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A proposal of phonon-induced nuclear magnetic resonance in antiferromagnetic insulators has been
considered theoretically. We have found that such an experiment can serve as an extremely useful tool to
measure properties such as the phenomenological coupling constant associated with the one phonon —one
magnon magnetoelastic coupling. The mechanism with which the coherent lattice energy is absorbed by the
nuclear spin system is a two-step process in which a phonon first excites a virtual spin wave via the magneto-
elastic coupling and then a nuclear spin is Qipped through the decay of the virtual spin wave via the o6-
diagonal matrix elements of electron-nuclear hyperfine interaction. The resulting attenuation coeKcient
is proportional to the square of the phenomenological coupling constant. This then remains the only unknown
parameter, presuming that the hyperfine coupling constant has been predetermined by conventional micro-
wave nuclear magnetic resonance. The order-of-magnitude estimates indicate that the e&ect should be well
within the experimentally observable region.

E. ENTRODUCTEON

'HE prospect of acoustic nuclear magnetic reso-
nance in antiferromagnetic insulators is interest-

ing in itself, ' but in addition we And that it can serve
as an extremely useful tool to measure properties such
as the phenomenological coupling constant associated
with the one phonon —one magnon magnetoelastic
coupling. At low temperatures, this coupling has its
origin in both crystalline field effects and the spatial
modulation of the ordered electron-spin dipole inter-
action. The phenomenological interaction is of the form

Here G is the phenomenological coupling constant, the
5 s are the electron-spin operators at the jth site, and
the e's are the strain components. Before one can ob-
jectively assess the effects of this interaction on the
magnetothermal porperties, one must have an accurate
experimental determination of the coupling constant G.

An obvious way of measuring G would be the direct
acoustic excitation of antiferromagnetic spin waves.
However, one would then need energies comparable
to the antiferromagnetic spin-wave energy gap,
E,=h(2tc, ce~)"', where Iree, and Ate~ correspond to the
exchange and anisotropy energies, respectively. These
energies would often necessitate phonon production in
submillimeter range, a region at present not experi-
mentally feasible.

Pincus and Winter' attempted to estimate G in MnF2
by making use of the longitudinal nuclear-spin relaxa-
tion data obtained by Jaccarino and Walker. ' Their
conjecture was that the low-temperature relaxation was
primarily due to the relaxation mechanism, nucleus-
virtual spin-wave thermal phonon. However, their

* Supported by the National Science Foundation.
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Schenectady, New York.' Acoustic magnetic resonance experiments have been a useful
tool for many years. For a complete bibliography, see D. I. Bolef,
Science 136, 359 (1962).

s P. Pincus and J. Winter, Phys. Rev. Letters 7, 269 (1961).
3V. Jaccarino and L. R. Walker, J. Phys. Radium 20, 341

(1959).

attempt at correlating the theoretical expressions with
the experimental relaxation times resulted in an un-
realistically large value of the coupling constant. The
explanation for this failure presumably lies in the neglect
of strongly competing relaxation mechanisms; therefore,
one must find a process that will select a single excitation
or relaxation channel. This can be accomplished by
turning the thermal phonon-relaxation process around
and investigating directly the coherent energy Row from
the lattice into the nuclear-spin system. That is, one
simply looks at the ultrasonic attenuation due to the
acoustic resonance of the nuclear spins that are coupled
to the electron magnets via the hyperdne interaction.
Here we have explicitl. y selected the mechanism, and do
not have to worry about competing processes. 4' The
antiferromagnetic magnons that enter are in virtual
states, thus the phonon frequencies for resonance corre-
spond to the nuclear Larmour frequencies in the hyper-
fine field, characteristically in the 10' to 10' Mc/sec
range.

In this paper, we 6rst derive an indirect nuclear-
phonon Hamiltonian via the method of canonical trans-
formation in order to eliminate the electron variables.
Then, we calculate the attenuation from the effective
interaction. In the formulation, we consider the addition
of an external magnetic field parallel and perpendicular
to the easy axis (we assume a uniaxial anisotropy).
These additions not only allow us to predict the field
dependence of the attenuation, but moreover provide
the standard experimental procedure of sweeping the
resonance while keeping the driving frequency constant.
We have also shown in Appendix 8 that in the absence
of an external field, the effective nuclear spin-phonon
Hamiltonian can be derived quickly on the basis of a
simple semiclassical vector model.

4 There will be an eGect also due to the spatial modulation of
the direct electron-nuclear dipole interaction. However, the e6ect
of this mechanism on the absorption will be down by a factor of
at least (Ap, /7 Jt&az)', where A is the hyperfine coupling constant.
This will in general be a small effect (~20 for MnFs).

5The spatial modulation of the exchange interaction will be
biquadratic in the phonon and spin-wave fields.
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II. EFFECTIVE NUCLEAR SPIN-PHONON
HAMILTONIAN

The total Hamiltonian of the system composed of
nuclear spins, electron spins, and the lattice can be
represented in the form

last term in our Hamiltonian is the one phonon —one
magnon coupling which we have indicated previously
by Eq. (1.1).For convenience in our subsequent calcula-
tion, we re-express this in terms of the transverse spin
and strain components. These are defined by

X=X„+X,+X~+)~iV„,+&sV,„. (2.1)
and

S+=S*azS*~,t

The terms in the Hamiltonian are defined in the follow-
ing manner: (1) X„ is the nuclear Hamiltonian which
has Zeeman terms arising from both the applied Gelds
and the stationary hyperGne Geld. In addition, it has
the terms that contribute to the nuclear-resonance line-
width, such as the nuclear dipole interaction. The
pseudodipolar terms arising from the indirect exchange
of antiferromagnetic spin waves are not present, but
appear later on, after the canonical transformation is
performed. (2) X, is the Hamiltonian of the antiferro-
magnetic-ordered system. We represent this by the
standard Heisenberg exchange model with the addition
of a uniaxial anisotropy field Hz and an external field Hp'.

X,=2J Jig)S;.S,—27,58g P,($;,'—S;s*)
+2v.&Iio'Z (S +S~'s) (2.2)

Here we have divided our system into the conventional
two-interpenetrating-sublattice model of antiferromag-
nets. These sublattices have been represented by a and
b, with the property that the nearest neighbor of an
ion on a lies on b and vice versa. (3) X„represents the
free-phonon Hamiltonian which, in second quantized
form, is represented by

X„=Ps~ &~si (os"'es"+s) (2.3)

Here X is the polarization index. (4) The interaction
term ) V„, is characterized by the oG-diagonal com-
ponents of the hyperGne coupling of the electron and
nuclear spins. The total hyperGne coupling can be
represented in general by a tensor form;

The hyperGne Geld arises from the combined effects of
the orbital, contact, and dipolar fields at the nuclear
site. For many antiferromagnets, in particular for the
Mn++ ion in MnF2, the orbital moment is quenched,
and the electron distribution around a given ion is
almost spherical, a fact rejected in a g factor 2.
The anisotropic contributions of the coupling will arise
from the dipole interaction. This e8ect, although not
negligible, will be small. Thus, for our purposes, we
can treat the hyperGne interaction as an isotropic form'

Pi;Ai;Ii S;
=P; A,P 'S,'+-,'(I+S; +I S;+)j. (2.4)

The latter two terms on the right-hand side are the
off-diagonal terms representing the interaction. (5) The

6For a complete discussion of the hyperfine anisotropy, see
R. G. Shulman and V. Jaccarino, Phys. Rev. 108, 1219 (1957).

e~,=e»&ze».

The magnetostrictive coupling will then assume the
form

(G/2)P;$5; *S; +e,(j)+S; *S; e+,(j)j. (2.5)

Here 0. is a sublattice index. Now we wish to obtain an
eGective Hamiltonian that incorporates only the nuclear
spin-phonon dynamic variables. Effective or indirect
Hamiltonians are derived most conveniently by the
perturbation method of canonical transformation with
a subsequent averaging over the intermediary system.
In our case, the intermediary system corresponds to the
electrons. The method used, which is described in more
detail in Appendix A, is a slight generalization of the
formulation in terms of matrix elements~ in that the
solution is expressed in terms of a general correlation
function. The form, as indicated in Appendix A, is

X,ri= X '+Xy' ——XiXsP'
2

X"«LV„.(1),V.„(O)j+LV.„(1),V„.(oq)...., . (2.6)

In (2.6), we have put a prime on the nuclear-spin con-
tribution to the effective Hamiltonian to indicate that
it incorporates now the pseudodipolar line-broadening
terms due to the indirect exchange of spin waves be-
tween the nuclei. As discussed in the introduction, we
will wish to include the eGects of external magnetic
fields applied perpendicular and parallel to the easy
axis. Of course, the Geld effects enter in the evaluation
of the correlation function in (2.6). The parallel-field
case is a simple extension of the zero-field calculation,
and can simply be shown to have a negligible effect as
long as one does not approach the rather high critical-
field region that induces the phenomenon of Ripping the
electron spins. However, the perpendicular Geld serves
to cant the electron spins, and forces one to quantize
the system of each of the sublattices along a differently
rotated axis. The spin-wave analysis used in this case
is similar to that used by Kanamori and Yosida. ' The
algebra, but not the physics, associated with the deriva-
tion of the perpendicular-Geld case is a good deal more
complicated. Therefore, we will indicate only the results
of the Geld dependence and merely go through the
simpler zero-field derivation.

~ See, for example, J. Bardeen and D. Pines, Phys. Rev. 99,
1140 (1955).

s J. Kanamori and K. Yosida, Progr. Theoret. Phys. (Kyoto)
14, 423 (1955).
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Ke will restrict our consideration to temperatures
considerably lower than the Weel temperature. In this
region we can replace the sublattice electron-spin opera-
tors by the leading terms in the spin-wave expansion:

S;.+—(4S/N)'t' gk e '"-&ck.

S; k+ (4S—/N)'t' Qk e '" &'dkt

S;,'—S; S,y'= —S.
(2.7)

Here E is the total number of magnetic ions. The 6eld
operators are Bose 6eld operators with the commutation
relations

Lek, ek' ] t dk, ~k' ] ~k, k' ~ (2.8)

Here the Fourier components of the shearing strain are
defined by

e+(j) (2/N)&/s p eik Je+(k) . ~*(k) e+( k) (2 13)
QT. Nakamnra, Progr. Theoret. Phys. (Kyoto) 7, 539 (1952).
» J. M. Ziman, Proc. Phys. Soc. (London) 65, 540, 548 (1952).

The Heisenberg Hamiltonian is not diagonal in the cg,
d~ representation, '"but is diagonalized via the canoni-
cal transformation

Ck ukQk+vkpk

dk= Vkcrkt+ukpkl (2.9)
Ng —

SIt, = 1.
Here the o.&'s and the p&'s obey the same Bose-field
commutation relations. The appropriate choice of the
u~'s and eI,'s which diagonalizes the Hamiltonian is
given by

2ukvk/(uk +vs )= —yk~ /(~ +~a) '

(2.10)y„=(1/s)Ps expik S.

Here 6 represents the vector from a magnetic ion to the
nearest neighbor, co,=2sSJ, and s represents the number
of nearest neighbors. The elementary excitations (anti-
ferromagnetic magnons) satisfy the dispersion relation

cok = f((a,+cog)' —(7go )']"' (2.11)

In the nuclear-resonance mechanism we are considering,
the magnons appear in virtual states only. Although we
are off the energy shell in such virtual processes, of
course, we must conserve the wave vector at each
vertex. The phonon wavelengths corresponding to the
nuclear Larmour frequency will be the order of 10'
interatomic distances. Of course, this is the extreme
long-wavelength limit of the dispersion relation, and,
for our purposes, we need only consider the uniform
mode, eve

——(2'.Mz)"'
We now want to calculate the eftective Hamiltonian

which is formally represented by Eq. (2.6). To do so,
we 6rst expand the interaction terms in terms of the
magnon and phonon variables. The magnetostrictive
coupling so expanded assumes the form

X&V,„=GS(S/2)p k Le,(k) (uk —vk) (hark
—pkt)+ c.c.].

(2.12)

These are expressed in terms of the phonon operators
by

eF(k) = i Qk(A/MQk")'~'

XL(k~e,+k,er) ek(ak" +a k"t)]. (2.14)

Here Q~" is the phonon-dispersion relation, M is the
molecular mass, and 4q is the unit polarization vector.
Ke have used a circularly polarized representation,
where

kg=(1/v2)(k, haik„); e~=(1/%2)(e,aie„). (2.15)

The expansion of the hyper6ne coupling in terms of the
spin-wave operators is

Q);A);I) S =SA Q((Ig.*—Igs')
+A(s/2)'t' pk fIk,. (uknk+vkpkt)

+Ik, k (vurk+ukPk )+c.c.]. (2.16)

The 6rst term on the right-hand side corresponds to the
stationary hyper6ne-6eld term, and is incorporated into
the unperturbed nuclear Hamiltonian. The I~...q+ are
the Fourier components of the nuclear spin associated
with the n sublattice. These are de6ned as follows:

I;, += (2/N)"' Q Ik, k+e'k &; (Ik, '+)*=I k, +. (2.17)

The frequencies associated with the driven phonons and
the nuclear Zeeman energy will be small compared to
that of the uniform magnon mode. Thus, we can neglect
the temporal development of these former operators
compared to that of the rapidly oscillating magnon
system. For example,

4v.„(t)=Gs(s/2)"' Qk Le .(k)(uk —vk)

X (crke '"&' pkte+*"—&')+c c ] (2..1.8).

Equations (2.16) and (2.18) are now inserted into the
commutator of the effective interaction given by (2.6).
Taking the averages and performing the time integra-
tion, we obtain

v„„=(GsA/2a)gk L(I k,.——I,,;)]
Xe~,(k) (uk —vk)'/&ok+ c.c.]. (2.19)

The factor containing the N~ and vj, coeKcients for the
Bogoliubov canonical transformation can be shown
simply by using (2.10) and (2.11) to satisfy

(uk vk)'/~k —1/(~, +——~a~.&k)=1/~g. (2.20)

Taking the inverse Fourier transforms, we 6nd that the
effective interaction assumes the simple form

V.„=LASsG~(a, )/2 ~a]LP, I, .+e,(j)
—P; I;,& e .(j')+c c ] (2.21.). .

Here we have added an additional factor p(H, ) which
expresses the external field dependence of the effective
interaction. As mentioned before, there is no eGect
within the order consi.dered for the parallel-6eld case.
However, for the perpendicular-6eld case, there is indeed
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a variation. We 6nd

8(K)=k(1+31+(v.&.)'/~.»l"') (2 22)

For the case of materials with high anisotropy fields,
one would need rather large fields to get an appreciable
eGect. That is, the ratio of the attenuation coeS.cient
in the presence of a heM to the zero-field case is given
just by

(2.23)n(II, )/n(0) = $'(II,) .

However, attenuation experiments prove rather sensi-
tive to changes in magnitude, and an observation of the
6eld dependence couM be expected, even with the
moderate Gelds obtained with conventional magnets.
With the effective nuclear spin-phonon Hamiltonian,
one is now in a position to calculate the various sects
of the lattice on the nuclear spin system and vice versa.
In the next section, we will explicitly calculate the
ultrasonic attenuation coeKcient.

Here we have abbreviated the constants and the
angular-dependent terms by

and
C,~=@.S2Gt(a, )/2») (k2/k/lf Q.~) (3.S)

I'),(8)= (1/k')
I k+(tg Ey')+kg(~' Eg) I

. (3.6)

Here 8 is the polar angle with respect to the s axis The
absorption rate, and likewise the induced emission rates,
are obtained from the I"s by taking the thermodynamic
average over the initial nuclear spin configuration and
summing over the Anal. For example,

8', Xa, nfl ~nfl —1—
Q C Kma/KTP—( )—
ma

(3 &)

By an inspection of the matrix elements, we see that
the absorption and emission probabilities are related by

III. ULTRASONIC ATTENUATION COEFFICIENT

We now perform a simple second-order perturbation
calculation of the attenuation coefB.cient under the
assumption of negligible saturation. The maximum
power level for the validity of the neglect of saturation
will be given shortly, when we discuss the particular
case of MnF~. The attenuation coeKcient ni, ~ is the
reciprocal of the phonon mean free path A~~, and is
given by

(3.1)n„&=1//4" = (1/c,np")(«g"/dh) .

Here c, is the speed of sound. The depletion of the 4th
mode is given by the rate equation

«/, "//Eh= W(—),"," g
—W(+),",'+g. (3.2)

The probability of a simultaneous phonon absorption
and a nuclear spin Aip on the 0. sublattice is given by

p(—)„„,~„&„.,& „„~,——(2~/k) 8(& &
—& .—&Q")

x I(~.—1 N, ~—1I v„„I~.,~,~) I'. (33)

The same relations will apply to both sublattices and
thus we can perform the calculation on one of them, and
need only introduce a factor of 2 at the completion of
the calculation to take both into account.

The square of the matrix element of the effective
interaction is given by

/ma~ma —1&np ~~fc —1X

YVe are applying a narrow phonon beam; therefore,
el,)&j., and the two probabilities are electively equiva-
lent. Hence we obtain the net absorption rate

LC
Zm «/IKT C Km„ZIKT—-

dS Ic 2'r ~a=—C/, '&/(~)
el ~ ch Q C-Em~/KT

1 «/, ~ (2'/I/)C/, "I'~(0)
Q„X Q

(ET)Tr(8)

Here the unit trace, Tr8, is equal to the total sublattice
nuclear spin degeneracy, (2I+1)~/'. We have de6ned
the shape function of the nuclear resonance in the con-
ventional manner;

X&(E . g
—E .—AQ/, ~)

X(m.—1II,.+Im. —1)(~.—1II,.-I~.) (3 9)

Even in the presence of large hyper6ne fields of the
order of 50 kOe, the nuclear Zeeman energy is small
compared to the laboratory ET, and we can effectively
use the high-temperature expansion. Hence

(3»)

where sublattice, we obtain the attenuation coeKcient in the
TrI I~ +I ~

—j=2I(I+1)(2I+1p/'. (3.12) form

Adding a factor of 2 for the absorption due to the second n/, "= (Sb7r/3ETAc, )C/, "Q/, "I(I+1)g(Qq")Fx(0). (3.13)
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In the above we have added an additional factor b which
denotes the number of resonant nuclei per molecule.
For example, in the material MnF2 there are two
equivalent Quorine sites per magnetic ion and b would
be two for the consideration of this particular resonance.
However, b is equal to unity if the Mn nuclear resonance
is considered. The angular factor I'q(0) depends on the
choice of phonon polarization. For the longitudinal case,

I'~,„,(0)= s sin'28, (3.14)

2GAS'$(Ht) ' b7r'fiI(I+1)(0 ")'
g((4")I'~(e)

QM(KO) sKT
(3.16)

Here Q corresponds to the volume of the primitive
cell, and 0 is the Debye temperature.

A typical material for which the acoustic resonance
would be appropriate is the F" nuclear resonance in
rutile MnFs. There SA=10 's erg 0'=450'K, Hg= 10'
Oe, A=3.9X10 "cm', Ts 10 ' sec, M=1.7X10 "

g
and co,My=3)&1024 sec '. The at-resonance attenuation
coeKcient for optimum orientation will then be of the
order of

n =(G'/T) X10"cm '. (3.17)

For this material, the presence of the large anisotropy
6eld causes the attenuation to be dependent weakly on
an external field, e.g., the ratio at 50 kG to the zero-field
value is n(50)/n(0) =0.87. The order-of-magnitude esti-
mate of the attenuation coefficient (3.17) implies that
the attenuation shouM be readily observable at low
temperatures. The magnetoelastic coupling constants
have been measured for Mn~ ions in MgO by Watkins
and Feher" by the use of electron spin resonance meas-
urements with the crystals subjected to a static strain,
and by Shiren" using ultrasonic paramagnetic resonance
techniques. Their results yield a value of G 10 ' erg.
The origin. of the magnetostrictive coupling in the MgO
crystals is primarily due to the crystalline 6elds, whereas
in highly ordered materials such as MnF2 one would
anticipate large eRects coming from the spatial modula-
tion of the electron-electron dipole interaction. Indeed,
Nakamura" has estimated 6 10 "erg on the basis of
the dipole interaction.

» G, D. gl'atkins and E.Feher, Bull. Am. Phys. Soc.7, 29 (1962),
I N. S. Shiren in Magnetic and Electric Resonance and Relaxa-

tion, Proceedings of Colloque Ampere, Eindhoeen July 196Z, edited
by J. Smidt (Interscience Publishers, Inc. , New York, 1963),
p. 114.

» T. Nakamura (unpublished).

whereas for transverse polarization with the polarization
in the plane of the propagation vector k and the s axis,
we have

I trans(0) = s cos 20 ~ (3.15)

Using the Debye model for the lattice, and substituting
the values for the various constants, we can re-express
the attenuation coeKcient in the form

Of course, we must specify a maximum phonon power
level below which the conditions of negligible saturation
will be satisfied. Saturation eRects become important
when the driving ffeld Irt=(y 'TtTs) '~' This corre
sponds to a strain e= )cog'5'/TtTs(AGS')'g'~' Using the
parameters indicated previously for MnF2 along with
the experimental longitudinal relaxation data obtained
by Jaccarino and Walker, ' we ffnd that the saturation
condition corresponds to a phonon flux of ~10 st2'/Gs
itW/cm'. Here T is the absolute temperature. Taking
an estimate of G' 10 " ergs', we obtain a saturation
flux of 10 itW/cm' at 1'K. In actual experiments this will
be reduced by the Q of the cavity.

In our order-of-magnitude estimates, we have speci6-
cally considered the case of MnF2. The treatment is,
however, quite general and should prove applicable to
any antiferromagnetic insulating crystals satisfying the
conditions of a strong, nearly isotropic hyper6ne
coupling. There is an enhancement over ordinary micro-
wave resonance, because the nuclei on both sublattices
are simultaneously driven. There remains a possibility,
although no mechanism for such a process seems ap-
parent at the moment, that similar to the acoustic
paramagnetic resonance the acoustic nuclear resonance
line may likewise narrow. Such an eRect, coupled with
the enhancement factor, may enable heretofore un-
observable resonances such as the Mn nuclear resonance
in MnF2 to be observed via the acoustic nuclear mag-
netic resonance.
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APPENDIX A

In this Appendix we give a generalization of the
method of canonical transformations used to obtain
indirect interactions. Those acquainted with the tech-
nique of adiabatic perturbation theory will note the
similarity between the canonical transformation method
and the unitary transformation which adiabatically
switches on an interaction in the interaction
representation.

I.et us consider a system which is composed of three
subsystems which we denote by A, 8, and C. In drawing
the analogy to the problem considered in the text, A
represents the nuclear spin system in the presence of the
stationary hyperfine 6eM, 8 the antiferromagnetic spin
waves, and C the lattice. Furthermore, we suppose that
the subsystems are coupled weakly, A and 8 by ) &V»
and 8 and C by X2V&~, these being analogous to the oR-
diagonal hyperfine and the magnetostrictive couplings.
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Let us de6ne a new Hamiltonian BC' via a canonical
transformation.

X'=e'oxe *o-='xo+) tv~a+) svao
+ '[Q,X]+('/2') [Q,[Q,X]7+ ".

Here 3Co is the sum of the uncoupled Hamiltonians,

This method is, of course, quite general and can be
applied to a variety of problems. The virtue of this
representation is the fact that the coupling is expressed
in terms of an exact correlation function, which then
hopefully could be empirically veri6ed.

Xp =X~+Xe+Xo. (A2) APPENDIX B

We want to determine K' up to terms bilinear order in

X~X2, the neglected terms which would further serve to
couple 2 with C will be the order of () i4)'. Let us now

explicitly choose the generating function Q such that
we force a cancellation in (A1);

Z[XqQ] =X1VAB+X2VBC ~ (A3)

This equation is just the Heisenberg equation of motion
of the generating function. Hence

c)Q/cit = '~e'() vige+) s Vee) e ~', -(A4)
which becomes, upon an expansion in powers of the
coupling constant,

itQ/&t=e' o'() iv~e+) sveo)e ' o'+0() ~'As). (A5)

We now integrate this equation with the insertion of an
adiabatic convergence factor and the retention of only
the principal part.

In this Appendix, " we give a simple semiclassical
derivation of the effective nuclear spin-phonon inter-
action in the absence of external magnetic 6elds. The
normal uniform modes (k=O) of an uniaxial anisotropic
antiferromagnetic system can be described in terms of
the semiclassical picture of the magnetization precessing
about the anisotropy 6eld direction with a frequency
imp= (2a&,cod)'t', and tracing out an elliptical orbit in the
plane perpendicular to the s axis. A full discussion of the
different normal modes has been given by Keffer and
Kittel. '~ Let us consider only one of the sublattices.
The precession of the magnetization is shown in
Fig. 1(a). Let us now impose an additional field on the
electron magnet by straining the crystal. From the
magnetostrictive term (1), we see that the field in the

Q=I' dt e"[4vge(t)+Xsvec(t)];
(A6)

V(t) eixo t Ve iscoi-
The reason for the principal part is to make Q conform

to the conventional form in terms of exact matrix
elements of the eigenstates of X.. These are simply
obtained by taking the matrix elements of Q, (A4), and

performing the time integration,

(Z.-Z.)Q..=-V .. (A7)
a

The effective Hamiltonian for the combined systems of
A and C is then obtained by averaging over the inter-
mediary system B. That is,

0

X,ii= (X'—Xe)e——Xg'+Xc' —(s/2)XiXsP

l

1

l

l

l

l

I'IG. 1. Semiclassi-
cal model of the sub-
lattice uniform mode:
(a) in the absence .

of strain, and (b) in
the presence of the
additional anisotropy
Geld due to the
strain.

x"«[v, (t),v, (o)7+[v,(t), v„(o)]). (As)

Here the terms in ) ~~ and X2 have been incorporated
into 3C&' and X&' respectively. For the particular system
considered in the text, the terms in X~' mill serve
to broaden the nuclear resonance via the Suhl-
Nakamura'4 "indirect interaction between the nuclear

spins via the indirect exchange of spin waves. The terms
in ) 2' will serve to renormalize the phonon dispersion

relation, having the effect of mixing in magnon modes.

'4 H. Suhl, Phys. Rev. 109, 606 (1958).
's T. Nakaniura, Progr. Theoret. Phys. (Kyoto) 20, 545 (1958).

(b) Hei (&)

"The author is indebted to Professor Alan Portis for suggesting
the semiclassical approach to the effective interaction."F.Keffer and C. Kittel, Phys. Rev. 85, 829 (1952).
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y direction will be

H„„(t)=GSe„,(t)/v, k,. (B1)

will experience a magnetic field due to the electrons of

H„(t)=A(S(f))/v„5. (82)

This perpendicular field will oscillate at the frequency
of the strain and will act on the magnetization as an
additional anisotropy field. At a given instant of time
the magnetization will precess about the new anisotropy
direction, and the precessional axis will oscillate about
the s axis with the frequency of the impressed strain
as indicated in Fig. 1(b). The assumption, of course,
has been made that the precessional frequency is much
greater than the phonon frequency. Let us now turn our
consideration to the nucleus. We see from the isotropic
form of the hyperfine interaction (2.4), that the nucleus

The perpendicular field component at the nucleus is then

H„„(f)=AS sin8(t)/'y„l AS—'Ge„,(t)/v„v, h'HA. (B3)

Here we have taken sin8(f)=8(f)=H»(t)/HA. Con-
sidering the same for the x direction, we obtain the net
coupling of the strain to the jth nucleus;

V„„,(f) =isv„H„(f) I;
=(AS'G/2A~A)/I, +e „(t)+I; e~„(f)j, (B4)

which is exactly the form as derived from spin-wave
theory.
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We have studied the ground-state spectroscopic parameters, line shapes and breadths, relaxation times,
and saturation behavior of unpaired atoms produced in samples of solid Ds containing up to 1 at.% Tu.
The D-atom electron spin resonance spectrum was found at 24 000 Mc/sec to consist of three composite
lines in which the peaks of a broad component and a narrow component coincided. This result is interpreted
by assuming that there are two different types of lattice sites for the unpaired atoms. The site responsible
for the narrow line is tentatively identified, on the basis of linebreadth, as an interstitial located at the
center of the square face of a unit cell having a D2 molecule at each vertex. The other site has not been
identified. The narrowline sites appear to become populated about 10 times more rapidly than the broadline
sites. Linebreadths ranged from 2.2 G at 4.2'K to 44.5 G at 1.17'K. The effective spectroscopic splitting
factor and hyperfine-structure interactions of the D, T, and H atoms were found to differ by only fractions
of a percent from their free atomic values. The relaxation times of the D-atom spectra show little sensitivity
to lattice temperature over the range from 1.2' to 4.2'. The relaxation time of the interstitial spins varies
from 2 sec to 220 msec depending upon the concentration of atoms in the lattice. The relaxation time of
spins in the broadline sites is in the neighborhood of 220 msec. From the presence of strong diagonal relaxa-
tion it is argued that the mechanism which relaxes the broadline D atoms has a correlation time of about
10 sec. The behavior of the interstitial spin relaxation is interpreted in terms of a model in which spin
polarization from these atoms di8uses by the Bloembergen mechanism to the broadline sites, where relaxa-
tion takes place. The model clarifies quantitatively the differences between the relaxation behavior of D
atoms on the one hand and the far less numerous T and H atoms on the other. The resonance lines are homo-
geneously broadened as a rule. Inconsistencies between the results of saturation studies and the measured
relaxation times are shown to be due to an anomalous line narrowing and intensification after the onset of
saturation. The anomaly appears to be characteristic only of the narrow line component.

INTRODUCTION

EVERAL years ago we undertook a series of investi-

~

~

~ ~

gations intended to demonstrate the feasibilityof
producing an isotopically pure target of polarized deu-
terium nuclei for use with medium and high-energy
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particle accelerators. The advantages of a polarized D2
target are apparent; it serves as a source of both polar-
ized protons and polarized neutrons, and it is without
the background scattering from heavy, unpolarized
nuclei produced from polarized targets of polyethylene
or of the complex rare earth salt, (La,Nd)sMgs(NOs)rs
~ 24820, with which the Berkeley group has had such
success. ' With these attractive features in mind, we
sought to develop techniques for producing unpaired
electron spins within a solid D2 matrix, whose polariza-

' T. J. Schmugge and C, D, Jeffries, Phys. Rev. Letters 9, 268
(1962).


