. The functions 14.n do
not yet have the proper periodicity under T, but the
superposition of degenerate functions given by

These operators are applied to the solutions of Eq. (34)
with the results

T,(a)P/.../,,"=e ' 'y „,", (37a)

The theory discussed above is applicable to the case
of a vacuum, for which exact results are available.
When the appropriate boundary conditions are applied,
it is convenient to refer to the vacuum as the empty
lattice, a special case useful for testing a theory. The
Schrodinger equation in the gauge of Eq. (3b) for a
magnetic field in the z direction is, in atomic units,

n Pe—izz/zzNbT (i/iNb)y n

e izz/zzN bP n

satisfies the relation,

T„(Nb)B „„=e'~ N'B

(40a)

(40b)

Wl p'—Vy+zp y——*—~+—(~+y)p=xy, (34)
Bx By) 4

with solutions,

~
n —

ib (y b /p)e i//z///2ei(/zzz+/zzz/—(35a)

where p satisfies the harmonic oscillator equation,

—8 Q„/By +P y if/ =E„Q„, (35b)

E„=(2ii+1)P+k.2. (35c)

These solutions are a complete set of linearly inde-

pendent functions. The infinite fold degeneracy should
be noted by the fact that the energy is independent of
kgz

as well as Eqs. (37a), and (37c). In Eq. (40a) the
domain of k, can be easily seen to be from zero to
l(2ir/a), whereas the domain of k„ is zero to 2+/Nb,
corresponding to an eGective translation distance Eb.

It should be noted that it is only in the empty lattice
that a meaning can be attached to a value of k, greater
than 2ir/a. Those differing by (2m./a) are in different

but equivalent representations. We thus have each
representation appearing 3 times with a single energy.
In other words, we have 1 sub-bands clustered. In this
special case, all the states in a cluster, as well as the
clusters themselves are degenerate. The functions

8&.,&„"are of the type described in the previous section,
satisfying periodic boundary conditions. For a given
value of I there are lN~N2/N degenerate states. The
coarse grained density of states associated with the
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modulo S.The domain of q is the magnetic zone. Thus,

I„,„=N/(NiNRN3) Q „,,
Xexp{i[q+m(l}Xa2)] (R„—R„)}4,„,.
Xexp[i(g Xam) (emR„—m2'R„)/2]

=N/(NiN2N3) p qe'"'""' ""'8„„
Xexp[i(g Xa2) (n2R„—n2'R„)/2]. (45)

This clearly vanishes if R„/R„. The domain of k is
shorter than the Brillouin zone by a factor X in the
a2* direction, and thus contains NiN2N3/N states,
yielding

(46)

which is the orthonormality condition. The number of
functions is clearly the same as the number of states
in a single band, neglecting the factor of two for spin.
They are thus capable of playing the same role as
Wannier functions, in the construction of an effective
Hamiltonian.

Let

5. EFFECTIVE HAMILTONIAN

An effective Hamiltonian can be most easily derived
by showing the existence of a set of functions which
are the magnetic analog of Wannier functions. De-
noting a particular one of these functions by A(r
de6ne (47)4=2 f(R-)A(R-; r).

(41) The coefFicients f(R„) must satisfy

QH„,„f(R„)=Ef(R ),
A(R„; r) =T(R„)A(r).

It will be shown that there exist functions A(R, r)
which form an orthonormal set, and which also span
the space of the eigenfunctions of the magnetic-6eld
Hamiltonian arising from a single band. Once this is
done, the demonstration that an effective Hamiltonian
exists, follows the procedure of Wannier. '

It should be remembered that in the magnetic 6eld
all representations are E by E. Also, each representa-
tion appears Ã times in the states arising from a single
band. Using the notation of Eq. (30) the various
eigenfunctions can be denoted by P, 'i. The first sub-
script designates the partner in the q representation
and e labels the magnetic band. Both nz and e take on
E different values. Let

in the absence of a perturbation. In the above equation
B,„is the matrix element of the Hamiltonian between
two functions A (R„;r) and A (R„;r),

H„,„=(T(R„)A(r),HT(R )A (r)).
Making use of the unitary and commutative prop-

erties of the magnetic translations one obtains

(49)

H„„=(A(R„—R„; r), HA(r))
Xexp[ig (R XR )/2] (50)

=e(R„—R„)exp[i) (R XR„)/2],
where e(R ) =(A(R; r), HA(r)). Thus Eq. (48) takes
the form

x-y motion is thus lN&N2/(2'). Using Eq. (38) it is
found that g(E)=(Nia)(N2b)/4s, which agrees with
that of the zero-field case. Thus, the magnetic periodic
boundary conditions do not cause difFiculties in this
respect.

It is worth noting that the in6nite-fold degeneracy
of the energy eigenvalues in a magnetic field in empty
space can be demonstrated simply from the group
properties. Since we can pick the lattice constant arbi-
trarily, we can select a and b for a given 6eld such that
Pab=2s. /N, where N is an arbitrarily large integer.
Each representation is then E-fold degenerate, so that
in the limit as (ub) is made arbitrarily small the de-
generacy becomes infinite.

A (r) = (N/NiN2N3)'~' g ~,,f, 'i.

Then from Eq. (31) it follows that

(42)

and the orthonormalcy can be seen from

I, .= A*(R„.; r)A (R„;r)d'r

=N/(NiNgNg)Q

Xexp{i[q+ (m —+2'/2) (gX a~)] 8„.
—i[q'+(m' —0,/2)(yXa, )] R„}

X8,,;8, b.. . . (44)

The Kronecker delta 8»,» is to be interpreted

A (R„;r) = (N/NiN2Ng)'i' g
Xexp{—i[q+(m —em/2)()Xa2)] R„}P„„,„& (43)

P „e(R —R ) exp[i) (R X R~)/2]f(R )
=P „e(R„)exp[i) (R„XR )/2]f(R —R„)

=Z -e(R-)2'-(R.)f(R ) =&f(R-) (51)

In the above equation T (R„) is the operator ob-
tained from T(R„) by replacing the vector potential
by its negative. In using Eq. (51), f(R„) is to be in-
terpreted as a function of a continuous variable r, and
the expression evaluated at r= R .

From the definition of T (R„) Eq. (51) becomes

{P „e(R„)exp[—iR (P+eA/c)/A]} f(R„)
=Ef(R ), (52)

H ff(P+eA/c)f (r) = Ef (r) .
It is a straightforward procedure to incorporate the
effect of a perturbation, as is done in the usual effective
Hamiltonians. One drawback to the utility of the efFec-
tive Hamiltonian as defined in Eq. (22), is that the
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coeKcients e(R„) depend on the Geld. As was noted by
Kohn' this prevents one from taking experimental
information at zero 6eld and applying it directly to
the magnetic problem.

6. DISCUSSION

Although group theory, by itself, cannot yield the
energy spectrum of quantum mechanical systems, it
does provide a useful tool in such an investigation when
applicable.

It is signi6cant that group theory is still applicable
when a solid is subject to a uniform magnetic field. In
addition to establishing the essential degeneracies, and
classifying states according to syrnxnetry it can be used
in connection with selection rules. Moreover, explicit
numerical computations on level structure are usually
greatly simplified by its application.

There is no reason why the method must be re-
stricted to the one electron approximation, since the
Hamiltonian for the many-electron system is invariant
under a similar ray group of operations. These opera-
tors are just those which shift all the electronic co-
ordinates and momenta simultaneously. It should also
be possible to extend the theory to include spin and
the effects of uniform electric fields.

that

D(i)Dt(i) =K 'I'D(i)KD (i)K "'
=K '"Q;D(i)D(j)Dt(j)Dt(i)K "(A3b)
=Z-~~2am-if2= ~.

The matrices D(i) thus form a unitary representation.
Theorem Z. Every matrix 3f commltieg with all the

matrices D(i) of anirreducible representation is a multiple
of the unit matrix

The proof of this for ray representations is identical
with that for ordinary representations. "

Theorem 3. If Xq and Xm are tvoo irreducible representa
tions of dimensions l~ and l2, respectively, and if there
exists a matrix X such that XD"'(i)=D"'(i)X for each
i then either (a) X is the null matrix or (b) lq ——

lm, and
the two representations are equivalent

The proof of this also is identical with that for
ordinary representations.

Theorem 4. (Orthogonality relations) For two irreduci
ble unitary ray representations X&, Xm,

P,D,;*»(h)Dl "(h)=8,8;,„gb, , »/gl, (A4)

where g is the order of the group, and l is the dimensionality

of either representation.
Let

M=+ aD»(R)XD»(R-'), (AS)
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APPENDIX

The theorems which lead up to the orthogonality
relations for the irreducible representations of a group
are here derived for the ray representations encountered
in this work.

Theorem l. Any ray representation by nonsingular
matrices is eqlivalent to orIe by unitary matrices.

Let the matrices D(i) be a ray representation, so that

D()D(j)= (i j)D(h) (A1)

where ~(i,j) is a complex number of magnitude unity.
Define the positive definite matrix E,

Let

K=+ D(i)Dt(i).

D (i)=K-'I'D(i) K'I'.

(A2)

(A3a)

Then, making use of Eq. (A1) and (A2), it is found
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where E labels a group element, and X is an arbitrary
li by l~ matrix. Then,

M=+,D»(SR)XD»((SR)-'), (A6)

since (SR) takes on all the elements of the group as R
does, if S is an arbitrary element.

From Eq. (AS),

D»(S)M=+ a&a(S R)D"&(SR)XD»(R-'). (A7)

From Eq. (A6),

MD"~(S)=P aD»(SR)XD»(R-')M((SR)-' R ') (A8)

In the ray representation for the magnetic-6eld
problem cu(S,R) is given by exp LiIl (R~XRe)/2$ so
that

(o((SR) 'R ')
=exp(ig [—RaX(—Ra —Rs)/2j) (A9)
=a)(S,R) .

Thus, for these representations,

D»(S)M=bID& (S), (A10)

so that M satisfies the conditions of Theorem 3. The
remainder of the proof is identical with that for ordi-

nary representations.
The projection methods of representation theory

may be derived in similar fashion.


