
yoLU M E oe&oa«PHVSIt AL REVIE%

'
ns of the Boltzmann Equa 1on*inetic Integral Solutions o e

CRAWFORD MACCALLUM

r Ne S'em MexicoSa za a, r NeLaboratory, Albugeergle,

(Received 3 June 19 )

n in the relaxation-oltzmann equation inolla the time-dependA ki etic picture is prese tc' t gra sas ecia eion and an exact solution in
te ral solution of the time-in epenone o g
exact versus inca

'

E start with the following equation

dt

dt///

dt".
/ll

f I 7

rdin solutions of theregar ing

' T is d notation for

ni
d dt Mf t is re uce

, f( , ) lo
f((o) (9

If we let h' rece e i to

jn a its dependence on e
~ the steady-state distribution

' f'(e, h

C'(9) =
00

ested by Chambers' andEquation (7) was originally sugges

t) —h, r —q

h l t term follows from
rms of (1 re ec

has been verifie yma
ier' who s ow

'ector . The as e

'
n of the time-ie endePendenh —Boltz-

re in which, in every i
in ee

p

p

~ ~

rs which removes
ecial

in confusion in e
'

'~

ing solutions of the i

istribution f an sca
E ua-

e lirlearized Bo tzma
p

distribution presu
oltz- ing

in the relaxation
'

1 differential equation inmann partia i er

i.e., hf= f f' an =———, b in
approximation:

Bf Bf—+—j=-
Bt Bg

(f f')—
~f(, ,i)= &f(,', t') exp(—

oint in phase spacee fix attention on a poin p
b«---'d"n ~which moves alongn a characterzsic r

(4)dy= ddt,

int chan esondin to this moving pointf, b h odionly via collisions; in fact, we o ain

' f'(9",h")

t'

t dt///

dh" (6)
/ll

tPI

" t// and theendpoint y, ,In this equation, pn the oints y, t, an
ra ectory determine yform the t

t e U. S. Atomiced under the auspices of t e~ This vmrk performed un er
Energy Commission.

diGerential equation

(5)dfldh= (f fo)!m- —

me t' to a later timewhich is rea i y in ew i
' d'1 tegrated from time

f(e,o=f(u', t') ex&(- f

and

, dhff

9"," — dh" (6a)(9",h") exp-
dt//

tlat

' dt"'
„(9",h") exp' — „,)dtll

(7a)

df' Bf' Bb Bf' BT
it+

dh BB Bk BT Br

Bf' Bn
~ i+ —i

BR BI'

o Bfo Bfo— ' ' E+ &T+ v. ~.
lB8

()c. Phys. Soc, (London) A65, 458 (1952).

n) t. Rend. 255, 120 (1962).3 J. Tavernier, Compt. Rend.

/l

ony og gy
T which is a unan d the temperature

ntial which is a unc
the particle density n), we may wri e



KINETIC INTEGRAL SOLUTIONS OF BOLTZMANN EQUATION 931

Heine4 and Suzuki' consider the equation which one
would obtain from (6a) by inserting (8), setting
V 7=Vn= bf(9', t') =0, and removing the factor ctfs/r) b
from under the integral sign. Clearly, the last operation
leaves one with a solution of the Iimearised time-de-
pendent Boltzmann equation, but not of the exact
equation. Heine claims to prove that it is a solution of the
exact equation, but his proof contains an error; however,

' V. Heine, Phys. Rev. 107, 431 (1957).' H. Suzuki, J. Phys. Soc. Japan 17, 1542 (1962).

if rife/c)B is put back under the integral sign, then his
proof goes through verbatim. Suzuki uses this approxi-
mate equation to discuss boundary value problems, and
provides references to other recent work based on this
equation. Budd' shows (for a speci'al case) that the
equation obtained from (7a) by inserting (8), setting
VT=Vts=O, and removing the factor elf'/c)8 from
under the integral sign is a solution of the linearized
time-irtdepertdertt Boltzmann equation, but not of the
exact equation.
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The dynamical equations for the Regge parameters in the relativistic, many-channel case are reduced
into a single integral equation for Im ce(t), which is convenient to solve numerically. The solution of this
integral equation is shown to exist and to be unique, after one subtraction constant for each of the functions
o.(t) and r,;(t), and the location of zeros of the residue functions r;;(t) are supplied, provided that some
conditions on the subtraction constants are satisfied.

I. INTRODUCTION

' 'T has been shown' that the analytic property of the
~ - Regge parameters, together with the unitarity con-
dition, constitutes a set of equations for determining
these parameters. However, many features of this set
of equations, in particular, the question of what we
should put in and what we can get out of them, were
not well understood at that time. Neither was it realized
then that inelastic two-particle intermediate states in
the unitarity condition can be included, without the
complication of solving some coupled integral equations.

In this paper, we shall show: (1) that the equations,
with all two-particle intermediate states in the unitarity
condition taken into account, can be reduced to a single
integral equation which has Imcr (t) as the only unknown
variable, ' and can be solved numerically —results will
be reported in a forthcoming paper', (2) that the param-
eters of this equation will be completely specified if one
subtraction constant for ot(l) and for each of the residue
functions r,, (t), as well as the location of zeros for r,; (t),
are supplied; (3) that this integral equation has a unique
solution if some conditions on the subtraction constants
are satisfied.

These conclusions show, 6rstly, that the number of
subtractions is not arbitrary. If we put too many re-

*This work was supported in part by the U. S. Atomic Energy
Commission.

' H. Cheng and D. Sharp, Ann. Phys. (N. Y.) 22, 481 (1963).
'The method to achieve this was shown to the author by I'.

Zachariasen.' H. Cheng and D. Sharp (to be published).

strictions on the Regge parameters by making too many
subtractions, no solution for Imn(t) would exist, while
if we make too few subtractions, the solution for Imn(t)
would not be unique. Secondly, the location of the zeros
of r,, (t) cannot be determined dynamically, but have
to be supplied as input parameters. Therefore, the fact
that r,, (t) of the Pomeranchuk trajectory vanishes at
the point n„=0 does not follow as a dynamical conse-
quence of our equation, but is a boundary condition
itself. Whether the zeros of r,;(l) can be determined,
once the approximate unitarity condition used here is
replaced by the exact form, still awaits investigation.
However, it is a consequence of analyticity and factori-
zation for r;;(t) that all r,, (t) of the same trajectory
should have the same zeros, if the possibility of double
zero is ignored. The factorization law gives4

r' (l)»'(l)=r"(l)r (l),

and if time-reversal invariance holds,

then

If r, ,(t) has a first-order zero at zs and r;;(t) does not,
then ss is a square-root branch point for r,, (l), in con-
tradiction of the analytic property of r,;(t). Therefore,
we should put in the same zeros for all r,;(t) in the dy-
namical equations.

4 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962);V, N, Gribov
and I. Ya. Pomeranchuk, ibid 8, 346 (1962). .


