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Yang-Lee Distribution of Zeros for a van der Waals Gas
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The distribution of zeros of the grand partition function for a gas obeying van der Waals' equation of state
(together with Maxwell's rule) is studied. For infinite temperature the zero distribution is located on part of
the negative real axis, but with decreasing temperatures the distribution branches off the real axis circum-
venting the origin on both sides. Below the critical temperature the distribution forms a closed curve around
the origin with a diameter decreasing exponentially to zero as T —+ 0. An additional tail of the distribution
remains on the negative real axis at all temperatures, but with a density of zeros'going linearly to zero with
T —+0.

T& Tc T~Tg 4A

INTRODUCTION

~OR a classical gas Yang and Lee' have demonstrated
7

that the equation of state of the condensed phases
as well as the gas phase can be obtained from a knowl-
edge of the distribution of zeros of the grand partition
function as function of the fugacity s, in the limit of an
infinite volume. However, the problem of determining
this zero distribution is a formidable one. To the authors'
knowledge the distribution is known in four cases only,
viz. for (a) the one-dimensional lattice gas with nearest-
neighbor interaction' (corresponds to the one-dimen-
sional Ising ferromagnet), (b) the gas of hard rods, '
(c) the gas with very weak repulsion of very long range, '
and (d) the lattice gas with very weak attraction of very
long range4 (corresponds to a Bragg-Williams or Weiss
field ferroinagnet). Only the last model exhibits a
phase transition.

It seems to us of interest, therefore, to study the
properties of the zero distribution for a gas obeying van
der Waals' equation

p =kT/(v d) a/e', — —

supplemented with the well-known Maxwell construc-
tion. The reason for choosing this equation of state is
threefold: (i) It has a simple analytic form, (ii) it
describes real gases qualitatively well, and (iii) it is

rigorously the equation of state of a one-dimensional
Quid model with pair interactions. ' The interaction
potential in this case consists of a hard core d and an
attractive part to be considered in the limit when its
strength —+ 0 and its range —+~ so that the integral

dxC""(x)=a

has a Gnite value.
We rely heavily on the electrostatic analog devised

by Lee and Yang. ' The lines on which the zeros coalesce
in the limit of an infinite volume are line charges'in this
picture. The logarithmic potential as determined by'the
equation of state is multiple valued, and the discontinui-
ties in the electric field strengths across a charged line
originate from joining two diferent Riemann sheets
along the line.

The equations do not seem to allow a complete
analytic solution, but rigorous results are obtained in
limiting cases. In broad outline the movement of the
zeros when the temperature decreases seems to be as
indicated in Fig. 1.

2. THE ELECTROSTATIC POTENTIAL

We assume that in the limit of V —+~ the zeros of the
grand partition function Z, (s, V, T) coalesce into lines C
in the complex s plane, so that Vg(s)ds is the number
of zeros in the line element ds at s= s(s). Then the well-

known relation' between the equation of state and the
zero distribution g(s) is as follows:

with

P/&T= x(s)

~=sx'(s)

(3)

(4)

XWJ 7+ Tc
lnZg

x(s) = lim
p~oO I/r'

( s
g(s) ln~ 1—— ds.

s
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FIG. 1.The position of the zero distribution at
different temperatures. . Here p= 1/s is the number density.

The last relation displays the Lee-Yang interpretation
N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). ~ ~ ~

D' L«a„d C N V»g' Ph»' R«' 37' 41O II952)' of X(s) as the comPlex logarithmic Potential of charged
H. Hauge and P. C. Hemmer, Physica (to be published).
Katsura, J. Chem. Phys. 22, 1277 (1954); Progr. Theoret. ~ M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys.
(Kyoto) 13, 571 (1955). 4, 216 (1963).
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E.= BC/Bx= W/By (7)

by the Cauchy-Riemann relations. The charge distribu-
tion can be determined by evaluation of the line integral
of the electric force around a closed curve. This gives

2~g(s) =ae„(s)/as —ae, (s)/as,

lines C with a line charge density g(e). Separating the
real and imaginary parts of x(«),

x(x+iy) =C (x,y)+i+(x,y), (6)

the curves C (x,y) =const. are the equipotentials and thus
C is an everywhere continuous function of 2'.' The
curves 4'(x,y)=const. are the lines of force. The 6eld
strengths are

100TcI-

100T

2Tc

I I.2 .3

2Tc

and
g(«*)=g(«),

C(")=C(),
+(«")= —+(«),

(10)

(12)

since the nonreal zeros 2', must occur in conjugate pairs.
For the van der Waals gas (1) the relation between

the potential and the density is

where s is a natural coordinate along the curve
(ds'=dx'+dy') and the subscripts denote the right- and
the left-hand side of the oriented line element. Finally,
we note that

FIG. 2. The position of the head of the distribution for T& T,.

The discontinuities in + arise by choice of different
sheets of the function p on the two sides of the charged
line. An endpoint, or "head", of the line charge is thus
a branch point of the function x(«) (but not necessarily
vice versa).

Let us now fix the attention on temperatures above
the critical temperature. This corresponds to
v(v, =27/8. Equation (17), determining the branch
points, is easily solved if we for convenience introduce
a new parameter u instead of v by

x(«) =p/(1 —p) —vp' (13) 2 v = sin'3u/sin22u sinu. (18)

by use of Eq. (3), and with

v=a/AT. (14)

The temperature interval (T„~) then corresponds to
the interval (O,m./3) for u. By insertion one sees that
(17) is satisfied by the two complex conjugate values

For convenience we use such units that 0= 1. inserting
the result (13) in Eq. (4) we 6nd

p(«/dp) =«L(1 p)
' 2vpj — —(15)

with solution

pi, = 1—(sin2u/sin3u) e~'",

and one real and positive value

p = 1+sinu/sin3u.

(19)

(20)

exp —2'
1 p 1 p

(16)

The infinite dilution limit, x/« —+ 1 when « —+ 0,
determines the integration constant. The inverse func-
tion p(«) as defined by (16) is multivalued, and by Eq.
(13) the potential x(«) will also be multivalued. These
two equations form the basis for the subsequent
dlscusslon.

2vp(1 —p)'= 1. (17)
' This reQects that for each Gnite pole z; the discontinuity across

the cut associated with the corresponding logarithmic singularity
in p(z) is purely imaginary.

3. THE HEAD OF THE DISTRIBUTION

The branch points of the multivalued function p(«)
are given by d«/dp= 0, or

The real value (20) corresponds to «real and negative.
Near the origin one must have p s, and it is not dif-
ficult to see that the set of p, «values given by (20)
belongs to a branch of the function p(«) that does not
behave properly.

The remaining values (19) yield by Eq. (16) the
following values for s:

sin3u cos4u
ZA= exp

2e cosu 2 cosu s1n2u

sin3u cos2u
Wi —3u

~
. (21)

cosu r

Figure 2 shows the location of these points as function
of the temperature. At the critical temperature (u=0)
the two points close in onto the positive real axis at
«,=—', e 7~4, as expected. For T~~ (u + i«n.), «i, ——+ —1/e.
This is as it should be, because in this limit Eq. (13)
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FIG. 3. The three branches of x and the density of zeros near
the real axis for the critical temperature.

everywhere. For P)0, Eqs. (31) and (32) show that
C»=Cn only for P=67r. Similarly below the real axis
C»=C»rr for p= —si7r only. This means that the charged
line crosses the real axis at a right angle.

The discontinuity of %(y) across the line charge is

easily found to be
. 2K

A%=%'5—Vii= zn ' sin—= (4e'y'/vS)' ' (34)
3

i 85%
g(y) =-

2Ã Bf
—~—125/33—7/Se7/6yl/6 —2 88. . .yl/5 (35)96T 4i ) hT) '/5

s5/s~1+ exp +—
I

4T, 3 aT.)
as shown in Fig. 3.

For completeness one easily assures oneself that both

C and + are continuous between branch II and branch
(23) III, so the real axis is not charged.

ST= T T,«T,—(22)
and

es5~ —1+66(2v)'/' exp(&667ri) T))T, .

4. CRITICAL TEMPERATURE
5. THE CHARGE DISTRIBUTION NEAR THE HEAD

reduces to X"' (z) for a gas of hard rods of unit length,
whosezerodistributioncoverstheinterval (—~, —1/e) for y&0. By Eq. (9) the density of zeros close to the
on the real axis 3 In the neighborhood of these limiting real axis is given by
points we have approximately

s=s.+s (24)

Let us study the zero distribution at the critical
temperature T, in the neighborhood of the point
s= s,= ~e I on the positive real axis. Putting
v= v, =27/8 and

8—S/, =—Z—=O.e~ (36)

In the immediate neighborhood of the head (21) of
the distribution we can treat

in the basic Eqs. (13) and (16), we find

g/s —352-4)6 362—
6)4+0(P5)

g= (-,')'p' —(,)'p +0(p'),
where

as a small quantity, and for the potential /=X —X5

we find in the same way as in the previous section
(25)

%293/2

(26) + (37)
2vs5(1 —p5) 3vz5 (1—p5)l 6(3p5—1)l/6

(27)

(28)

(26) yields

2g ~
4/6

+(l)'p'= +(9/4)
38.

'
38. 9z,i

(29)

p= p —p.=p —q,

%=X Xr=X x

Elimination of p between Eqs. (25) and

where p5 and s/, are given by the Eqs. (19) and (21),
respectively. The expansion is valid for T,& 1'& ~. In
this case @=0 is a simple branch point. Written in terms
of the variable I the second term on the right-hand side
takes the form

29/9s, =ne'e, (30)

where a is real and positive and —7r&p&7r, then the
three branches of the function g are

to this order. The first term on the right-hand side is a
single-valued function of s, but the second term shows

that s=s, is a branch point of order two. Putting

2vz5(1 —p5)'

8(ne)' sin2N cos'74

Xexp &i —,
' tan '(3 cot54)

3 sin3N cos474)
exp

3 sin6374(1+9 cot64)'/4 4 cosl sin2N )
(38)

Qr = (3 /)2 ae 6+ (9/4)a4/6eae/6, (31)

err ——(3/2)ne e+ (9/4)a'/'e4&"'+'ri /', (32)

grrr= (3 /2) ne s+(9/4)n'/6e'&'6 'r&/' (33).

On the positive real s axis x has to be real. Therefore
the relevant branch to the right of s= s. (i.e., for P= 0)
is x~. To the left we must have branch II above the real

axis (P=+7r) and branch III below (P= —7r).

Now we have to ensure that 4=Rex is continuous

3 sin3N cos2N
+ —464——+-',Pi+ k7ri

2 cosQ 2

with k integer. The upper sign always refers to the upper
half plane. The two branches differ with m in the argu-

ment. It follows that the real part C of the function
takes the same value for both branches if and only if

the argument for each branch equals n7r/2, where 75 is

odd. This determines P=P5(N), and thus the direction
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of the line charge near the head. We find

cosg

1 8 sin3N cos2N 2x
$3=~ —tan '(3 cotu) —-u+

3 3 3
(39)

4 sin2N cos'I1 864
g(~) =—

2~ Bn ~sin'3u(1+9cot'u)''

In order to fix the above integer e we have used the
previous result t'3=~2'm at the critical temperature
(u=0). The variationof this directionwith the tempera-
ture is sketched in Fig. 4.

The imaginary part of x, Eq. (38), determines how
the density distribution behaves in terms of 0,, the dis-
tance from the head. By Eq. (9)

FIG. 5.The three branches of
y for high temperatures.

-1/e

Using Eq. (16), one easily finds that this region to
lowest order in v corresponds to

+-cv—1/3

3 3 sin3N cos4N
Xexp —+ n'". (40)

2 4 cosg sin2N

"=2"' 2u '- (44)

If we denote real and imaginary parts by subscripts then
(44) is equivalent to

The coefFicient in front of 0.'l" increases without bound
both for T —+ T, and for T —+~, indicating the lack of
validity of the expansion (37) for these limiting values.

Note especially that for very high temperatures the
direction of the distribution tends to

(45)2u. (u—'+u') '+2u' 2u', —

i'=u'L2(u'+~') '+u.j (46)

P3(T-")~ a(13/9)m.
The corresponding expansion of the potential (13)

(41) reads

For high temperatures it thus seems that the charged
line starting from the head in the upper half-plane
would meet the corresponding line in the lower half-
plane in a point F on the real axis near z= —1/e. In
the next section this high-temperature behavior is
examined in more detail.

6. HIGH TEMPERATURES

or
x= —1+(u—" ')""+" (47)

e= —1+[p„+(u2—u"2)(p„2+@2)-2jv'I', (48)

e=u;t-1+2@„(u '+u')-'jv'I'

The position of the head sA of the charged line is the
singular points of p, (f), Eq. (44).We findfor the relevant
zeros of di/du= p+2u '.

F3=2'"e+ 'I' i.e., f3=3X2 'I'e+' '~'& (50)
In the case T))T„i.e., v(&1, we study the neighbor-

hood of z= —1/e by setting

eZ= —1+fv2'3.
in agreement with Kq. (23).

In order to determine the intersection point Y of
(4'2) Fig. 5, let us focus the attention on the real axis. By

Kq. (46) z is real for three different values of u,".
I.

100Tc'

~ &I ~ ~ ~ ~ ~ ~ ~ O ~ ~

10T

' 2Tc

xzu.'=2u-
1+( u-2) vl/3

(51)

(52)

(53)

(54)

P.T--,

1OOT,

Tcl .. "
"s,

' 2Tc

II and III.
u;=+(—2u. '—u')'"

fr=a" +2u~ &

e= —1+2(u„—u„') v' '

(55)

(56)

(57)

0'
0'
"l,.

10Tc '"...,
~+&coo&a ~ &e ~ ~ ~ ~

e'
~0

~
a'

I'"~6, 4. The direction of the line of zeros near the head.

+=+'I —(2+u 3)3u '3'12 (58)

The two last solutions exist only if —2'I'& p„&0, so
that for f)—3X2 '" solution I must be chosen. This
is in accordance with the exact solution3 for v=0, which
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Let us therefore study the function s(p), Eq. (16),
in these two limiting cases. For 2'(&1 we have

~2

-10
I

1 I s

—5 0
Y

FIG. 6. Density of zeros on the real axis for high temperatures.

or inverted
s=p+0(p'),

p=s+0(s').
In the other case, 1—p«1, we get to lowest order

s=(1—p) 'exp[(1 —p)
' —2v]

or, approximately,

(66)

(67)

(68)

shows that 4'= 0 for x) —1/e, y= 0, 4)0 for x& —1/e,
y=0+, and 4&0 for x& —1/e, y=0 —.

The location of the point F is determined by

(1—p) '=2v+lns. (69)

The corresponding approximations for the potential
(13) read

C'I (sr) 4'll (sY) C'III (sr) 1 (59)
X p—s, (2vp«1) (70)

or by Eqs. (53) and (57),

2p, (I)—2p„'(I) =p„(II)—p„'(lI) .

Comparing Eqs. (52) and (S6) we see that

X, (1—p)
—' —v v+Ins (1—p«1) . (71)

(60) Putting s = re'&, and requiring continuity of the real
part of g, we obtain for the position of the line charge

r cosp= v+lnr (72)
p.(I)= —2p. (11) (61)

corresponds to the same point in the s plane, and it is
not dificult to show that the other solutions of the
equation 1'(I) =1 (II) must be discarded. Solving the last
two equations we obtain

and hence

p„(II)= —(5+343) '", (62)

1 r= —(3+343)(5+3v3) '~'= —1.7430 . (63)

The point I' therefore moves to the left with decreasing
temperature as

2 y ———0.3679—0.6412v2~ . (64)

g= (e/ 7r)2v '"[ py(2+/A')]'", — (65)

where —(5+3%3) 'I'& p„(s)&0 is given by Eq. (56).

'7. LOW TEMPERATURES

Now we consider temperatures so far below T, that
v= a/kT can be treated as a large parameter. It follows
from the equation of state that for very low temperatures
the fugacity 2' that corresponds to the saturated vapor
line is very small, and that the corresponding densities

p, and p& of the gas and the liquid are close to 0 and 1.
This means that in the complex s plane the line charge
crosses the positive real axis to a point very close to the
origin. Moreover, the two branches of the function
X(s) on each side of the line charge are obtained for p
close to 0 and 1, respectively.

The charge densities on the three lines coming together
in Y are also functions of the temperature. Since
4'~ v'~' and di/ds=ev '~', it follows by Eq. (9) that
g~ v 'I", decreasing with decreasing temperature. On
the real axis to the left of the point F, Eqs. (9) and (58)
yield

%,=r sing; (74)

and sketched in Fig. 8. Using the fact that 0, is negli-
gible, we obtain for the charge density

g(z) = e "/2m. . (75)

In this zeroth approximation the total charge is uni-
formly distributed on the closed curve.

In the same way one can of course carry the calcula-
tion to higher order, As long as exponentially small
terms in the density are neglected, only X& is needed, and
as a better approximation we find~

X~= v+lns —ln(2v+lns) .

On the charged curve the imaginary part of this becomes

%g=P(1—v ') (77)

FIG. 7. The fugacity s as
function of the density p for
low temperatures.

r,
0

q

7 As a check, Eq. (76) yields the approximate values p&~i —v ',
p~ve ", which agrees with the liquid and gas densities one 6nds
at very low temperatures by Maxwell's rule.

or
Pet'008e~e P(1+e—P (os/) (73)

to this order of accuracy. The corresponding p values
are of the order of e "and 1—v ', showing the validity
of the expansions.

In this approximation, therefore, the charge is dis-
tributed on a closed curve deviating only slightly from a
circle with radius e "around the origin. The lines of force
are by Eqs. (70) and (71) given by
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from which the density

g, = e"(1—v
—')/2n. (78)

follows. The total charge on the curve thus equals
2me "g,= 1—v '. The small rest of the charge lies on the
negative real axis. Here the imaginary part of x, Eq.
(76), has the form

FIG. 8. Lines of force at
low temperatures.

e(y=o~)=+ ~—tan-&
2v+ln( —x)

2v+ln( —x)

The corresponding density is by Eq. (9)
~
s„~ = exp(-,' P' y;;/kT), (82)

(79) interaction (p,;=+~, p;;(0 for i/j). For these Lee
and Yang' proved that all zeros z„have the same
modulus

(8o)
(—x) [2v+ln( —x)]'

&xg8xis(&) = v (81)

For T~ 0 this part disappears linearly, and the total
charge approaches a uniform distribution on a circle
whose diameter decreases exponentially towards zero.

8. CONCLUDING REMARKS

We have determined the main features of the zero
distribution corresponding to the van der Waals equa-
tion of state. The zero line was 6xed by the continuity
requirement of the real part of the multivalued function
x(s), whereupon the discontinuity of the imaginary
part of x(s) determined the actual value of the density
of zeros. By the same procedure one could clearly obtain
all quantitative details by numerical calculation, if
desired. It should be noted that the Maxwell rule is not
a separate requirement, but included in this general
procedure.

The resulting distribution of zeros is much more com-
plex than in the case of lattice gases with attractive

It is easily checked that the total charge on the real
axis just equals the remaining part v ' of the total
charge: —g

—V

p/k T= —ln (1—p) —vp', (83)

(84)

Analytic results for the angular distribution G(p)
=2s.e "g on the circle ~s~ =e " were obtained by
Katsura. 4

Van der Waals' equation (1) and Eq. (83) are both
equations of state for models with an attractive tail
yP(yr) considered in the limit when the range 1/y ~~.
An analysis of the distribution of zeros for very small,
but finite values of y would be of interest. The point is
that while one can prove the nonexistence of a phase
transition in one dimension for any finite y,' an expan-
sion in, powers of p yields a phase transition to every
order, with (1) or (83) as the zeroth order equation of
state. ' This means that the expansion for small y and
T&T, cannot be a pointwise approximation method
for the density of zeros: On the positive real axis g=0,
but it is approximated by distributions that cross the
real axis with finite density. The nature of this gap in
the line of zeros presents an unsolved problem.

' T.L. Hill, Statistical Mechanics (McGraw-Hill Book Company,
Inc. , New York, 1956), Sec. 46.

'M. Kac, Phys. Fluids 2, 8 (1959) and further unpublished
calculations.

approaching zero when T —+0 in the same way as in
our case. A lattice gas analogue of van der Waals'
equation is obtained for a very weak attraction of very
long range, yielding the equation of state' '


