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MgO has relatively high (cubic) symmetry. In any
case the vibrational spectra in n —Al2O3 are considerably
more complicated than the MgO:V'+ spectrum indi-
cated in Fig. 6. It is in fact dif5cult (especially for
rr —AlsO, :Mn'+) to separate the effective "one-phonon"
density of states from the multiphonon contributions
to the vibrational structure.

If and when the lattice spectrum of MgO is deter-
mined, the MgO: V'+ and MgO: Cr'+ cases seem to be
promising ones for an attempt to calculate the impurity-
phonon interaction from first principles. Not only is

the lattice an exceptionally simple one, but the point-
charge model has been shown to give quantitatively
correct results for the e6ect on the 'E state of static
strain. "' It remains to be seen if equally good agree-
ment can be obtained for interaction with the phonons.
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An analysis is made of the Griineisen parameter y; = —d In~;/d in V, where v; is a normal mode frequency
and V is the volume for certain ideal and real crystals. It is shown that negative thermal expansion or
anomalous positive expansion in a solid is a possible result of an approach to instability of the modes of
vibration.

A. INTRODUCTION

HIS paper is an extension of two previous papers, '
hereafter referred to as I and II. An analysis of

the expressions for the Gruneisen parameter derived in
these papers indicates the conditions under which a
crystal can have negative thermal expansion coeKcients
or anomalous positive thermal expansion coeKcients.
Recent experimental evidence' shows that certain crys-
tals, such as silicon, ZnS, InSb, SiOg, and AgI, undergo
negative thermal expansion. Blackman' has considered
an ionic zincblende structure and found from an analy-
sis of the elastic constants that it would have a negative
expansion at low temperatures. It was concluded that
open structures, those with a coordination number of
four and having a very low shear elastic constant (C44),
should have a negative thermal expansion.

In I, we considered some ideal cubic crystals having
short-range interactions, such as a two-dimensional
diatomic square lattice and a simple cubic lattice. It
was found that they exhibited negative expansion when

they were unstable or approached instability. 4 The fol-
lowing analysis suggests that the instability or approach

*Present address: 1352 Findlay Avenue, Bronx 56, ¹wYork.
' By paper I, we refer to "Equation of State of Certain Ideal

Lattices, "Phys. Rev. 131,208/ (1963),and by paper II to "Equa-
tion of State of AHmli Halides (NaCl), "Phys. Rev. 132, 73 (1963)
both by M. Arenstein, R. D. Batcher, and I. ¹uberger.

2 R. D, McCammon and G. K. White, Phys. Rev. Letters 10,
234 (1963).' M. Blackman, Phil Mag. 3, 831 (1958).

For a discussion of stability of simple lattices, see M. Born
and K. Huang, Dynamica/ Theory of CrystaI Lattices (Clarendon
Press, Oxford, England 1954), Chap. 3.

to instability may be the cause for negative expansion
or anomalous positive expansion in a real crystal. Such
a possibility is interesting since the explanations for the
melting of solids' and the ferroelectric transition' have
been sought in the approach to instability of the acoustic
modes in the former situation and the transverse optical
modes in the latter.

The volume coeKcient of thermal expansion P of a
crystal can be written as

f3 = (XZ,p,BE,/B T)/V,

with y; the Gruneisen parameter given as

y;= —d in';/d lnV. (2)

Here X is the isothermal compressibility, t/ is the vol-
ume, E; is the thermal energy {hv;/Lexp(hv, /hT) —Ij),
and p; is a normal mode frequency. T, Ig, and 4 have
their usual meaning and the sum over i is to be taken
over all normal modes. Since X, V, and BE;/BT are
always positive, it can be seen that if y; is negative for
a large number of frequencies or if y; is very large and
negative (y; ~ —~) for just a few frequencies, then P
will be negative. Expressions for y; have been found for
several ideal lattices and for a real crystal such as
NaCl. ' It is expected that y; will take the same form for
many molecular and ionic solids. It can be shown that
the conditions under which the lattice approaches nega-

' M. llorn, J. Chem. Phys. 7, 591 (1939);J. H. C. Thompson,
Phil. Mag. 44, 131 (1952).

6%. Cochran, in Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1960), Vol. 9, p. 38/.
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tive thermal expansion or anomalous positive expan-
sion (y; —v oo) are the same as the conditions for the
lattice to approach instability.

B. IDEAL CRYSTALS

By an ideal crystal, we mean one having short-range
forces; that is, we consider nearest and next-nearest-
neighbor interactions. Thus, considering a two-dimen-
sional square lattice, the simple cubic, face-centered
cubic, and body-centered cubic lattices, an expression
for p; can be derived' from lattice dynamics and put
into the form

v;= —(1/L)P'ui'/ui+r'us'y/2w'pvPj, (3)
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where I is the dimension of the lattice, r is the lattice
separation, ui 4r'f" (r——'), us=2f'(r'); f(r') is the inter-
atomic potential energy, y is a function of the wave
vectors and the lattice separation and depends on the
structure of the crystal (for convenience, the values of y
for the various lattices are given in the Appendix), p, is
the reduced mass of the ioris, and the prime indicates
derivatives with respect to r'.

The first term in Eq. (3), —r'ui /Lui, is positive if we
consider a Mie-Lennard-Jones interatomic potential
energy having the form —)ir "+Ir ".wliere m, ri, X, and
f are positive parameters characteristic of the lattice.
This potential energy has been used often before in the
study of crystals. If we assume the equilibrium condi-
tion, we have

—r'u, '/L, = (m+n+4)/2I. .
The second term —r'us'y/2n'Lpv, s can be shown to be
negative. The only quantity in this term which needs
examination is us'= 2f"(r') since all other quantities are
obviously positive. We show that this is positive using
the equilibrium condition and assuming that the re-
pulsive force is short range so that e&m. We have

f"(r') = ti(ri —res)I r "-'/4) 0. (5)

Thus, y; will be negative when

~

rsu, 'y/2~sLpv, s
[ ) [

rsu, '/L,
~

(6)

and since the quantity on the right side of Eq. (6) is
Axed this condition should be met when v,' —+ 0. Since
z; varies with y, it is important to look at this term in
the long-wave limit. It can be seen from the values of y
in the Appendix that y —+ 4x'E'u' for all lattices con-
sidered, where a is a lattice constant and E is the wave
vector. Thus

r'us'y/2n'Lpv, ' ~ 2r'us'a'/Lp U', (7)

where U is the elastic wave velocity. U can be expressed
in terms of the elastic constants C~~, C», and C44. For
certain directions in the crystals (for example, the $100j
direction) we have for longitudinal (Ui) and transverse
(U)) elastic waves, the relations pUP=Cii and pU)s
=C«, where p is the density.

For cubic lattices with central forces, C»=C44 and
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FIG 1 Gruneisen parameter y" vs temperature for a two
dimensional diatomic lattice with one mass double the other and
with central forces vm/)ri ——5 = —0.1.

the stability conditions can be written as C»&0 and
C~~—C») 0. More generally a crystal will be stable for
all small deformations if the normal modes have real
frequencies. Thus as v~ 0 or as C44=C» —+ 0 we see
that 2r'us)a'/Lp Us —v N) giving us a large negative value
for y, and at the same time the lattice approaches insta-
bility. That this occurs for the two-dimensional square
lattice and the simple cubic lattice can easily be seen.
We have for the two-dimensional lattice that

p UP = )ri+)rs) p«'= &s) (g)
where o-& and 0.2 are, respectively, the nearest-neighbor
and next-nearest-neighbor Hooke's law constants. Thus
0.2 ——C44 and for 0.2 negative the lattice is unstable. In
finding the thermal expansion coefFicient for this lattice
in I, negative eigenvalues of the dynamical matrix were
excluded. However, the reduction of pU~', as well as
the over-all smaller values for the frequencies, cause the
thermal expansion coefficient to become negative. If
we delne a weighted temperature-dependent Gruneisen
parameter as

y" (V,T) =Z,~,BE;/BT/Z, BE,/BT

such that Eq. (1) can be written as

P= Xy" (V,T)Z,BE,/BT/V „(10)
then we can characterize the thermal expansion by the
value of y" at a particular temperature. Examining
Fig. (1) we note that y" (V,T) is zero at 100'K and
negative below that temperature.

The simple cubic lattice is known to be unstable under
homogeneous deformations as all neighbors are con-
sidered and the interatomic potential energy is of the
Mie-Lennard-Jones form. ' For the simple cubic lattice
we have

()ri+2o 2)/a=Cii —C4i
2)rs/a C44 Cis ~
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Thus choosing 0.2 to be very small, we have C44 small.

o2/a ~ was chosen in I to be 0.1 with the result that the
lattice underwent negative thermal expansion at low

temperatures.

C. REAL CRYSTALS

By a real crystal we refer to a model of a solid which
considers long range forces. Thus a Kellermann model

of NaCl, as well as a modi6ed Kellermann model, is
considered. In these models the Coulomb interaction
between all ions was taken into account along with
short range repulsive forces. The models differ in that
repulsive term for the modi6ed model is taken to be a
Born-Mayer repulsive potential energy Ae—~", where

A and 8 are variable parameters which are adjusted to
give good results compared to experiment, whereas the
Kellermann model considers a repulsive potential en-

ergy of the form cr-", where c and m are constants which

are eliminated in the Anal equations by applying the
equilibrium and compressibility conditions.

An expression for y; was obtained in II for these
models of NaCl by perturbation theory and we expect
the same general form for many other ionic crystals.
I'or the modihed Kellermann model we have

y;=-', [1—(e'/6ro'aP) (dB /dr)7, (12)

where ~ is the circular frequency, e is the charge of
the electron, ro is the lattice separation;

dB„ /dr =R'( (1/pg) [(Ug„')'+ (U,„')'+(Ug„o)']

+ (1/P2) r(U2-')'+ (U4-')'+ (Ue-')']
—2/(pgp2)'~'(Ug 'U2 ' cos~q,

+Us 'U4 ' cosvrq„+Ur, 'U~ 'cos~q, )}
+2S'((1/pi) [(Ui~')'+ (Ua ')'+ (U5 ')']
+(1/w)L(U2 ')'+(U4 ')'+(Ue ')']
—1/(pgpg) [(cos&qq+cosqg) Uy~ U2~

+(cos~q, +cosmq, )US 'U4 '
+(cossq, +cos~q„)Uq 'Ue ']} (13)

R'= (4B'A/e') (3rj'—Bra')e e'&,

S'= —(4BA/e') (2ro Bor') e ~'0' (14)—
' E.W. Kellermann, Trans. Roy. Soc. (London) 238, 513 (1940).
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FIG. 2. Griineisen parameter p" vs temperature for a modi-
6ed Kellermann model of NaCl utilizing a frequency spectrum
of 11454 frequencies and p s.

t
21' 4r r' 8X--
aP X X' Br

(16)

8 It should be noted that due to the orthonormality of the eigen-
vectors some of the terms U; ~ U; i/j are negative and there-
fore the terms in parentheses and brackets can be either positive
or negative depending on direction in the crystal and the frequency.' S. Ganesan and R. Srinivasan, Proc. Roy. Soc. (London) 271,
154 (1963).

where p~ and p2 are the masses of the ions, U' is an un-
perturbed orthonormalized eigenvector which comes
from the equation of motion of the ions and is therefore
the amplitude of the displacement, and q=2roe, where
o is the wave vector. If it can be shown that we can
have dBnzmldr&0, then as ~ —+0, we will have y;
—+ —~. Consider Eq. (13) and let pq=p2 ——p, which
should not affect our results, but will make our expres-
sion easier to handle. We then have

dBmm/dr = (R'+2S'/p) —2R'/p(U~~'U2„' coss q,
+U~„'U4„' cosmq„+U~ 'Us ' cos~q, )
—2S /p [ (coss'qy+ cosm'qg) Uy~

Upped

+(cossq, +cossq, )U& 'U4 '+(coss.q,
+cosxq„)Uq 'U6 ']. (15)

The erst term (R'+2S'/y) =4BAroe "0/e p(Byo 4)—
X(—Bro+1) is negative except when 1&Bro&4.Thus,
for some particular directions in the crystal where the
second and third terins vanish or do not overweight the
6rst term, s we have dBmm/dr)0. A small value for
Bro corresponds to a rather long range repulsive force,
whereas it is found for a crystal such as NaCl that
Br0~9 and, therefore, one 6nds mostly positive p;s.
Negative values for y; were found for NaCl for the
transverse acoustic branch indicating that even for
Bro 9 that the second term on the right of Eq. (15)
can dominate and with R'(0 cause dBmm/dr)0
Since these negative y s were very small in number
compared with the total spectrum and were small in
magnitude, negative expansion could not occur. In
fact, since dBmm/dr &0, then as a& ~ 0 we should ex-
pect rather large values for y;. Examining Fig. (2), we
note that y"(V,T) approaches a minimum at 11'K and
then rises to its value at O'K. Low frequencies or acous-
tic modes dominate at low temperature and this ac-
counts for the behavior of y"(V,T). Recently, S. Gane-
san and R. Srinivasan, have investigated an equivalent
temperature-dependent Gruneisen parameter for the
CsCl structure. This lattice is known to become un-
stable for m~7.3. As they reduced the value of e from
30 to 8, it was found that y" grew very large at low
temperatures, indicating that as instability is ap-
proached the lattice undergoes an anomalous positive
thermal expansion.

An interesting aspect of negative thermal expansion
with regard to the compressibility I can be seen by
examining the Grtineisen parameter y; derived in II
from the Kellermann model.

We have
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2')g' d V 9V,'
(19)

The term 4'(e+2) (Z'e)'/9V. ' is positive, and even
if dR'/dV is negative, as the lattice contracts, the
former term can become larger than the latter. There-
fore, if

l4&r(e+2) (Z'e)'/9V 'I )
I
dRo'/dVI (20)

y; will be negative and becomes quite large as ~~ —+ 0.
Experimental evidence" shows that as the transition
point. is approached from the cubic phase a single crystal
of BaTi03 contracts. At the transition point a spontane-
ous expansion occurs apparently due to electrostrictive
effects. It is suggested that the lattice vibrations also

' C. G. Skull and E.O. Wollan, in Solid State I'hysics, edited by
F. Seitz and D. Turnbull (Academic Press Inc.

&
New York, 1956),

Vol. 2, p. 137.
"I".Jona and G. Shirane, in Ferroelectric Crystals (Pergamon

Press, Inc. , Neve York, 1962), Chap. 4.

where

I'= (1/ur)[(Ur ')'+(Us ')'+(Us ')'5

+(1/ )[(U ')'+(U ')'+(U ) 5

+[2/(prps) 5(Ulm. Usta cosrrg +eUsgpU4nP cosrrg»

+Us„'Us„e cosrrq, ) . (17)

For positive I' the condition for negative thermal ex-
pansion is

4r r' /clX) )0 as e)~0.
X X'(Br Jr

This will occur when BX/Br is very small, zero, or nega-
tive. We may expect then that the isothermal compres-
sibility approaches a minimum as the lattice contracts
and then increases as the lattice expands.

Since, .as was indicated in the introduction, insta-
bility in the optical or acoustical modes may be present
at a phase transition, the thermal expansion at these
transitions may give valuable information concerning
the mechanism causing the transition. For example, the
anomalous thermal expansion in antiferromagnetic ma-
terials" indicates that either phonon modes or magnon
modes or both approach instability.

The ferroelectric transition from the cubic to the
tetragonal phase in BaTi03 is thought to occur when
the transverse optic mode frequencies coz approach zero. '
One may expect large positive or negative y s associ-
ated with these low transverse optical modes. We can
write for coz that

pter' Re' [——4rr(e+—2) (Z'e)'/9V 5 & (18)

v here p is the reduced mass of the ions, Ro' is the short
range force constant, Z'e is the effective ionic charge, e

is the high-frequency dielectric constant, and V is the
volume of the unit cell. We have for y;

contribute to this effect although it is diKcult to esti-
mate the magnitude of their contribution. One must re-
member that no large negative expansion should be ex-
pected since it is only the transverse optical mode which
is assumed to become unstable while the other modes
remain uneBected. However, one may Gnd fairly large

- effects, i.e., negative thermal expansion or anomalous
positive expansion, if experiments which properly ac-
count for the electrostrictive eGect are performed on
single crystal ferro-electrics having low-temperature
transition points.

D. CONCLUSIONS

We conclude that those crystals which approach an
instability in some of their normal mode frequencies will
either undergo negative thermal expansion or anomalous
positive thermal expansion. If we follow the rule of
thumb that the stability of a crystal varies with the
coordination number (being most stable for the highest
coordination number and less stable for low coordina-
tion number), we see why Blackman found that those
crystals with a coordination number of four undergo
negative thermal expansion. It is suggested that the
nature of a phase transition in a crystal as well as the
nature of the ionic and covalent forces in the low coordi-
nation number crystals may be determined through
careful thermal expansion experiments.
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APPENDIX

The values of y for the various ideal lattices which
were derived in I are given here for convenience.
E; j=1, 2, 3 is the wavevector and u is the distance
between nearest neighbors in the two-dimensional
square lattice and simple cubic lattice, whereas it is the
distance between next-nearest neighbors in the face-
centered cubic and body-centered cubic lattices.

(a) Two-dimensional square lattice;
y= 4—2[cos2rrE'ra+cos2z. Esa5.

(b) Simple cubic lattice;

y =6—2[cos2z Era+ cos2rrEsa+ cosrrEsa5.

(c) Pace-centered cubic lattice;
y=12—4[cosrrEra coszEsa+cosrrEsa coszEsa
+CosrrEra cos&Esa5.

(d) Body-centered cubic lattice;

y =8—
2 [cosrra(Et+ Es+Es)+ cosrra( —El

+Es+Es)+cosrra(Er —Es+Es)+cosa a
&& (Et+Es—Es)5.


