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complicated, Nevertheless, it is useful to estimate the
damping of our resonant oscillations using a simple
physical model which is well known" to describe the
Landau damping eGect in a homogeneous plasma. Con-
sider a density perturbation which for the moment is
stationary in space (Fig. 3). After a time (k,W) ', the
perturbations having a wavelength of 2rr/k, will be
"dissipated" by the thermal motion O'. We now let the
perturbations oscillate with a period of co . Evidently,
the damping eRect due to temperature motion (Landau
damping) is not important if the dissipation time
(k W) ' is long compared to the oscillation period ro '.

Let k =2rr/). with X,=2Bag/Brs, and make use of
(3.2) and (3.3) with &o,=0. (4.1) can be reduced to

f1+(o,'(0)/jar'-rs', (0)])' '&~ 1, (4 2)

where rs'„(0) is the plasma density at the wall. This in-

equality is certainly not strong and in fact the equality
sign is valid for zero wall density. According to this
estimate, therefore, thermal damping effects cannot be
excluded and a further investigation is physically
signidcant.
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A survey of nonmagnetic band structures near the top of the 3d band is made. The aim is to combine these
band structures with a wide variety of experimental data to determine the exchange splittings of the d bands
b,Eqq and the s-p conduction band AE„. Saturation magnetization, g factors, and high-6eld Hall data are
analyzed and compared with the effect of s-d hybridization on the number of s electrons. One concludes that
if the neck observed in magnetoresistance studies is associated with the same band edge as the Cu neck,
AEdq&0. 8 eV. It appears that b,E„&bEqg/2. Recent optical rotation data of Krinchik are interpreted as
giving a direct measurement of dEss The value o.btained is (0.6+0.1) eV, in good agreement with the values
obtained from other data.

1. INTRODUCTION

N ORMOUS progress has been made recently in ex-
~ tending our knowledge of the electronic structure

of metals through a variety of experiments which deter-
mine certain properties of the Fermi surface. ' Fawcett
and Reed have recently studied the transverse magneto-
resistance and Hall coe%cient of Ni. ' ' By combining
their results with the results of saturation magnetiza-
tion, 4 gyromagnetic resonance, ' and Faraday rotation
measurements, ' it may be possible to obtain a rather
precise picture of certain portions of the Fermi surface
of ferromagnetic Ni.
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Before undertaking an analysis of the experimental
data we must make certain assumptions about the band
structure of Ni. All Fermi surface measurements tend to
be almost too microscopic. Because the measurements
are con6ned to the neighborhood of E=Ep, one views
the band structure through a slit that is energetically
very narrow. Many different band models of E„(lt),
where n labels bands, often fit the same data with ap-
parently equal success. It is therefore necessary at the
outset to attempt to de6ne certain rules for physically
plausible band structures. If the rules are correct, rea-
sonable models which fit experiment naturally will

emerge from the analysis.
For nontransition metals this prescription has been

carried through with great success by Harrison. ' His
rule is to apply the nearly free-electron model. Ashcroft7
has extended the pseudopotential treatment to charac-
terize allowed Fermi surface topologies. We know that
narrow d bands cannot be treated in this fashion, and

6 W. Harrison, Ref. 1, p. 28.' N. %. Ashcroft, Phys. Letters 4, 292 (1963).
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this has so far discouraged theorists from treating transi-
tion metals.

The general shape of d bands, especially near the top,
is found to be nearly the same in all calculations (see
Sec. 2). The technical problem one then faces is twofold.
Because the absolute position of the d bands is sensitive
to small changes in the crystal potential that have little
effect on the s-p conduction bands, one must adjust the
relative positions of these bands for both t' and 1 spins.
One must also place the Fermi energy consistently for
each spin. Because of the crossing or hybridizing be-
tween the conduction band and d bands, this appears to
be quite dif6cult.

An accurate solution of this problem can be carried
out by first decoupling the d bands and conduction
bands. The density of states in the conduction band
alone or the d band alone has been calculated by several
workers. Using their results we can place EI with some
precision for t and 1 bands We .also note that a single d
band is quite narrow ( 1 eV) compared to the conduc-
tion band width ( 10 eV). If we neglect the former
compared to the latter then the Anderson compensation
theorem' allows us to conclude that s-d hybridization
will not shift Ep appreciably from its decoupled value.

Band calculations show that the d bands of Ni are
quite similar to those of Cu, apart from broadening and
a shift relative to the s—p conduction bands. This
enables one, e.g., to consider unmagnetized Ni as a
chemically shifted version of Cu. The band structure of
Cu is well known through Fermi surface studies' and
band calculations' " and this gives us additional con-
fidence in treating Ni.

In Sec. 2 we survey calculations of d bands to extract
features in the energy range relevant to Ni. VVe discuss
these features in general terms, in order to rely as little
as possible on the details of the calculations. In later
sections we analyze the data and characterize two alter-
native models which are distinguishable experimentally.

2. SURVEY OF CALCULATED fcc d BANDS

Band calculations have always suggested that the
d-band shape can be 6t moderately well with tight-
binding secular equations, the nearest-neighbor overlap
integrals being treated as parameters. "There is no ex-
perimental evidence at present to indicate whether this
approach is sufficiently precise to determine the Fermi
surface of Ni. We adopt a somewhat more general
approach here to the levels near the top of the d band.

Consider the highest states at I', X, I., and W (I'q~,

X5, W&. , and 1.3, respectively). For the fcc structure
these have been calculated for atomic potentials corre-
sponding to Cu, ' " Fe," and Ni."'4 The energies are

' P. W. Anderson, Phys. Rev. 124, 41 (1961).' B. Segall, Phys. Rev. 125, 109 (1962}."G. A. Burdick, Phys. Rev. 129, 138 (1963)."J.C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954)."J.H. Wood, Phys. Rev. 126, 517 (1962)."J.G. Hanus, MIT Solid State and Molecular Theory Group
Quarterly Progress Report go. 44, p. 29, 1962 (unpublished).

14 I.. F. Mattheiss (to be published).

Tmr. E I. The relative energies, in units of 0.001 Ry, of impor-
tant states near the top of the d band, as obtained from a number
of band calculations using mufIIin tin crystal potentials.

Refer-
Element ence F1~ X5 W'1' L3 AE„b,Ey y

Cu 9 0 67 68 15 4.5
Cu 10 0 55 55 11 5.0
Fe 12 0 95 96 20 4.8¹i 13 0 104 104 37 3.1¹i 14 0 63 64 13 4.9

listed in Table I. We define the radial width ~, as the
difference in energy between I'» and Xs or 8 i, which-
ever is higher and the angular width ALE as the corre-
sponding difference with Fi2 replaced by L3. The ratio
of these widths is

cp= AE,/AEg, (2.1)

which provides a measure of the band shape inde-
pendent of the bandwidth. Except for Ref. 13, all the
calculations listed in Table I give values for y between
4 and 5. We will see later that q determines the most
important features of the d-band Fermi surface.

The bands surveyed in Table I are calculated in the
paramagnetic state with no exchange splittings. To
sketch the ferromagnetic bands it is necessary to esti-
mate the exchange splitting of the s bands, AE„, and
the exchange splitting of the d bands, hE~~, when there
are 0.6 unpaired d spins per atom.

Because the number of unpaired spins is nonintegral,
Slater constructed" a band model for Ni with AE„=O
and

bE~~= 0 6'~~. (2 2)

Here bEgg=0. 8 eV is an intra-atomic exchange integral
between two d electrons in different atomic orbitals
(mmmm'). The attractive feature of Slater's theory is
that when it is combined with the high density of states
found" at the top of the d band (due to the small value
of hE&), the one-electron energy difference between
paramagnetic and ferromagnetic states is of the right
order of magnitude to explain the Curie temperature.

The one-electron approach has been criticized by
Van Vleck" on the grounds that in the crystal the inter-
actions are much stronger than the m'/m interactions
in the free atom. This is because of quenching of the
orbital angular momentum, which makes it possible
for the one-electron orbitals to be more nearly alike.
Then one should use a value for 5E~g intermediate
between that of an m&m' exchange integral (0.8 eV)
and a screened Coulomb integral (an exchange integral
with m=m', of order 3—5 eV). When the total d-band
width W (about 4 eV in Ni) is comparable to 8Eq~,
strong intra-atomic correlations are expected. These are
supposed to explain the strong peak found'~ in the
forward scattering of neutrons above the Curie tem-

"J.C. Slater, Phys. Rev. 49, 537 (1936).
'6 J. H. Van Vleck, Rev. Mod. Phys. 25, 211 (1953}.
'7 M. K. Wilkinson and C. G. Shull, Phys. Rev. 103, 516 (1956).
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perature. This peak has been thought to imply the
persistence of short-range order among Heitler-London
atomic spins when the exchange splitting is zero. How-

ever, Kubo et al."have shown that the efI'ect of short-
range order above T, can also be incorporated into a
band model. At present the neutron studies do not
appear to imply quantitative estimates for 5E«.

We conclude that the original order-of-magnitude
agreement obtained by Slater is still our best guide. We
will see later that Fermi surface measurements may
enable us to infer AE«experimentally, thereby resolv-

ing one of the many unclear aspects of ferromagnetism.

3. ALTERNATE FERMI SURFACE MODELS

From magnetoresistance' and Hall data, ' one can
infer that one sheet of the Fermi surface of Ni has the
same topology as the s Fermi surface of Cu; i.e., it con-
sists of spheroidal pieces connected by cylindrical necks
through the centers of the I faces. The angle subtended

by the necks, measured from I', is about 6', compared
to 20' for Cu.

The simplest model" for this sheet is to assume that
the $ spin band is nearly the same as in Cu. The i spin
d band is partially 6lled, so that the unpaired electrons
are in the t spin d band, which is full. The important
bands are shown schematically in Fig. 1(a); E' falls

just above L2.1'.

Two alternative models are proposed here. One Lsee

Fig. 1 (b)], retains the si neck, but reduces substan-
tially the energy difference between the neck and Lat.

X4

8.0

X1

or

(a)

kP, kEl K

(b)

FIG. 2. The effects of s-d hybridization. The solid lines are s-p
bands, I'1X4 in (a), F1E1 in (b), or d bands, F1~X1 in (a), or F12E1,
I"»'E& in (b), without hybridization. The dashed lines show how'

the bands are aftected by s-d interaction. For the sake of clarity
only the d bands that interact with the s bands are sketched.

We will see that this is necessary to obtain an internally
consistent model.

A second model places the neck in the df band, with
E~ just above L3J,. This is shown in Fig. 1(c).

It has been emphasized that the Hall data unam-
biguously require three-electron Fermi surfaces (assum-

ing that the d & bands are full). The three surfaces are
s$, si, d i. The number of electrons in each surface per
atom satisfy

n(st)+n(si)+n(d J,) = 1.0.

4. SATURATION MAGNETIZATION

(3.1)

The saturation number of Bohr magnetons per atom
is 0.61. Combined with gyromagnetic g values4 of 2.1,
this gives

EF
Lg

L3

2t-'

L2' n(st)+1.0—n(sf, )—n(d l) =0.54.

Combining (3.1) and (4.1), we obtain

n(si) =0.27.

(4 1)

(4.2)

(b)

5. GEOMETRY OF FERMI SURFACE MODELS

We consider quantitatively the three models shown
in Fig. 1.

(a) The s$ surface is nearly identical to that of Cu.
In Cu, E~ falls 0.75 eV above I.2. , from the neck di-

mensions Eg will fall at least 0.05 eV above L2' in this
model of Ni. Relative to Fj we have Eg=7 eV. From
the density of states measured for" Cu to a good ap-
proximation the number of s$ electrons is

n(st) =0.50 L1—2.1(bE/Ep)] (5.1)
(c) n(si) =040. (5 2)

Fn. 1. Alternative models for the band structure of ferromag-
netic Ni, with special reference to the neck found in galvanomag-
netic experiments. For the sake of clarity, only the s-p band F&F2,
and one twofold degenerate d band F12F3 are sketched. The neck
is denoted by the "U" in each figure. The boxed arrows indicate
spin direction; the unpaired electrons spins are T.

"R.Kubo, T. Izuyuama, D. J. Kim, and Y. Nagoka, J. Phys.
Soc. Japan 17, Suppl. H-I, 67 (1962); J. Phys. Soc. Japan 18, 1025
(1963)."H. Ehrenreich, H. R. Phillipp, and D. J. Olechna, Phys. Rev.
131,2469 (1963).

Our result (5.2) dift'ers by 25"Po from the value 0.33
calculated in Ref. 19. We conclude that the numerical
methods used there are inaccurate. The di6'erence be-
tween (4.2) and (5.2) leads us to suspect the validity
of model (a).

Before passing to model (b), we consider the magni-

tude of effective magnetic fields at nuclei. According to

B.W. Veal and J. A. Rayne, Phys. Rev. 130, 2156 (1963).
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Es —I'rs1 =0.12 Ry. (5 3)

In the J, band we must place Er about 0.004 Ry below
Lr3 in order to obtain 0.54 unpaired spins. "According
to Table I, I.3—F»=0.064 Ry. This gives

Es —I'rsvp=0. 06 Ry (5 4)

Watson and Freeman, " the total st' charge density
probably does not exceed the total s J, charge density by
more than 0.05 electrons/atom in Fe; we shall assume
that this limit is valid for Ni as well.

The fundamental shortcoming of model (a) is that
it places too many electrons in the sI band. This can
obviously be overcome by placing the neck in the d
band, Fig. 1 (c). We shall now show that the neck in
the sI band can be retained by bringing the dI band
closer to Ep than it is in Cu.

(b) To treat the hybridizing or repulsive effect be-
tween s and d bands quantitatively, we note that for
most radial variations of k, there is a repulsion between
the s and d bands similar to that shown in Fig. 2(b) for
the low synunetry (110) direction. This repulsion re-
duces kp from k& to kz. We may calculate 6k=k& —kz
as a function of Ep —I'~2 from the values of Ref. 13.The
results are plotted in Fig. 3. We see that 6k~0 for
Es —I"re=0.25 Ry (the value appropriate to Cu).

We now assume that the s Fermi surface is spherical
apart from cylindrical bulges along the t 111jand [100]
axes. Direct calculation shows that even when the (111)
bulges touch to form necks of the observed size e(s$) is
augmented above its spherical value by less than 1%%urI.

Taking Skag/ks from Fig. 3, we can calculate the volume
Q of an s sphere compared to Qs=0.50 electrons/atom
for Cu. This is also shown in Fig. 3. We note that in
model (a) with Er reduced by 0.05 Ry so that Es —I'»
=0.20 Ry, Q/Qs ——0.8, in agreement with (5.2).

From (4.2) and Fig. 3 we obtain

0.7

0$— Ep

Z
QS

IJj

04
K3

I' L
(ooo) (111)

W X
(120) (020) (000) (3/2 3/2 0)

FIG. 4. The 1 spin band structure of Ni in model (b).

According to Fig. 3 the value of m(sl) associated
with (5.4) is about 0.1, or about 0.15 less than rs(s$).
This difference is apparently three times larger than
that allowed by the effective nuclear Inagnetic fields. "
In treating the effect of s—d repulsion on I(s), however,
we must remember that s—d hybridization is also
present. This means that the s wave functions with
nonzero amplitude at the nucleus are admixed into the
lower d bands in Fig. 2(b). If the d bandwidth is
neglected compared to the conduction bandwidth, one
can show by a straightforward extension of the Ander-
son compensation theorem" that the difference between
rr (st') and rs (sf) is exactly compensated by the difference
in s charge densities acbmxed into the respective d bands.

According to the compensation theorem, our limit on
the difference of the total s charge densities can be used,
in conjunction with (5.1), to place an upper limit on
the exchange splitting of the s bands:

and enables us to estimate

hogg ——0.68Edd, ——0.8 eV. (5.5)

dZ„&0.05 (Es/1.2)

&0.4 eV.
(5.6)

0.3 0.25

Sk„
kp

0.2—

0.1

—0.5

—0.7

I

0.10
I

0.15
EP I12 IN RY

I.00.20

FrG. 3. The shrinking of s Fermi surfaces as a consequence of
s-4 interaction. Here 8k=kg —kg, the latter being taken from
Fig. 2(b).

2' R. K. Watson and A. J.Freeman, Phys. Rev. 123, 2027 (1961).

~„=0.35 eV, AEd~=0. 50 eV. (5.7)

~ P. W. Anderson (private communication).

The hybridization construction leading to (5.5) is
quite crude and may be in error by 30%%. Nevertheless,
it is interesting to compare (5.5) with the estimate of
AEss offered in Ref. 19 (2.0 eV) and by Slater" L0.5 eV,
see (2.2)). It appears that the exchange splitting esti-
mated in Ref. 19 is too large by at least a factor of 2.

We have used the d-band shape given in Ref. 13 to
sketch the d and s bands for model (b) in Fig. 4 (1' spin)
and Fig. 5 (J, spin). Note in Fig. 4 that I.s lies 0.15 eV
below Ep. This value will be justified in Sec. 6. In Fig. 5
we have placed I.sent just above Es, so that the dl Fermi
surface bulges towards the (111) faces but does not
contact them in this model. The exchange splittings
appropriate to these 6gures are
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07

Z
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hJ
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value of y obtained in Ref. 13 makes d necks feasible.
On the other hand, the other values of q listed in
Table I do not appear to be compatible with d necks,
(For y) 4, the d Fermi surface no longer contacts the
(111)face, but instead becomes spheroidal. )

6. NECK GEOMETRY

To distinguish between models (b) and (c) we

analyze the energy surfaces near L. With the usual
k p perturbation expansion, where k'=k —L, we have,
near the nondegenerate conduction band edge L~,

h' h'
E.( ) =E(L,,)+---(u', )s+ (u', )s.

2m) 2m)
(6.1)

r L w x r
{000) (111) (120) (020) (000) (3/2 3/2 0)

Fio. 5. The 1 spin band structure of Ni in model (b).

In (6.1) the subscripts on k' specify its components
parallel and perpendicular, respectively, to L. The

(c) The foregoing analysis of the s Fermi surfaces
is essentially unaltered if we assume that the neck
falls in the dl band with Er slightly above L»$ as
shown in Fig. 1(c). The cylindrical bulges of the s
surface along the L111) and L100) axes are reduced
but, as we have remarked, these contribute negligibly
to e(s).

We have sketched all the d and s bands in Figs. 6 and
7 for model (c). The band values are taken from Ref. 13,
with dL„=O and AEds 0.5 eV. Th——e st' and s J, Fermi
surfaces are spheroidal with slender bulges along [100)
and L111) axes. The d$ Fermi surface consists of two
inequivalent pieces. One of these is a spheriodal d
piece; it lies entirely outside the s Fermi surface. The
spheriodal d pieces are connected by (111)necks passing
near Lss (the upper Ls state). The second set of dl Fermi
surfaces are small pockets near the X5 levels containing
less than 0.05 hole/atom, which are neglected here.

From Fig. 7 we see that d necks require a low value
for Lss, or a small value of y defined by (2.1). The

0.7

0.7

0.6—
Kp

z
0,5

LLJ

0,4

r L w X r
(000) (111) (120) {020) (000) {3/2 3/2 0)

FIG. 7. The l, spin band structure of Ni in model (c).

I(Lr I pi ILs &
I'

m z-r, E(L,.) E;—(6.2)

longitudinal and transverse masses m~ and m& are
given by

0.6—
m—=1 (6 3)

l«slp~ILs&I'

res i re E(Ls )-E—
Z

0,5
4J

Kp

Kg

The transverse mass m& is dominated by j=1.» and L».
It has been calculated for Cu by Segall. ' Assuring
equal interband matrix elements, we find from Segall's
calculated transverse mass

2 2—l(L»lp~lLs&l'= —l&Lsslp~lLs&l'=17 eV (64)

r L w X r
(000) (111) (120) (020) (000) (3/2 3/2 0)

Kith L~ —L»=0.3 eV and L~ —L»=2.4 eV, from

(6.3) and (6.4) we find for the s neck,

Fio. 6. The $ spin band structure of Ni in model (c). m) =0.13m. (6.5)
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The lower Lt state entering the sum in (6.2) is a d
state. Assuming constant conduction-band, d-band
matrix elements, from (6.4),

2—
I «t(d) IP~ILs )I'=17 eV (6.6)

The upper I.~ state is just the usual 4s-like state formed
from the sum of exp(iL r) and exp( —iL r). The matrix
element is estimated from the plane waves to be

2 2—~(Lt(s)
~
p/~Ls )~'=—(AL)'=35 eV. (6.7)

m te

Combining (6.2), (6.6), and (6.7) with the calculated
energy gaps, "we find

mg ———0.25m (6.8)

Eg= E(Ls )—E(Ls;) . (6.9)

The results of this calculation, which has been carried
out by Mattheiss, are reported elsewhere. " When
E(k) E(Ls)&E,/4—, fourth- and higher-order terms
should also be included in (6.1). We neglect these here
in the interest of simplicity.

Fawcett and Reed have estimated that the neck
diameter in Ni is 3 times smaller than in Cu. Using (6.5)
we obtain for model (b)

Ep E(Ls t') =0.—15 eV. (6.10)

The sum rules (6.2) and (6.3) are convenient for
treating the s neck because only adjacent levels need
be included in the sums. For the d bands, which have
important interband matrix elements extending to high
energies, this method is not appropriate. It is necessary
to evaluate E(k) for a d neck near L»1 directly by
solving the wave equation near I-. Because of the
twofold degeneracy of Ls an expansion of the form (6.1)
cannot be made rigorously. Qualitatively an expansion
of the form (6.1) is valid for each of the two bands if
we neglect the spin-orbit splitting at L3. Each band has
the same value for no&. Transverse to L one has a heavy
mass band and a light mass band. The transverse mass
for the latter is given approximately by

+2
res, (Ls) ra, (Ls )

(6.11)

where vs&(Ls) is computed from (6.3). By using the
augmented plane wave or APW method Mattheiss has
computed'4 m~ and m& for the heavy mass band. He Gnds

m, /m= —3, es,/m= —8. (6.12)

"J.C. Phillips and L. F. Mattheiss, Phys. Rev. Letters 11, 556
(&963).~ L. F. Mattheiss (to be published}.

in good agreement with the value —0.23m obtained
directly from Segall's curve' for E(k) along h.

The foregoing results can be refined quantitatively
by calculating (6.4) as a function of

These masses are an order of magnitude larger than
those near Ls estimated in (6.5) and (6.8). We note
that the sign of m~ in (6.12) means that a rf neck, as
shown for model (c) in Fig. 7, is improbable. Although
the expansion (6.1) is valid only very near L, an un-

usually rapid change in sign of nsg away from I. would
be required to explain the small neck radius found by
Fawcett and Reed s ' )lVote added its Proof. De Haas-
Van Alphen studies of the neck geometry by A. S.
Joseph and A. C. Thorsen (Phys. Rev. Letters ll, 554
(1963), see also Ref. 23) rule out d necks. ]

The qualitative survey that we have made here will

now be of considerable use in interpreting optical data.

P'APE„(k) —E„(k)j=0. (7 1)

Such critical points contribute corners to the imaginary
part of the diagonal components of the dielectric
tensor, e".

We propose here to identify interband edges in metals
also with Van Hove singularities. It is useful to dis-
tinguish between two kinds of critical points

04+kE„=P'sE„. or O=P'sE„='I7'sE„. . (7.2)

We refer to the former as general interband points
(g.i.p.) and to the latter as synunetry interband points
(s i p )

In the case of Si and Ge about half the singularities
were s.i.p. 's and half were g.i.p. 's. The s.i.p. 's of course
occur at syrrnnetry points, such as F, X, L,, and W'.

Most of the g.i.p. 's occur along symmetry lines.
At 6rst one could imagine that it is equally significant

to identify a given edge as a s.i.p. or a g.i.p. If we com-

"J.C. Phillips, Phys. Chem. Solids 12, 208 (1960l.
ee I C Phillips, Phys. Rev. 125, 1931 (1962).

D. Brust, J. C. Phillips, and F. Bassani, Phys. Rev. Letters 9,
94 (1962).

ss F. Brust, M. L. Cohen, and J. C. Phillips, Phys. Rev. Letters
9, 389 (1962).

'7. INTERBAND EDGES

Interband absorption edges have been found' at 0.3
1.4 eV. These have been assigned to transitions along
symmetry lines near I..

In order to evaluate the signi6cance of these assign-
ments, it is again necessary to consider physically
plausible rules. Inasmuch as the only completely suc-
cessful analysis of interband structure has been carried
out in semiconductors" " (especially Si and Ge), we

begin by discussing the methods there used.
The basic point is that in general the transitions may

take place ueyzohere in the Brillouin zone. If we have
a band model and ftx (E„E),then for a—given pair
of bands n and n' we still have to consider an energy
surface which may extend throughout the zone.

We may still find edges, however, by looking for the
Van Hove singularities"" associated with interband
critical points where
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Fn. 8. Interband transitions near L. Surfaces of constant inter-
band energy E,q=E, (k) —Eq(k) are shown in the plane. (a) The
curves for T bands are shown together with the boundary curves
labeled Ez, which mark the position of the Fermi energy in the con-
duction band, E,(k) =Eg. Interband transitions are allowed in the
shaded region. (b) The curves for J, bands together with the bound-
ary curves labeled Ez, which mark the position of the Fermi energy
in the d band Eq(k) =Ps. Interband transitions are allowed in the
unshaded region outside the boundary curves.

pare Refs. 25 and 26 with Refs. 27 and 28, however, we
notice that in the early work only s.i.p. s were identi6ed.
This is because with g.i.p. 's there are so many possi-
bilities that such an assignment is almost meaningless.
Of course, when an exhaustive analysis of the interband
density of states has located all the principal Van Hove
singularities, ' thee one is justiied in identifying
g.i.p. 's as well as s.i.p. 's.

We now turn to a specific discussion of interband
singularities in transition metals. As we remarked in
Sec. 1, a good qualitative way of thinking of the band
structure is in terms of decoupled s—d bands. The d
bands can be 6tted by tight-binding expressions" using
trigonometric functions with fundamental period equal
to that of the Brillouin zone diameter. The d bandwidth
issmall( 4eV). Thesbands ( 10 eV wide) canbefit-
ted by nearly free-electron expressions. Under these cir-
cumstances we ordinarily have ~V ~Es(k) t && ~VkK(k) ~.

Thus, kinks responsible for g.i.p. s in semiconductors
(e.g. , the As ~At g.i.p. in'r Ge) are much less likely
in d ~ s transitions. If possible we should assign our in-
terband edges to the symmetry points I', X, L, or lV.

There is one difference between metals and semicon-
ductors which is important here. Because of the ex-
clusion principle transitions between bands rs and n'

may be allowed over only part of the Brillouin zone in
metals. If the boundary of the allowed region passes
near the critical point the strength of the Van Hove
singularity may be altered.

The 0.3-eV interband edge has been assigned' to
transitions between the $ conduction. and d bands along
the symmetry lines A or Q in the general neighborhood
of L. We have analyzed the energy surfaces near L by
k p perturbation theory (see Sec. 6) and found that a
Van Hove interband singularity of the Mt (saddle
point) type occurs at L. There is eo g.i.p. along A or Q
near L; indeed, it can be shown that because of the

I ' I I I )
32

FIG.9.The smooth-
ed density of states
in the J, d band, after
Ref. 29. The position
of Ez required to
give 0.6 unpaired
spins is indicated, as
are also the position
of L»$ and the posi-
tion of Eg used in
Ref. 19.

-0,6 -0.4 ~ -0.2
E (eV)

~ 6. F. Koster, Phys. Rev. 98, 901 (1955).
's G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952).

saddle point nature of the singularity A and Q are
relative mistime for the interband density of states.

To illustrate our analysis we show in Fig. 8 the
contours of constant interband energy near L. (The
results are qualitatively the same for both of the d
bands which belong to Ls.) Near L the surfaces deter-
mined by

E,(k) —Eg(k) =E(L,.)—E(Ls) (7.3)

are cones with apex at L. The joint density of states has
an edge at this energy difference because of the high
density of states associated with the conical surface.

The effect of the exclusion principle on the 1 interband
transitions is shown in Fig. 8(a). Interband transitions
are allowed outside the boundary curves marked Ep.
The con.duction band states near Ls 1 are filled in model

(b) inside these boundary curves. The conical surface
(7.3) does not contribute to l' interband transitions.
This figure is qualitatively valid for transitions between
either of the d bands degenerate at L3 and the conduc-
tion band near L2.

For transitions between & bands we consider only
transitions between the light mass d band and the
conduction band. The density of states in the d band
has been studied by several authors. ""The density of
states shown in Fig. 9 is a smoothed histogram of these
results. " We emphasize the Mt edge in dE/dE due
to L32.

All previous workers" ""have found that for the dt'

band to contain about 0.6 unpaired spins the Fermi
energy in the d J, band must be given by

&=E(L»l)—E&&0.05 eV. (7.4)

This value of 5 is much smaller than the one assumed
in Ref. 19 (0.24 eV). The latter value leads, as shown
in Fig. 9, to 1.2 unpaired spins (not 0.7, as inferred by
inaccurate numerical methods"). We shall now demon-
strate that the optical data provide a precise con6rma-
tion of (7.4).

When the equality sign holds in (7.4) a long, narrow
cylinder along A. does not contain d electrons and does
not contribute to interband transitions. This is the
situation in model (b); the forbidden region lies inside
Er in Fig. 8(b). In model (c) we have Lss below Er and
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there is no forbidden region for the light mass band. In
this case (7.4) holds automatically. Case (b) is more
interesting.

In this case most of the conical surface lies outside
the forbidden cylinder and we expect a strong interband
edge near E,=E(L2 l) —E(L32J). To see whether the
forbidden region shifts the edge appreciably we have
evaluated the joint density of states function

dÃ dS
(7.5)

i vÃ. ~l

near L for E,q(k) =E,(k) —Eg(k) given by the expres-
sions for the conduction band and the light mass d band
discussed in Sec. 6. We find

OJ

PIG. 10.The contribu-
tion to ~2 in Ni due to-
the d bands alone, which
below 2 eV is approxi-
mated by em(Ni) —em(Cu). —

N

Ml

=c—c'(2b)'", E.d&Eg
dE, q

(7.6)
Wii~ Wi

=C C'(2/+—E, E„)I,—E,.&E„(77).
which reduces to the usual result for an M~-type
singularity when 8=0. The edge associated with (7.6)
and (7.'/) appears to be shifted away from E, by
5&0.05 eV, a negligible eRect. We conclude that the
interband edge observed" at 0.3 eV can be assigned to
E(L i)-E(L-l)

In order to display the character of the 0.3 eV inter-
band edge more clearly, we have separated the con-
tributions to e2" into parts associated only with the
conduction band and a residue associated with the d
band. The former is assumed to be the same in Ni as in
Cu. The latter can then be obtained by subtracting
e2(Cu) from e2(Ni). The result obtained from the data"
is shown in Fig. j.0. The M~ nature of the edge, as
described by (7.6) and (7.7), is striking. Furthermore,
the inequality (7.4) must hold. (The value 8=0.24 eV
(used in Ref. 19) is incompatible with the line shape
of Fig. 10.]

The size of the forbidden region in Fig. 8(b) is large
enough to make it difFicult but not impossible to resolve
the spin-orbit splitting of the 1.3 level. The atomic spin-
orbit splitting, i'ate=0. 07 eV,"is somewhat larger than 5.
Lifetime effects may prevent the observation of the
spin-orbit splitting; we therefore discuss an experiment
closely related to the spin-orbit splitting in the next
section.

With regard to the 1.4-eV interband edge, we consider
the diRerence between this energy and the calculated
value of (Wt, Wt.)=1.1 eV to be within the range of
uncertainty of the band calculation.

8. FARADAY RESONANCES

Rotation of the plane of polarization of either trans-
mitted or reQected light is described by the off-diagonal
components e'& of the dielectric tensor. Argyres'2 has
shown that such components are obtained through
spin-orbit mixing of the t' and I wave functions. He

"E. O. Condon and G. H. Shortley, The Theory of Atomic
Spectra, (Cambridge University Press, ¹wYork, 1957).~ P. N. Argyres, Phys. Rev. 97, 334 (1955).
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also remarked that a reversal of sign of the imaginary
part e2'& can be obtained if the interband energy density
is peaked. We note that such a peak or edge in ej'&'will

also be obtained from Van Hove singularities. Vile refer
to such a peak as an interband Faraday resonance.

A special case of interband Faraday resonances
associated with the direct transition threshold (inter-
band minimum of type Me) has been analyzed in some
detail for semiconductors. "'4 The first important point
to note is that e'& is proportional to (5g„—5g„), the
difference in g shifts of the two bands. The latter is due
to the spin-orbit splitting of orbitally degenerate levels.
The source of the Faraday resonance is therefore
formally the same in ferromagnetic metals, normal
metals, and semiconductors, contrary to the assertions
of Ref. 19. Although the theory for semiconductors"
has been developed in terms of Landau levels, semi-
classical orbital quantization is merely a convenient
tool for handling the matching of interband energies.
The resonance is a matching in k space, not in time; the
condition for well-resolved resonance is or„„7.&1, not
co,7 &1(~, is the cyclotron frequency).

It appears that Faraday resonances in e~'& will be
quantitatively different from the Van Hove singularities
in e2". Consider s.i.p. 's. If we have an interband thresh-
oM of the Mo type, then the energy contours will be
closed surfaces near the symmetry point and 8g
=8g„—bg ~ averaged over such a surface will be nearly
the same for all surfaces. However, if the singularity is
of the SEE type we may expect that bg„„. will vary
appreciably over the conical surface passing through the
symmetry point (see Fig. 8). In fact far from the sym-

"I.M. Boswarva, R. E. Howard, and A. B.Lidiard, Proc. Roy
Soc. (London) A269, 125 (1962).~ I.M. Soswarva and A. B.Lidiard, in Proceedings of the Inter-
naAonul Conference on the Physics of Semiconductors Exeter (The
Institute of Physics and the Physical Society, London, 1962),
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metry point (or line) of orbital degeneracies, we should
have Sg„„.-+ 0. These quantitative differences suggest
that Faraday resonances may be a tool which can play
the same decisive role in interpreting crystal spectra
that the Zeeman effect has played in atomic and mole-
cular spectra. In any case the Faraday resonances
which have been observed in Ni' at 0.3 eV and 4.1 eV
are more informative than spin-orbit splittings which
have yet to be resolved at these energies. Further in-
sight into Faraday resonances could easily be obtained
by studying the well-separated L3 —+ L& and A3 —&A&

singularities in GaAs or GaSb."
From the foregoing discussion it is evident that we

identify the Faraday resonance at 0.3 eV in Ni with the
(Lssl, ) ~ (Ls 1) energy cone responsible for the inter-
band edge. With no Van Hove singularities along A or

Q we 6nd no reason for supposing" otherwise.

9. CONCLUSIONS

We have examined a variety of experimental evidence.
We summarize here the conclusion which can be drawn
from the analysis.

(A) There are two possible locations for the (111)
necks. These are in the conduction band near Ls t' or in
the d band near LssJ.. All the evidence tends to favor
Ls 1, model (b). This point can be definitely settled
once the effective masses are known, because the effec-
tive masses in the d band are an order of magnitude
larger than in the conduction band.

(3) The data shed more light than one might have
anticipated on the position of Er in the t and J, bands:

(1) If the neck is in the conduction band near Ls t',

then the 1'd bands must be much closer to Zr than in
Cu. The quantitative development of this argument
led to an estimate in Sec. 3 for the exchange splitting of
the d bands,

Mgg&0. 8 eV, (9.1)

(2) In the id bands the Fermi energy required to
give the correct number of unpaired spins is" "'

Er =E(Lss 1)—h, (9.2)

with 5&0.05 eV. We have shown that this value of p

is consistent with the optical data, and that a much
larger value (say" 0.24 eV) is not. This shows that the
optical data can provide a quantitative check on the
calculated shape of the d bands in a specific neighbor-
hood of k space which also sheds light on the over-all
shape of the bands.

(C) From the Anderson compensation theorem' an
upper limit can be placed on the exchange splitting of
the conduction band

M„&0.4 eV. (9 3)

/Pote addedin proof. New data has come to our atten-
tion which agrees well with the L2 and L~2 bands as
sketched in Fig. 1(b) and Fig. 4.

Consider first ss(d) as sketched in Fig. 10.In addition
to the previously identided peaks near 0,3 and 1.4 eV

&' J. C. Phillips, Phys Rev. 153, A4M (196.4).
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there is a broad peak near 0.6—0.7 eV. Because of the
large Drude background the subtraction procedure used
to obtain es(d) is uncertain. Nevertheless, it is reason-
able to suppose that ss(d) below 1 eV consists of two
similar superimposed absorption peaks of approximately
equal strength, with maxima at 0.3 and 0.6 eV. The
former peak is identified with transitions near the
(L»l, Ls 1) bands [Fig. 8(b)], while the latter can only
be assigned to (Lsst', Ls 1) as shown in Fig. 8(a).

If this interpretation is correct, then we should expect
a peak in e&'& not only at 0.3 eV but also at 0.6 eV.
Krinchik (1963 Conference on Magnetism and Magnetic
Material, to be published in J. Appl. Phys. ) has meas-
ured e~'& between 0.25 and 1.0 eV. His original experi-
mental points are shown in Fig. 11.At 0.6 eV there is a
well-de6ned peak similar in shape to the 0.3 eV peak,
as expected. We have indicated the decomposition of
the structure into two peaks by dashed lines.

The interesting feature of this decomposition is that
in ~~'& the 0.6 eV peak is about 5 times weaker than the
0.3 eV peak, whereas in t.2" the two are of comparable
magnitude. According to the discussion of Sec. 8, we
expect 8,„„,to be especially large near the line of orbital
degeneracy for the A3 states. According to Fig. 8 we
expect 8, averaged over the constant interband energy
surfaces to be much smaller for the $ bands than for
the & bands, because much more of the region near is
excluded from contributing to the $ interband transi-
tions. Note that this reinforces our conclusion about the
smallness of h as given by (9.2).

For practical purposes we may set
~
6

~
&0.1 eV. Then

the exchange splitting EB&z is given directly by the
interband energy required for transitions from the heavy
mass (nearly fiat) L»$ band to the bands near Ls f at
Ep. This is just 0.6 eV according to Fig. 11.The value

AEee= (0.6+0.1) eV

is quite consistent with the conclusions stated in (9.1)
and in Ref. 23.j
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