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Longitudinal Oscillations in a Nonuniform Plasma*
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Longitudinal electron oscillations in a bounded plasma slab immersed in:a magnetic 6eld are analyzed using
hydrodynamic equations. Resonance conditions are given for an arbitrary density distribution. In the zero
magnetic Geld limit, the present results may account for some main features of Tonks' and Dattner's ex-
periments. The behavior of these resonances and the possibility of damping due to thermal effects is dis-
cussed. It is found that the magnetic Md tends to "push" the perturbations further into regions near the
walls and keep the bulk of the plasma free from oscillations.

I. INTRODUCTION The effect of a longitudinal magnetic Geld on these
resonances is derived. The detailed properties of these
resonances and eventual damping is discussed. It should
be mentioned that a number of authors" have inde-

pendently presented calculations accounting for the
additional resonances. ' While these authors are mainly
concerned with a good agreement between theory and
experiment, the present paper emphasizes the physical
understanding of these resonances.

Before going into details, it is useful to have a simple
physical picture of the additional resonances introduced

by the finite electron temperature for a uniform density
distribution. The resonance frequency ~ obeys"

' "N earlier experiments, Tonks' and Dattner' have
~ ~ found that a plasma column shows several reso-
nances upon the incidence of a microwave. The theory
of. Herlofson, ' assuming a uniform density and zero
temperature, predicts one resonance. Gould' and others'
have found that Gnite electron temperature introduces
additional resonances. The spacing between these reso-
nances are, however, about 100 times too small. By
assuming a particular density distribution, Weissglasss
has recently shown that the spacing is substantially
increased by the presence of a density gradient.

%hen a longitudinal magnetic Geld is applied, Tonks,
Messiaen and Vandenplas, ' and Crawford, Kino, and
Cannaras have observed that the main resonance peak
is splitted into two peaks. This phenomenon has been
approximatively explained by Astroms and others. r s

Here again, the behavior of the additional resonances is
not understood theoretically and is little known
experimentally. 2 ~

The purpose of this paper is to bring out the nature
and the main properties of these additional resonances.
Ke shall consider longitudinal electrostatic oscillations
in. a plasma slab, having an arbitrary density distribu-
tion, immersed in a homogeneous magnetic Geld. (The
plane geometry can well represent the cylindrical
geometry with a longitudinal magnetic Geld for the
present purposes. )

In the zero magnetic-Geld limit, our result is able to
account for some main features of Dattner's experiment.

o)s=e1,„s+(n+-', )'m'(ET jm,ls),
o)„„s=esEe„/rn.es, SS=0,1,2, . . . ,

(& &)

(& &)

where E is the Boltzmann constant, T the electron
temperature, e the electronic charge, m, the electron
mass, 2J the thickness of the plasma slab, eo the di-
electric constant in vacuum, and Eo is the maximum

density in the plasma. Let us now perturb the uniform

plasma (Fig. 1).The displaced electrons are restored by
Coulomb attraction, corresponding to the ~„' term in

(1.1), cÃd by tile assoc1ated pl'esslll'e gl'adlell't, wlllcll

corresponds to the last term in (1.1) with rs=O. The
latter force is responsible for the additional resonances,
although it is too small to explain the experimental
data. In a nonuniform plasma, the perturbations may be
confined to a small region, e.g., near the walls. 6 In that
region, the pressure-gradient force is no longer small as
compared to the Coulomb force; the spacing may be
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FIo. 1.'Uniform density distribution super-
imposed by a ground-state mode electron-
density perturbation.

'(' See papers by P. %eissglass, P. K. Vandenplas, and A. M.
Messiaen, R. 3. Hall, and F, Crawford and G. Kino, in Proceed-
ings of the Seventh Conference on Ionization Phenomena in
Gases, Paris, 1963 (unpublished); see also Microwave Laboratory
Report No. 1045, Stanford University, 1963 (unpublished). The
most complete numerical calculation has recently been given by
J. C. Nickel, J. V. Parker, and R. W. Gould, Phys. Rev. Letters
11, 183 (1963).
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ji,"+ [pip —p»,'(x)—p»,']ji.8"

1Vp' earj„'+i—X,(x)$,.(0),
Xp m,

II. RESONANCE CONDITIONS FOR A
NONUNIFORM PLASMA

(2 g)Our plasma slab has a thickness of 2L, a density
which only varies along x, and is immersed in a mag-
netic field B, directed along s. We shall, as in the earlier
works, ' ' use the hydrodynamical equations for an
electron gas:

where the prime denotes diR'erentiation with respect to
x and the subscript x denotes the x component.

In order to simplify the problem further, we shall
assume that the wavelength of the perturbation k, ' is
much smaller than the scale of the plasma inhomo-
geneity Xp/Ep. The assumptions and simpli6cations
made hitherto are consistent with the %KB approxi-
mation which will be employed. The homogeneous part
of (2.8), which determines the eigenmodes, now becomes

m, (dv/dt) = e5 —evX—B ET/—'V E-(2.1)

(2.2)BX/Bt+ divSv =0

divS= —(e/pp) (X—Ep) . (2.3)

Here, v is the macroscopic electron velocity, X the elec-
tron density, Sp the ion density, and @ the electric
field. For simplicity, we have assumed 7=const. In a
uniform plasma temperature variations are known" to
increase the last term in (1.1) by a factor of 3. We now
replace the variables F in (2.1)—(2.3) by Fp+Fi exp(ip&t),
where the index 1 denotes perturbation, and linearize.
Equations (2.1), (2.2), and (2.3) now becomes

pig"+W ')co' pi '(—x) pi,'—])i, 0 —— . (2.9)

Since this equation is in the Strum-I. iouville form, its
eigenvalue oP is always real.

It should be pointed out that (2.9) is also valid for a
cylindrical plasma column immersed in a longitudinal
magnetic 6eld, if the same approximations as those
given in the preceding paragraph are used. In that case,
x in (2.9) will represent the radius. However, the experi-
ments'~ also contain cases for which 8 is perpendicular
to the plasma column. Since those cases cannot be ap-
proximated by the plane geometry, they will be left out.

The surface x=x&, at which the plasma dielectric
constant vanishes, p»' 'p(i)—x=ip», ', is of vital physical
importance. Recognizing this, (2.9) can be transformed
to

Ep

pi') i—=ip» p„i'(—)xV Vi N»ji—Xppe

e
~Ep

+W'~ divji —W' divji, (2.4)

(2 5)V Vi= (M/pppi) dlv)i,
where

pi, '(x) =e'Xp(x)/m, pp, pp. = eS/pip„

W'= ET/m. , ji——Epvi, vp
——0.

(2.6)
N"+k'N =0 k =An '[F V(x)]'" —k) 0, (2.10)

increased considerably due to the presence of a non- tions (2.4) and (2.5) now yield
uniform density.

Here, we have put Si———V Vi, where V is the electro-
static potential. In this way, we only consider longi-
tudinal plasma oscillations and neglect their coupling
to the external electromagnetic fields.

In the following we shall assume that 8/By=8/Bz= 0
in (2.4) and (2.5). In order to justify the validity of this
assumption let us replace the variables Fi in (2.4) and
(2.5) by its Fourier component Fi(x) exp(ik„y+ik, s).
Inserting this into (2.4) and (2.5) it can be found that
our assumption is good if the inequalities

+y x +c
k„'W'«piP; k p', k„' &&k,'; k„—&&k~, (2.7)

together with a similar set of inequalities obtained by
changing k„ in (2.'I) to k„are satisfied. Here, k,=B/Bx
is much larger than 1/L, as will be found later. Further,
we are interested in the dipole or the quadrupole reso-
nances in a cylindrical plasma. In the slab approxima-
tion these resonances correspond to k„=1/L, 2/L.
Therefore, (2.7) is in general very well satisfied. Equa-

"D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949).

pt" «'N=0 —«=X&-'f V(x) —E]'t' «)0, (2.11)

Jyg=g) E=
ym 2

(2.12)

Ep(x) W
V(x)=, lip) =

&p
(2.13)

If we interpret N as a time-independent Schrodinger
wave, (2.10) and (2.11) then describe the discrete
energy levels E of a quantum-mechanical particle
trapped in a potential well given by the walls and. V(x),
the density profile. In plasma terms, standing plasma
waves are con6ned by V(x) and the walls. Outside V(x)
the wave decays within a plasma wave length (de
Broglie wave length in the quantum case). Thus, the
resonances" may be viewed as the ground and excited
states of a "plasma-wave ensemble. " The situation is
illustrated in Fig. 2.

In the following we shall assume that k(x) varies
slowly over a local plasma wavelength 2pr/k. Hence,
(2.10) and (2.11) can be solved by a WEB approxima-
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FIG. 2. "Energy levels" of a particle
trapped in a potential well given by the
walls and the density profile V(x).
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tion."Here, we shall only write down the essential part
of the derivation which will be useful in this paper
and leave the details to the textbook. Following Schi8,
we shall first express the solutions of (2.10) and (2.11)
in the xi ——(x/ —x) coordinate, in which the "classical
turning point" V(x/) =E is the origin (Fig. 2):

Sl(xi) $1 ~ [A+~1/3($1)+A-I—»3(51)]

V(x) =1, f&x&L,
V(x) = V(0)+x/g, x&f.

Using (3.1), (2.18) and (2.19) yield

(3 1)

E= ((o'—(uP)/co~„'= V(0)
+[-,'n-(n+-,')Xn/g]'/' E(1, (3.2)

linearly with a slope g (see Fig. 3). Such a density dis-
tribution should give us the general features of the reso-
nances characteristics in an actual experiment. It
should be pointed out that for this particular distribu-
tion, (2.14) and (2.15) are exact rather than a WEB
approximation.

The trapezoidal density profile is symmetric with
respect to x=1.. For x&1., it is

kdxj,
(2 14) xg= P~(s+-')]»3(Xn2g)»3 (3.3)

Q2(x2) $2 ~ [B+11/3($2)+B—f—»3(82)] y

0

~dxi,
(2.15)

P,——,'s = (n+-,')ir, I=0,1,2, . . ..

Upon substituting $i, this relation becomes

(2.17)

[E V(x)]'/'dx= (v+3/4)ir—)in, (2.18)

E V(x,)=0. — (2.19)

III. RESONANCE CHARACTERISTICS FOR A
TRAPEZOIDAL DENSITY PROFILE

where J is the Bessel function and I is the modified
Bessel function, We have assumed that

k'= c'xi(1+axi+ ), c= (Xn'g) '/' (2.16)

i.e., the turning point is linear. Further, (2.14) is valid
for xi)0 and (2.15) for xi&0 in Fig. 2. A smooth
connection of uj and u& at x& yields 8+———A+ and
8 =A . Further, at a number of Debye length away
from xg, the asymptotic formulas of the Bessel functions
may be used. We require that the exponentially in-
creasing part of u2 vanishes in region II andobtain
8+ B.We——now —get A+ ——A and hence Ni(xi) takes
the asymptotic form of k '/' cos($i—ir/4) for xi&0.
Returning to the x coordinate and using the boundary
condition that the plasma current vanishes at the wall,
ui(x=0) =0, one gets the general resonance condition

These results are very accurate even for small n at
which the %KB method formally fails. Actually, the
factor 4 will be altered only a few percent for e= 0 if the
exact (2.14) is used instead of its asymptotic form.

In the following we shall discuss the zero magnetic-
6eld case, co,=0, in more detail. For co)co„, (2.10) and
(2.14) are valid for x(f. The solution in this region is
to be connected to the solution Ne of (2.10) in the
region 8 (f&x&2L—f) atx= f (Fig. 3). Because V=1
in region 8, (2.10) yields

u//= C sinqx+D cosqx,

q= Xn(E—1)'/'
(3 4)

where C, D are constants. In order to connect u~ with
uj, we take the leading terms in the expansion" of uj
near x= f=x, :

Ni A+n+(f ——x)+A n—, (3.5)

= (2)&/2(&c)&/&1' —i(4) ~ = (a)»2(ic)—&/&1'—&(2) (3 6)

where F is the gamma function. The following condi-
tions determine the constants: (1) u//'(x=L)=0. We
require that the perturbed density E& to be antisym-
metric with respect to the center of the slab, x=I.,
because the corresponding modes in a cylindrical case
are the ones which radiate (positive on one side and
negative on the other side of the plasma column).
This condition is fulfilled if Ni(x =L)=0, which reduces
to condition (1) by using the linearized form of (2.2)
and the relation Non&, ——j,= I//. (2) The boundary con-
dition Ni(x=0)=0. (3) The continuity condition at

For arbitrary density distributions, (2.18) needs a
numerical treatment. In the following we shall confine
ourselves to a trapezoidal density distribution. The
density is constant throughout the centerpart of the
plasma slab. At a distance f from the walls, it decreases

"L. I. Schiff, Quantum Mechunks (McGraw-Hill Book Com-
pany, Inc. , New York, 1955), pp. 185—190.

V(x) ji
1

0
f

1.0 x (mm)

Fn. 3. The full curve
shows density distribution.
The dashed curve shows
the form of the perturbed
density distribution, E& (x),
as estimated from (2.2)
and (2.14).
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FIG. 4. (a) Position of resonances assuming a density distribu-
tion of Fig. 2 and co~'=1.5(ao„), '. (b) A schematic curve ob-
tained from Dattner's experiment; microwave frequency 1.5
GHs', mercury temp. 20'C, tube diameter 32.4 mm. I'z denotes
the transmitted power.

f, ui(f)=us(f), and flnally (4) ui'(f) =uii'(f). These
four conditions now yield the dispersion relation for
M P CO~m.

'

&i&p($ip) n— 1 cosq(L f) — 2c
(M= f"' —(3 7).J ig($ip) ii+ q sinq(L —f) 3

It is difficult to obtain the resonance frequencies co ex-
plicitly. However, in the limit of q

—+0, i.e., or barely
exceeds co„, (3.7) takes the simple form

cosq(L —f) =0, (3.8)
which gives

~'=~„'+ (uy ', )'~'[kZ'/-m(L f)'], ~—&~„. (3.9)

For pi))ip„, we may approximate U in (2.10) and
(2.13) by its mean value. The solution of (2.10) is again
sinusoidal of the type of (3.4) and the resonance condi-
tion is

~p'= (pi', ), + (u+-', )'s'(kT/mL'), cp)&(p~„), , (3.10)

where the ( ), denotes the mean value throughout the
slab.

In Dattner's experiments we find typically co„'
=3)&10"s ' T=3X10''K, and )D=0.04 mm. As-
suming U(0)=0.1 and g=1.5 mm, (3.2), (3.9) and
(3.10) then yield the resonances positions shown in
Fig. 4(a). Compared with a typical experimental curve,
[Fig. 4(b)] we flnd a qualitative agreement in spacing.
The corresponding standing density waves Air(x) are
illustrated by the dashed lines in Fig. 3. %e see here
that our e= 0, 1, . . . correspond to the second, third,
etc. resonances in the experiment. The main resonance
falls outside our series and is attributed to the dipole
mode. '

%hen a magnetic field is present, ~' is to be replaced
by pi' —piP in (3.9) and (3.10). For a given co, the net
effect of the magnetic 6eld is to "lift up" the density
profile U(x) by an amount of piP/pr'p . Applying this
operation to Fig. 3, we see that the magnetic field tends
to "push" the perturbations further into the wall region
and keep the bulk of plasma unperturbed.

IV. PHYSICAL INTERPRETATION AND DISCUSSION

From (3.2) we estimate the spacing between the
resonances A(pp' —cps)/id„' to be of the order of
P n/g)'I'. Further, it is important to note that electron
oscillations in an inhomogeneous plasma has a "natural"
wavelength scale given by the particular combination
(Xo'g)'I', as is estimated by x&/u given in (3.3). The
presence of an inhomogeneity of the scale of g puts a
constraint on the wavelength of plasma oscillations,
which constraint is absent in a homogeneous plasma.

The physics involved in the mentioned effect and the
variation of wavelength with x [See Fig. 3 or (2.14)]
can be understood somewhat better using the force
balance model discussed in Sec. I. The perturbation
near x, (Fig. 3), is mainly restored by the Coulomb
force, since pi& pp„(x). As the Coulomb force [~1Vp(x)]
decreases away from x&, the pressure gradient force must
step in and he/p up to balance the inertia force (pp pp),

which is independent of x. The pressure-gradient force
( ~ ET) is increased by decreasing the wavelength and,
moreover, the local wavelength and its change with x is
evidently determined by the local Coulomb force (or
density) and its change with x. The parameters deter-
ming the wavelength are therefore ET, Eo, and g and
our findings in the preceeding paragraph is therefore not
surprising. The situation is illustrated in Fig. 3 with
n= 3, where the wavelength decreases towards the lower
density region near the wall.

It is interesting to note that co is entirely determined
by the density near the walls as long as pi(ip„(3.2).
As soon as &p)&p„, however, (3.9) and (3.10) shows
that the spacing in co is determined by the bulk of the
plasma; the plasma near the wall suddenly looses its
importance when co passes co„.This may provide a
"series limit" effect' if we assume that the radiations
having cp) pi„„(see Fig. 4) are not observed. The reason
seems to be that the width of these resonances, as is
judged from the experimental data (Fig. 4), is much
larger than the spacing between them; these resonances
are smeared out.

Further, for co(cu„, the energy of the microwave
radiation is used to excite a small portion of plasma
near the walls. The damping (Landau and collisional)
of plasma oscillations ( absorbed power) is therefore
small, and the amplitude of the oscillations ( reflected
power) is large. As &o is increased and eventually
co&co~, energy dissipation occurs over a larger volume
of plasma, the absorbed power is increased and the re-
flected power is decreased. The latter power (amplitude)
may eventually become so small as to contribute to the
"series-limit" effect. This physical picture agrees quali-
tatively with the amplitude effects observed. '

It is desirable to treat these oscillations from the
Vlasov equations since an eventual damping effect may
show up. The problem is very difficult because the un-
perturbed orbit of an electron moving in a zero-order
electric field (~1Vp'/AT p) between two walls is highly



Ai020 F. C. HOB

complicated, Nevertheless, it is useful to estimate the
damping of our resonant oscillations using a simple
physical model which is well known" to describe the
Landau damping eGect in a homogeneous plasma. Con-
sider a density perturbation which for the moment is
stationary in space (Fig. 3). After a time (k,W) ', the
perturbations having a wavelength of 2rr/k, will be
"dissipated" by the thermal motion O'. We now let the
perturbations oscillate with a period of co . Evidently,
the damping eRect due to temperature motion (Landau
damping) is not important if the dissipation time
(k W) ' is long compared to the oscillation period ro '.

Let k =2rr/). with X,=2Bag/Brs, and make use of
(3.2) and (3.3) with &o,=0. (4.1) can be reduced to

f1+(o,'(0)/jar'-rs', (0)])' '&~ 1, (4 2)

where rs'„(0) is the plasma density at the wall. This in-

equality is certainly not strong and in fact the equality
sign is valid for zero wall density. According to this
estimate, therefore, thermal damping effects cannot be
excluded and a further investigation is physically
signidcant.
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A survey of nonmagnetic band structures near the top of the 3d band is made. The aim is to combine these
band structures with a wide variety of experimental data to determine the exchange splittings of the d bands
b,Eqq and the s-p conduction band AE„. Saturation magnetization, g factors, and high-6eld Hall data are
analyzed and compared with the effect of s-d hybridization on the number of s electrons. One concludes that
if the neck observed in magnetoresistance studies is associated with the same band edge as the Cu neck,
AEdq&0. 8 eV. It appears that b,E„&bEqg/2. Recent optical rotation data of Krinchik are interpreted as
giving a direct measurement of dEss The value o.btained is (0.6+0.1) eV, in good agreement with the values
obtained from other data.

1. INTRODUCTION

N ORMOUS progress has been made recently in ex-
~ tending our knowledge of the electronic structure

of metals through a variety of experiments which deter-
mine certain properties of the Fermi surface. ' Fawcett
and Reed have recently studied the transverse magneto-
resistance and Hall coe%cient of Ni. ' ' By combining
their results with the results of saturation magnetiza-
tion, 4 gyromagnetic resonance, ' and Faraday rotation
measurements, ' it may be possible to obtain a rather
precise picture of certain portions of the Fermi surface
of ferromagnetic Ni.

*Supported in part by the National Science Foundation.
t Guggenheim Fellow with a grant-in-aid from the Sloan

Foundation.
' The Fermi Surface, edited by W. A. Harrison and M. B.Webb

(John Wiley fk Sons, Inc. New York, 1960).
s E. Fawcett and W. A. Reed, Phys. Rev. Letters 9, 336 (1962).' E. Fawcett and W. A. Reed, Phys. Rev. 131, 2463 (1963).

C. Kittel, Introduction to Solid State I'hysics (John Wiley 8z
Sons, Inc. , New York, 1953), pp. 166-171.

G. S. Krinchik and R. D. Naralieva, Zh. Eksperimic Teor. Fiz.
36, 1022 {1959)I translation: Soviet Phys. —JEPT 36, 724 (1959)j.
G. S. Krinchik and A. A. Gorbacher, Fiz. Metal. i Metalloved. 11,
203 (1961).

Before undertaking an analysis of the experimental
data we must make certain assumptions about the band
structure of Ni. All Fermi surface measurements tend to
be almost too microscopic. Because the measurements
are con6ned to the neighborhood of E=Ep, one views
the band structure through a slit that is energetically
very narrow. Many different band models of E„(lt),
where n labels bands, often fit the same data with ap-
parently equal success. It is therefore necessary at the
outset to attempt to de6ne certain rules for physically
plausible band structures. If the rules are correct, rea-
sonable models which fit experiment naturally will

emerge from the analysis.
For nontransition metals this prescription has been

carried through with great success by Harrison. ' His
rule is to apply the nearly free-electron model. Ashcroft7
has extended the pseudopotential treatment to charac-
terize allowed Fermi surface topologies. We know that
narrow d bands cannot be treated in this fashion, and

6 W. Harrison, Ref. 1, p. 28.' N. %. Ashcroft, Phys. Letters 4, 292 (1963).


