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Formulation of the Quantum-Mechanical Many-Body Problem in Terms
of One- and Two-Particle Functions
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A self-consistent procedure is presented for the determination of the properties of a many-fermion system,
taking into account all two-particle correlations. We consider a system of E fermions, interacting through
two-body forces and write the wave function in the form, 4=4'0+2;, f& (ij ), where +0 is a determinant of
one-particle wave functions and f& & (ij ) is an antisymmetrized product of (X—2) one-particle functions and
of one two-particle function. By introducing two-particle functions for each electron pair, all two-particle
correlations are taken into account. It is shown that for the best one- and two-particle functions a system of
coupled integrodiGerential equations can be derived. These equations are derived by varying the expectation
value of the Hamiltonian with respect to the one- and two-particle functions, taking into account the
normalization and orthogonality as subsidiary conditions. After eliminating the Lagrangian multipliers, we
have obtained the following result. We obtained 37 one-particle equations for the 1V one-particle wave
functions and one-particle orbital parameters. These equations are characterized by a potential (and ex-
change operator) in which, besides the Hartree-Fock type potential terms, there are also the potentials arising
from the two-particle functions, where the latter occur in diagonal, as well as in nondiagonal form. For the
two-particle functions and the orbital parameters associated with them, we have obtained two-particle equa-
tions in which the equation for the function @;;contains all one-particle functions and all the other two-
particle functions. It is shown that the system of coupled one- and two-particle equations can be solved with
a self-consistent procedure. The method can be applied to systems with any number of particles.

Here the first term which represents the independent-
particle approximation is a Slater determinant built
from the one-particle orbitals y1, q 2,

I. INTRODUCTION

'HE first step toward the solution of the quantum-
mechanical many-body problem is the independ-

ent-particle (or Hartree-Fock) approximation. ' In this
approximation the wave function of the system is
written as an antisymmetrized product of one-particle
wave functions which means that the correlation
between the particles is not taken into account. In
order to introduce correlation into the treatment of
the quantum-mechanical many-body problem a new

theory has been developed by this writer. '- ' In this
"theory of correlated wave functions" the solution of
the Schrodinger equation for N-interacting particles is
written in the form

+o=
t &/(~'!)'"3{& i(ql) & 2(qs) ' ' &PN(qN)}, (1.2)

where A is the antisymmetrizer operator and g; stands
for the space and spin coordinates of the ith particle.
The subsequent terms of (1.1) are introduced in order
to take into account the correlation between the
particles. This is done in such a way that the correlation
effects are decomposed into 2-particle, 3-particle, ~

e-particle correlations which are represented by the
2nd, 3rd, , rtth sums of (1.1), respectively. The
function f&'&(ij) occurring in the second term of (1.1)
is defined in the following way:

'F='F +Z f"'( )+Z f'"( t)+
'47 i7l

+f&N'(1 2 N) (1 1)
*Present address: Department of Physics, Fordham University,

New York, New York.
' D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89, 111 (1928};

V. Fock, Z. Physik 61, 126 (1930), 62, 795 (1930);J. C. Slater,
Phys. Rev. 35, 210 (1930).' L. Szasz, Z. Naturforsch. 14a, 1014 (1959); ISa, 909 (1960).

' L. Szasz, Phys. Rev. 126, 169 (1962).
'L. Szasz, J. Math. Phys. 3, 1147 (1962); Phys. Letters 3,

263 (1963).
5 In recent years, considerable attention has been given to the

problem of particle correlation in the quantum-mechanical many-
body problem. We do not attempt to compare our method with
the other methods which have been put forward in recent years.
It should be noted, however, that the erst attempt to develop a
method for the treatment of correlation was made by V. Fock,
M. Vesselov, and M. Petrashen LZh. Eksperim. i Teor. Fiz. 10, 723
(1940}g.Fock et at. have considered an atom with 1V core electrons
and two valence electrons and have written the wave function in
such a form that the E-core electrons were represented by a
determinantal wave function whereas for the valence electrons a
tvjro-electron function was introduced, thereby allowing them to
take into account the correlation between the two valence elec-
trons. An extensive discussion of this theory may be found als
in the 6rst paper of Ref. 2.

f"'(ij)
=l.&/(&~)'"l(~ (q)~ (q)

&& p~'-t(qt-t) v't+t(qt+t) &oar(q~)4&&(q'qt)), (1 3)

where &t;;(qtqs) is an arbitrary, antisymmetric two

particle fgrtctionAs we s, e. e from (1.2) and (1.3), the
2-particle correlation is introduced into the wave
function by replacing the one-particle orbitals q; and

p; by the two-particle function p;;. The second term of
(1.1) is a sum for all particle pairs, therefore it contains
all 2-particle correlations. The functions f&s& f&~',
which represent higher order correlation sects' are
defined similarly to f&'&.

The summations in the 3rd nth terms of (1.1) are
to be taken over all possible 3-particle, , n-particle
combinations; therefore, they contain all many-
electron correlations.

o We call the function f("& a correlated wave function of nth
order (2 n ~)~. 1V
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For the various approximations which may be
obtained from (1.1) we have adapted' the following
definitions:

(1) The first term of (1.1) is the independent-
particle (Hartree-Fock) approximation;

(2) The function

(1.4)

in which all two-particle correlations are taken into
account, is called the two-particle approximation;

(3) The function

+=@s+gf"'(ij)+ + p f&"&(ij t m) (1.5)
'b2

is called the n-particle approximation,

The properties of the function (1.1) were investigated
in detail' and will not be discussed here. We mention
only two important facts:

(1) The two-particle approximation (1.4) is equiv-
alent to a superposition of configurations in which all
single- and double-substitution configurations are
included;

(2) If all terms are included, (1.1) has the form of
the exact solution of the Schrodinger equation. This
shouM be understood in the following way: if we
expand all many-electron functions in terms of complete
sets of Slater determinants, (1.1) becomes identical
with the exact solution of the Schrodinger equation. '

In the present paper we investigate the two-particle
approximation. The importance of this approximation
is evident since pair correlations play an important role
in several fields of physics, for instance, in the theory of
atomic structure, in the theory of nuclear matter, ' and
in the theory of superconductivity. " The purpose of
the present paper is to determine the equations from
which the best ttoo particle ap-proximatiorr may be
obtained. As is well known, the best independent-
particle approximation may be obtained from the
Hartree-Fock equations. Those equations were derived
by Pock' by varying the expectation value of the energy
with respect to the one-particle orbitals which occur in
the determinantal wave function 0'0. The basic wave
function of the two-particle approximation which is
given by (1.4) consists of 1V one-particle functions
qr, ys, ., q~ (similarly to the Hartree-Foci' approx-

7 The proof is given in Ref. 3, Sec. 2.
According to the recent investigations of L. C. Allen and

H. M. Gladney (to be published), the correlation energy of atoms
with nuclear charge Z&12 and number of electrons X&10, can
be looked upon as arising mostly from tmo-eLectron correLutions.

'The investigations of R. D. Puff LAnn. Phys. (N. Y.) 1$, 317
(1961)j on the properties of nuclear matter indicate that the
eBects of higher order correlations are small compared to the
two-particle correlations."J. Bardeen7 L Cooper, and J. Schrie6er, Phys. Rev. 108,
1175 (1957).

imation), but, in addition to these, it contains also
sS($—1) two-particle functions pre, tt rs, ~

The equations for the best one- and two-particle
functions will be derived by varying the expectation
value of the energy with respect to the one- and two-
particle functions. It should be emphasized that in the
derivation of these equations: (1) No orthogonali. ty
condition will be introduced which restricts the general-
ity of the wave function"; (2) No term will be neglected
in the energy expressions.

In view of the absence of any restrictive conditions
the theory presented in this paper may be considered
as a model, in which all two-particle correlations are
fully included. If we consider the Hartree-Fock approx-
imation as the first step toward the solution of the
quantum-mechanical many-body problem, then, since
the model presented here is the logical extension of the
Hartree-Fock theory, it may be considered as the
logical second step toward the exact solution of the
many-body problem. The results presented here are
valid for any system of fermions which can be described
by a Hamiltonian given below LEq. (2.1)j.

II. THE VARIATION PRINCIPLE

Ke consider a system of X fermions and assume
that its Hamiltonian is of the form

(2.1)

where Hs(i) is a one-particle operator and v(ij ) is the
interaction between the ith and jth particle. We assume
that u(i j)=n(ji) and that n is not an operator.

Ke represent the system by the wave function

(2.2)

in which all two-particle correlations are included. As
we see from the definitions of 4's and f&'&(ij) LEqs.
(1.2) and (1.3)j the wave function (2.2) consist of N
one-particle orbitals yr ~ piv and of sX(1V—1) two-
particle functions mrs, mrs, , @iv r, iv. Our goal is to
determine the best set of one- and two-particle wave
functions, which is defined as that which brings the
energy of the system to a minimum. In order to obtain
the equations for the best set we apply the variation
principle.

Let us denote the expectation value of the Hamil-
tonian (2.1) with respect to the wave function (2.2) by
A, and the normalization integral by 8; then the energy
of the system is

8=A/J3. (2 3)

The sum of all subsidiary conditions (which must be
taken into account when we apply the variation

"A general discussion of the orthogonality conditions is given
in Ref. 3, Sec. 3.
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Having defined all operators in Eq. (4.12), a few remarks are in order about the limits of the summations which
appear in the expression above. Double summations like P,; are to be taken for all orbital pairs. The triple
summation g;;~ which appears in (4.14) as well as in (4.15), should be carried out as follows. The P;; includes all
orbital pairs. For each (ij ) pair, the summation over l means

Z= Z (I& j).
l l=l

(4.18)

Finally, P';;z& means summation for all (ij ) pairs; for each (ij ) pair the summation over k and I means summation
over all pairs except (ij).If certain indices are excluded from a summation, this is indicated explicitly.

Besides the quantities discussed above, Eq. (4.12) contains also the unknown Lagrangian multipliers X & and

(q). It will be shown below that these can be expressed in terms of the one- and two-particle functions.

V. THE DERIVATION OF THE EQUATIONS FOR THE TWO-PARTICLE FUNCTIONS

Our next task will be the derivation of the equa, tions for the two-particle functions P,;.In the derivation we shall
use Eq. (2.5) again, this time taking the variations with respect to the two-particle functions. We obtain the
equation for p,; by varying with respect to p;;*. We denote the variation of a quantity with respect to p,;* by
5/5P, ,* and the variation of P;;* itself by 8P,;*.From the formulas (3.20)—(3.25), we obtain

Ag —E Bg= A2 —E 82=0)
~4,~* ~4 v* &4'~* ~4 v*

(5.1)

A p EBp=-', —bP;;*(12)II,;(12)p,;(12)dq,
p

(5.2)

A, —E B4= ', Rgb*(12)—IIg(12)g,;(12)dq,
&4'~*

(5.3)

A, EB,= P —,
'—5$,,*(12)q,*(3)H,;,(123)y,;,(123)dq,

|Wan

(5.4)

A p
—E Bp

= Q 4 By,;*(12)pl„*(34)B',;g(1234)y.;p ~(1234)dq. (5.5)

Next we calculate $8EO Here we treat 8 again in such a way as we have done in the derivation of the one-particle
equations, i.e., we incorporate the constant 8 into the Lagrangian multipllers. We obtain, by taI lng the varlatlon
with respect to p;;*,

(&0,;*)4,;~q
—Z &' .(2)~.(1)&4 ' *(12)~q.

$=1
spij

(5 6)

As was mentioned above, in the derivation of the expressions (3.21)—(3.25) we have assumed that the two-
particle functions are antisymmetric. We can take into account this fact by writing the variation of P,; in the form

8p,;*(12)=8p;;~(12)—8y,;*(21), (5 7)

where 5p,; is completely arbitrary. On putting (5.'7) into the expressions (5.2)—(5.8), we obtain, for the variation
principle (2.5),

A EB+B Ep= 8q, ,—*(12)PIg (12)P,, (12)+Zg (12)—Eggs (12)
8P"* BQ"* 8P *

—Z {lw„.(2)v.(1)-~„.(1)p.(2)}hdq»=0, (5.8)

where B;,and Z;; are given below. Since bp;; is an arbitrary function, it follows from the above equation that the
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quantity in the square bracket must, be zero. From this we obtain the equation for g.;,.

H,;(12)pg(12)+Z,;(12)=E;,p,;(12)+ Q P.,;,(2) q. (1)—X,;,(1)q. (2)$.
$=1

($ai j)

The operator H,; and the function Z;; are defined as follows:

H;, (12)=H;;(1)+H,,(2)+v(12),

where H;;(1) was given by (3.14); and

(5.9)

(5.10)

Z,;(12)=H,;(12)p,;(12)+Q q& (3)H;,&(123)P,;&(123)dq3+ P -', n&~ (34)H,,I t(1234)g;,At(1234)dq34, (5.11)

Similarly to the equation for the one-particle functions, Eq. (5.9) also cont:ains the unknown Lagrangian multi-

pliers Xg, (q). In the next section we shall show how these multipliers can be expressed in terms of the one-particle
and two-particle functions.

VI. THE ELIMINATION OF THE LAGRANGIAN MULTIPLIERS

The equation system given by (4.12) and (5.9) contains, besides the one- and two-particle functions, also the
unknown Lagrangian multipliers $. I, and X;;,(q). In this section our goal is to express these multipliers in terms of
the one- and two-particle functions. We start with Eq. (5.9). Let us introduce the notation

X;;(12)=—H,, (12)P,, (12)+Z,;(12) . (6 1)

Let us introduce this quantity into (5.9), multiply the equation from the left by q &*(1),"and integrate over q, .

Taking into account that q ~ is orthogonal to p;, , we obtain, for t = s,

X;,, (2)= p,*(1)X;;(12)dqg+ Q X;;,(1)p, (2) q, *(1)dqg. (6 2)

Introducing Q,, (1) with the definition (3.7) we obtain, by putting (6.2) back into Eq. (5.9),

X,;(12)=E,;;Pg(12)+Q,;(1)Xg(12)+ Q pg(2)Q;;(1)X;,,(1)—Q X...(1)q, (2) .
$=1

($ &ij)

Let us multiply now this equation from the left by q „(2)and integrate over q&. We obtain, for I= s,

(6.3)

—X;;,(1)= p,*(2)X,;(12)dqm — Q~g(1)X@(12)q,*(2)dq2 —Q,, (1)X;;,(1), (64)

and putting —X;;,(1), given above, into the last term of Eq. (6.3), we obtain

X,;(12)=E,;0;;(12)+EQ;;(1)+Q,;(2)—Q;;(1)Q,;(2)3X;;(12)=E,;0;,(12)+Q,, (12)X,, (12), (6.5)

where we have used the condensed notation (3.6). The Lagrangian multipliers are. eliminated thereby from Eq.
(5.9). Instead of (5.9) now we have for the two-electron function the equation (6.5).

We proceed now to eliminate the Lagrangian multipliers from the one-particle equation (4.12). Introducing
the notation

(4.12) takes the form:
X (1)=—H (1)p (1)+Z (1),

X (1)=E y (1)+Q X gag(1)+ Q X,; *(2)y,, (12)dq, .
ijQm

(6.6)

(6.7)

For X;; *(2) we have already derived an expression above. Comparing Eqs. (5.9) and (6.5) we see tha, t.

Xg, (2)= q,*(3)X;,(32)dqp —-', P q p(2) q .*(3)q &'(4)X;;(34.)dq34
t=1
(«ij)

(6.8)
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Putting the complex conjugate of (6.8) into (6.7), we get

X (1)=E y (1)+Q X gpss(1)+ Q P;;(12)X,,*(32)q (3)dq23. (6.9)

Multiplying this equation from the left by q & (1) (t/nz) and integrating over qi, we get

p„*(1)X(1)dq, —Q yg*(1)pg(12)X;;*(32)q (3)dq,
jism, k

and by putting (6.10) back into (6.9) we obtain

X (1)=E y (1)+Q qI, (1) yI,*(3)X„(3)dqa—Q Q qg(1) pg*(3)gk;(32)XI,;*(42)(p„(4)dq~34
kQm jism, k

(6.10)

Let us introduce the following operators:

+ Q tt,;(12)Xg~(32)q ~(3)dq23. (6.11)
ijWm

co, (1)f(1)=—p, (1) q,*(2)f(2)dq2,

~,g(1)f(1)—= p„(12)X„*(32)f(3)dq23

(6.12)

(6.13)

Using these notations, (6.11) can be written in the form

X„(1)=Ep (1)jp»(1)X (1)—Q Q»(1)~p, (1)y (1)+ Q ~;;(1)q (1). (6.14)
kgm jism, k ijWm

Xg(12) =E;,+g(1,2)+0,;(12)Xg(12),
[for all (ij) pairs, i, j=1, 2, , Ã$. (7.3)

VII. DISCUSSION

A. Summary of the Results
We have 1V equations (7.2) for the one-particle orbitals
and the orbital parameters E~, E2, , E~,. and we
have i~X(X—1) two-particle equations (7.3) for the
two-particle functions Pi2 fi3
orbital parameters E~2, E~3, .~, E~ ~,~. Both the one-
and two-particle equations contain [in the operators
X„(1)and Xg(1,2)j also the total energy E; this is
connected with the solutions of the equations through
the relationship E=A/8 [Eq. (2.3)).

Ke have considered an E-particle system with the
Hamiltonian (2.1). We have written the approximate
wave function of the system in the form

+=+o+Z f"'(V ), (7.1)

which we have called the two-particle approximation
because it contains all two-particle correlations. We
have investigated how the best two-particle approxima-
tion can be obtained. In order to obtain the equations
which determine the best two-particle approximation,
we have applied the variation principle. By varying the
total energy [the expectation value of the Hamiltonian
with respect to (7.1)j with respect to the one- and
two-particle wave functions, and taking into account
the subsidiary conditions we have obtained the following
equation system:

B. Self-Consistent Solution of the Equations

Let us introduce the operators 8' (1), 2 (1) and
H;;(1,2), Z;;(1,2) with the following definitions:

~-—= [1—E»j&-+ Z Z»~» —E ~v (74)
k=1

(k &m)
kQm jism, k ijy m

Since this equation contains only the one- and two- and
particle functions, the elimination of the Lagrangian
multipliers is thereby completed.

X.(1)=E . (1)+ Z -.(1)X.«)
k=1

(k &nt)

Z„—=—[1—P»jZ„,
k 1

(k Qm)

(7 3)

-z z
kQm jism, k

+ Q (o;.;(1)p (1), (m=1, 2, 1V), (7.2)
iiH m

Bg=[1 Qg]H;;, — — (7.6)

(7 7)

Using these notations, the ecluations (7.2) and (7.3)
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~&sl ~ (e&»~@'&»)

We continue this procedure until we find that

(7.12)

(7.13)

in which case our system is self-consistent. By putting
q &„& and e'&„&into the trial function (7.1), we obtain
the wave function of the system including all two-
particle correlations. All properties of the system,
including the total energy may be computed easily by
using the wave function (7.1).

'9 It is, in general, a mistake to start with the solutions of the
Hartree-Fock equations. This can be seen from the fact that the
operators which occur in the equations for the one-particle
functions LEq. (7.8)g are, in general, very different from the
Hartree-Fock Hamiltonian operator. We have arrived at this
conclusion by investigating the electronic correlation in the Be
atom using the approximation presented here LL. Szasz, Phys.
Letters 3, 263 (1963), and to be publishedj. In other words, the
best one-particle functions in the two-particle approximation are,
in general, different from the Hartree-Fock one-particle functions
to such an extent that it is an extremely poor approximation to
start calculations with these.

may be written in the following form:

H (1)y„(1)=E„p(1)+Z„(1),
(m= 1, 2, .Ã), (7.8)

II;,(12)y;;(12)=E,;&&;,(12)+Z;,(12),
(for all (ij) pairs, i, j=1, 2, , 1Vj. (7.9)

This equation system may be solved in the following
way. We may start with an orthogonal set of one-
particle functions which is chosen on the basis of
plausible physical arguments. " l,et us denote this set
by q (&). Then, using q (&) we may calculate two-particle
functions g;; or&e at a time for each pair. This is possible,
since if we consider only one pair function at a time,
(7.9) reduces to

II,;(12)Pg (12)=E;fQ,f (12)—H,, (12)Pg (12)

+Qg (12)II,;(12)p, ,;(12), (7.10)

where the operators depend only on the set q (&). After
that, we calculate the set of two-particle functions
taking into account all of them simultaneously. In
other words, we solve the equations (7.9). Let us
denote the set of solutions by W(&). Our first approxima-
tion is therefore the combined set

~&ri ~ (e'&» e'&il). (7.11)

Next we form the operators H (1) and Z (1) with the
sets q&il, 4 &ii and compute from the equations (7.8) a
new set of one-particle functions which we denote by
p&». Using these we calculate from the equations (7.9)
a new set of two-particle functions, exactly in the same
way as we have calculated +(&). We denote the new
set of two-particle functions by W(2). At the end of this
cycle we shall have the second approximation given by
the combined set

C. General Discussion of the Structure
of the Equations

As is well known, the independent-particle (Hartree-
Fock) approximation is characterized by the fact that
the problem of calculating the wave function for an
S-particle system is reducible to the solution of E
one-particle equations (the Hartree-Fock equations).
In the two-particle approximation, in which we have
the wave function (7.1), we must calculate, besides the
one-particle functions also two-particle functions;
therefore, our task is to solve a set of one-particle
equations aed a set of two-particle equations. The
interesting point is, however, that even in this approx-
imation, in which correlation is taken into account, the
one-particle aspect of the problem does not disappear;
on the contrary, even after we introduced correlation,
a part of the problem is still the solution of a set of
one-particle equations. Ie other words the concept of
one P&&rtic-ie orbi tais ar&d otic Particle -orbital energies is Not

excls&si eely connected with theindePender&f P&Jrticle aP-Prox
ideation. After introducing correlation, we still have the
one-particle orbitals and one-particle orbital energies to
calculate, but these are not the solutions of the Hartree-
Fock equations any more, but the solutions of the more
complicated equations (7.8). $1t is easy to show that
if we neglect the correlation, i.e., if we put all two-
particle functions equal to zero, then (7.8) reduces to
the Hartree-Fock equations. $ The difference between
the independent-particle model and the two-particle
approximation is that in the two-particle approximation
we have to solve, in addition to the set of one-particle
equations, also a set of two-particle equations for the
functions which represent the correlation.

Another interesting feature of the equations (7.8)
is that all terms which occur in the operator II
except the term containing Ho may be described as

potent ais and exchange operators. In other words,
whereas, in the Hartree-Fock approximation, the equa-
tions for the one-particle functions are characterized by
the presence of the Hartree-Fock potentials (and
exchange operators), in the two-particle approximation
the equations for the one-particle orbitals are character-
ized by the presence of the generalized potentials (4.14)
and of the generalized exchange operators (4.15). As
we see from (4.14) the first term in the generalized
potential V is the Hartree-Fock potential (multiplied

by the constant S„which is equal to 1 if there is no
correlation). The fact that the other terms are also

potentials can be seen easily by replacing the two-

particle functions everywhere by the corresponding
Slater determinants. For instance, if g;; and g, &

are
replaced by p;; and p,;t,, respectively, then

P;;&*(423)y;;& (423)v (14)d&l„,—&
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where the V,'s are the Hartree-Fock potentials defined
by (3.12). Also, it is interesting to note that besides
the term

&(13)
I 0' (32) I

'~v» (7.15)

which occurs in (4.14) and which may be interpreted
as the potential arising from the two-particle functions,
the two-particle functions are responsible also for other
potential terms which cannot be interpreted in a simple
way. In other words if we would like to write down the
potential for the one-particle equations intuitively,
taking into account the presence of the two-particle
functions, we would certainly include (7.15); however,
as we see from (4.14) there are also other terms in the
potential in which the two-particle and one-particle
functions occur in a nonsymmetrical way" and which
cannot be derived from simple considerations.

D. Concluding Remarks

As was mentioned in the introduction and as it is
evident from the derivations, the results presented in
this paper can be applied —in principle —to any
system of fermions. However, the successful application
of the model will depend on whether the equations (7.8)
and (7.9) can be solved for a given, particular type of
interaction. The practicality of the method has been
established for Coulomb interactions, by using the
method for the investigation of electronic correlation
in the Be atom. Using Hylleraas type functions for the

'0 For instance, in the potential containing @;,~* and @;;~.

two-particle functions representing the correlation
between the two 1s and between the two 2s electrons
of the Be atom we have shown. that 80% of the correla-
tion can be taken into account by a 10-parameter
variational wave function. It is important to note
however, that this application is not completely
satisfactory, since we have not solved the two-particle
equations (7.9) exactly. In the case of atoms, the two-
particle equation (7.9) is a six-dimensional equation
which can be reduced to a three-dimensional equation
by separating out the angular part of the two-particle
wave functions. However, at the present time, there is
no possibility for the exact solution of a three-dimen-
sional equation. In the calculations mentioned above
we have written the two-particle functions as simple
analytical expressions, containing variational param-
eters, and calculated these parameters from the energy
minimum principle. This procedure however is only a
slowly converging approximation to the exact solution
of the equations (7.9).

Whether the method can be applied in nuclear
physics will depend on whether the equations (7.8)
and (7.9) can be solved for the short-range, "hard-core"
type interactions. The main problem probably will be
the solution of the one-particle equations (7.8). In this
case the solution of the two-particle equations (7.9)
perhaps may be carried out by introducing as new co-
ordinates the center-of-mass of the two-particles and
their relative distance. This way the equations would be
reduced to one-dimensional equations. Application of
the model to various problems is now being carried out
by this writer and the results will be presented in
later publications.


