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A kinetic picture is presented from which follow the time-dependent Boltzmann equation in the relaxation-
time approximation and an exact solution in the form of a kinetic integral. As a special case of the latter,
one obtains Chambers’ integral solution of the time-independent equation. Confusion in the literature
regarding solutions of the exact versus linearized equations is clarified.
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where f(p,t) is the probability at time ¢ of finding a
particle at point p=Kk, r in phase space, i.e., with wave
number k and position r. Along with the dynamical
law of motion,

¢=k,i=(g/mE(r)+vE)XBr], v(k), (2)

the first two terms of (1) reflect particle motion along a
deterministic trajectory. The last term follows from a
kinetic picture in which, in every time interval 7, a
collision occurs which removes a particle from the
probability distribution fand scatters it into the special
equilibrium distribution f° (presumed known). Equa-
tion (1) immediately yields the time-dependent Boltz-
mann partial differential equation in the relaxation
approximation:
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However, if we fix attention on a point in phase space
which moves along a ckaracteristic irajectory defined by

do=¢dt, (4)

then the f corresponding to this moving point changes
only via collisions; in fact, we obtain the ordinary
differential equation

af/di=—(f=1)/, ®)

which is readily integrated from time ¢ to a later time
¢ to yield
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In this equation, the points ¢”, #’, and the end point g, 7,

form the trajectory determined by the initial point ¢’, ¢,

* This work performed under the auspices of the U. 8. Atomic
Energy Commission.

and by (2) and (4); 7"/ is a shorthand notation for
7(9""). Equation (6) is a solution of (3) in the sense that,
given the initial probability distribution f(e,!), the
determination of f(g,t) is reduced to quadrature.

If we let ¢ recede into the infinite past, f(g,f) loses
its dependence on the initial condition and approaches
the steady-state distribution

t fo(gll,t”) t dt“/
B(g)= wT exp<—/w 7;>dt”. (7
Equation (7) was originally suggested by Chambers! and
has been verified (for a special case) by Budd? and, in
general, by Tavernier,® who show directly that @ is
indeed an exact solution of the time-independent Boltz-
mann equation.

To clarify a certain confusion in the literature regard-
ing solutions of the linearized Boltzmann equation, we
now integrate (6) and (7) by parts. After rearranging,
and defining 6f and 6% as deviations from equilibrium,
ie., 6f=f—f0and 6=P— f°, we obtain
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t gfo ¢t dt
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Since f° depends upon #’ only through ¢”/, and upon g¢”
only through the energy & (which is a function of k)
and the temperature 7' (which is a function of r) and
the chemical potential (which is a function of 7' and
the particle density #), we may write
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Heine* and Suzuki® consider the equation which one
would obtain from (6a) by inserting (8), setting
VvI=vn=05f(¢’,t)=0, and removing the factor 4/°/98
from under the integral sign. Clearly, the last operation
leaves one with a solution of the linearized time-de-
pendent Boltzmann equation, but not of the exact
equation. Heine claims to prove that it is a solution of the
exact equation, but his proof contains an error; however,

4V. Heine, Phys. Rev. 107, 431 (1957).
8 H. Suzuki, J. Phys. Soc. Japan 17, 1542 (1962).
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if 3f%/88 is put back under the integral sign, then his
proof goes through verbatim. Suzuki uses this approxi-
mate equation to discuss boundary value problems, and
provides references to other recent work based on this
equation. Budd? shows (for a special case) that the
equation obtained from (7a) by inserting (8), setting
VI=vVn=0, and removing the factor 9f°/d8 from
under the integral sign is a solution of the linearized
time-independent Boltzmann equation, but not of the
exact equation.
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The dynamical equations for the Regge parameters in the relativistic, many-channel case are reduced
into a single integral equation for Im «(¢), which is convenient to solve numerically. The solution of this
integral equation is shown to exist and to be unique, after one subtraction constant for each of the functions
«(t) and 7;;(¢), and the location of zeros of the residue functions 7;;(¢) are supplied, provided that some

conditions on the subtraction constants are satisfied.

I. INTRODUCTION

T has been shown! that the analytic property of the
Regge parameters, together with the unitarity con-
dition, constitutes a set of equations for determining
these parameters. However, many features of this set
of equations, in particular, the question of what we
should put in and what we can get out of them, were
not well understood at that time. Neither was it realized
then that inelastic two-particle intermediate states in
the unitarity condition can be included, without the
complication of solving some coupled integral equations.
In this paper, we shall show: (1) that the equations,
with all two-particle intermediate states in the unitarity
condition taken into account, can be reduced to a single
integral equation which has Ima(?) as the only unknown
variable,? and can be solved numerically—results will
be reported in a forthcoming paper?; (2) that the param-
eters of this equation will be completely specified if one
subtraction constant for a(¢) and for each of the residue
functions 7,;(¢), as well as the location of zeros for 7;;(f),
are supplied ; (3) that this integral equation has a unique
solution if some conditions on the subtraction constants
are satisfied.
These conclusions show, firstly, that the number of
subtractions is not arbitrary. If we put too many re-
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strictions on the Regge parameters by making too many
subtractions, no solution for Ime(¢) would exist, while
if we make too few subtractions, the solution for Ima(¢)
would not be unique. Secondly, the location of the zeros
of 7;;(¢) cannot be determined dynamically, but have
to be supplied as input parameters. Therefore, the fact
that 7;(f) of the Pomeranchuk trajectory vanishes at
the point a,=0 does not follow as a dynamical conse-
quence of our equation, but is a boundary condition
itself. Whether the zeros of 7;;({) can be determined,
once the approximate unitarity condition used here is
replaced by the exact form, still awaits investigation.
However, it is a consequence of analyticity and factori-
zation for r;;(f) that all 7;(f) of the same trajectory
should have the same zeros, if the possibility of double
zero is ignored. The factorization law gives*

rii(Orsi(Q)=r:(Ori(1),
and if time-reversal invariance holds,
rii(0)=75(t),

i () =[ra(®r; @12, 1)

If 7;:(¢) has a first-order zero at 2o and 7;;(f) does not,
then z is a square-root branch point for 7;;(f), in con-
tradiction of the analytic property of 7;;(f). Therefore,
we should put in the same zeros for all 74;(¢) in the dy-
namical equations.
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