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It is shown that there exists a close relationship between the analytic properties of the partial-wave ampli-
tude as a function of complex-angular momentum l and those of the coefficients of expansions, other than
the partial-wave expansion, as functions of the corresponding summation index, p. The case of power series
in s, and in the Mandelstam variables t and u is studied in detail. We show how the /-plane Regge poles for
Rel) ——', determine all the p-plane poles for Res) ——,

' and vice versa. For the relativistic amplitude we
write a representation consisting of three double power series in s, t, and u. We establish the analytic prop-
erties of the expansion coeKcients in the two index variables which are implied by Regge analyticity in the
l plane of each channel. This enables us to apply the Watson-Sommerfeld transformation twice and obtain a
crossing-symmetric Regge-type representation which simultaneously displays the contributions of the Regge
poles in all three channels.

I. INTRODUCTION

EGGE poles appear when one considers an analytic
interpolation of the partial-wave scattering ampli-

tude for complex values of angular momentum, /. ' The
position of these poles in the / plane depends on the
energy and in potential scattering one has a clear and
simple relation between the poles and bound states and
resonances. In fact one of the main attractive features
of Regge's work in potential scattering is the unified
treatment it provides for bound states and resonances.

This feature and the simplicity of the asymptotic
form of the scattering amplitude for large momentum
transfers, has led several people to conjecture that re-
sults similar to Regge's hold for relativistic scattering
amplitudes and in quantum field theory. ' Some of these
conjectures have been proved for certain simple models. '
However, in the full theory the situation is far from
clear and there are indications that the partial-wave
amplitudes might have branch cuts as well as poles in
the right-half I plane.

So far the discussion of Regge poles and their conse-
quences has been closely tied to the I.egendre expansion
of the invariant amplitude. This has at least two draw-
backs. The first is that the partial-wave expansion is
not explicitly crossing-syizimetric and consequently the
resulting Regge representation obtained by applying
the Watson-Sommerfeld transformation will also not
display this symmetry. The situation becomes more
serious when one wants to perform bootstrap-type
calculations where one wants to impose both crossing
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symmetry and Regge behavior. In fact, it has not been
known under what conditions are crossing symmetry
and Regge behavior consistent with each other, if at
all. All the models listed in Ref. 3 for which Regge
properties have been proved are not crossing symmetric.

The second drawback of the partial-wave expansion
in this context is that the partial-wave amplitudes are
defined by a complicated transform of the absorptive
part which involves I.egendre functions of the second
kind, Qt.

The purpose of this paper is twofold. The first is an
attempt to free the Regge analysis from strict associa-
tion with partial-wave expansions. In fact we show that
if Regge poles exist at all, essentially the same poles
will appear when one starts with expansions other than
the partial-wave expansion. We devote special atten-
tion to power series because of their simplicity. The
possibility of using other expansions than the I.egendre
expansions enables us to achieve our second purpose
which is to obtain a crossing-symmetric Regge formula.
This is obtained by starting with double power series
expansions in the Mandelstam variables s, t, and N.

In Sec. II we first prove two simple theorems. We
show that if a function f(s) =Pa(l)Pt(s) is such that
ct(l) is merornorphic in / for Rel) —-'„and as ~l~

—+co,

a(l) +le '&, $)0, then if one expands f(s) in a power
series, f(s)=P„c(v)s", c(v) will again be meromorphic
for Rev) ——,'. It will have the same poles, a, , as a(l)
plus poles at e;—2, n;—4, etc. The converse of this
theorem is also shown to be true. A similar result holds
if one expands the nonrelativistic scattering amplitude
in powers of momentum transfer t, f(s, t) =P„c'(v,s)t"

In Sec. III we discuss brieQy the relativistic problem
and show that results similar to those in the preceding
section hold. One starts in this case by writing the
invariant amplitude as the sum of two power series,
one in the Mandelstam variable t and the other in N.

The coeKcients of these series are given by simple
Mellin transforms of the I, and I absorptive parts, re-

spectively. As the singularities of the partial-wave
amplitudes in the l plane are closely related to the
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singularities of these coefficients in the v plane, one
can either prove or disprove the conjectured Regge
properties by studying these coeKcients instead of the
partial-wave amplitudes.

Before we go to the full crossing-symmetric problem,
we discuss in Sec. IV the case of a function of two
variables, s and t. We assume that the partial wave
expansions of this function in either the s or t channel
have properties similar to those proved by Regge for
the partial-wave amplitude in potential scattering.
Starting from a double power series expansion in s and
t we show that the coeficient of such an expansion can
be analytically continued in both indices and will

satisfy the properties necessary to apply the Watson-
Sornmerfeld transformation twice. This will lead to a
representation which exhibits the contributions of the
Regge poles of both the s and t channels simultaneously.

The generalization of the results of Sec. IV to the
case of the full relativistic amplitude is relatively simple.
In Sec. V we start by writing the full amplitude as the
sum of three double power series, one corresponding to
each of the three main terms in the Mandelstam repre-
sentation. The same steps as in Sec. IV follow for each
of these series and we obtain an explicitly crossing sym-
metric Regge type representation. Finally, the condi-
tions under which we obtained our result are briefly
d1scussed.

a(l) rv P~P,.(—s)
f(s) =- dl Pi( s) mP— —.

2 i;~ Sln7l t i=~ Sine'n;
(3)

If follows from (3) and (ii) that f(s) is analytic in the
cut s plane and we can write

1 "D(s')
f(s)= —«', sp)1,

Sommerfeld-Watson transformation to (2), c(v) will
have a pole at v=ct just as a(l) has one at I=n 4I.n this
section we shall prove two theorems which show that
there exists an even closer relationship between the
singularities of a(l) and those of c(v).
7/georem 1. If a(I) satisfies the conditions (i) and (ii)
then there exists a unique interpolation of c(v) which
is meromorphic in the half-plane Rev& —~. The poles
of c(v) will be the same set {n,) as those of a(l) with
additional poles at

tr;—2, cr;—4, , n, —2g; s)Re(n; —2e)) ——',.

As Rev —+ ~ in the half-plane, we have c(v)
Lcoshf] ".Alsoc(v) vanishesas ~Imv~ —+Po, Rev) —sr.

Proof. From (i) and (ii) it follows that one can apply
the Watson-Sommerfeld transformation to (1) and
obtain in the usual manner

II. REGGE POLES AND POWER SERIES
EXPANSIONS

For a large class of scattering amplitudes in potential
scattering it has been shown. that the coeKcients a(l)
have the following two properties.

(i) a(l) has a unique interpolation which is mero-
morphic in the half-plane Re/& ——,', with a 6nite
number of poles at l =n;, Ren, & ——,'.

(ii) As ~l~~~ in the right- half plane a(l) cgle 't,
where $ is real and positive.
Suppose now one expands the function f(s) in terms
of other polynomials or to be more specific in power
series in s,

f(s) =P c(v)s", v=0, 1, 2, (2)

If a(l) satisfies (i) and (ii) then it is clear that the series

(2) will converge for
~

s
~
&cosh).

Two questions now naturally arise. First, is there a
unique analytic extension of the coefficients c(v) into
the right-half v plane, and second, what relation if any
exists between the singularities of c(v) and those of a(l) P

Clearly, if f(s) s~ as s —+po then, if c(v) satisfies
the conditions necessary for the application of the

Regge poles show up when one considers the partial-
wave expansion of a function f(s),

f(s) =Z a(I)Pi(s).

where for the moment we have neglected to write the
necessary subtractions. The lower limit so is given by
sp= cosh( and & is defined in (ii).

We can now use (4) to get the following representa-
tion for the coeKcients c(v)

D(s) =Dp(s)+~ 2 P~P-;(s) (6)

Here Do is the discontinuity of the background term
aild Dp(s) s '~' as s —+~. We, thus, obtain

1 00

c(v) =— Dp(s)s — 'ds+P P P .(s)s- 'ds (7)

This remark holds for expansions in any set of polynomials
@„(s) which are such that e„(s) s" as s —+~. The author is in-
debted to Professor M. Levy for bringing to his attention the
point that the leading pole must be the same in all such expansions.

00

c (v) =— D (s') s'-"-'ds'.
Zp

This last expression allows us to de6ne a unique in-
terpolation of the coefficients c(v) which is holomorphic
in the region Rev&Reo. ~, where n~ is the pole furthest
to the right in the / plane, for it is clear from (3) that
D(s) s"' as s~~. It is also evident from (5) that
c(v) (sp) a'" as Rev —+~ in the half-plane.

We can now continue c(v) to the region —s&Rev
&Reut. To do that we note that using (3) we can write
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For convenience we have set the lower limits of integra-
tion above to be unity instead of so. This does not
change c(v) since D(s) is zero in the region 1 &s &sp.

Now, the first term in (7) is regular in the region
Rev& —z. The integrals in the second term can be
carried out and give'

Rel) Rea~', where 0,~' is the pole with the greatest real
part in the v plane. To continue a(l) to the region Rel
&Recrt' we use (9) to separate D(s) into two terms as
in (6). One term, coming from the background, gives a
contribution regular in Rel) —~, while the terms com-
ing from the pole contributions in (9) will lead to
integrals of the form,

sr'I'(v+1), Reer) —-', . (8)

The right-hand side is obviously meroInorphic in the
region Rev) —

~~ with poles v=n, a—2, -, o.—2e;
—2r(Re(cr —2n)(sp. It is also easy to show from (7)
and (8) that c(v) ~ 0 as ~Imv~ ~~. This completes
the proof of our theorem.

The residues of the poles in the v plane are related
in a simple way to the P, 's and can be easily computed
from (8).

It is clear now that c(v) will satisfy the necessary
conditions to enable us to apply the Watson-Sommerfeld
transformation to the series (2). We obtain in the usual
manner

c(v) "' V'( —s) "
f(s) =— dv (—s)"—7r P

2 ~;„sinvrv sing;, .
(9)

(2l+1)
~(~) = Q, (s)D (s)ds.

ZP

(10)

Clearly, this defines an analytic function in the region

' Tables of INtegra/ Transforms, Batemart 1IEarttsscrept Project,
edited by A. Rrdelyi (McGraw-Hill Book Company, Inc. , New
York, 1953), Vol. 2, p. 320, (3).

whereo. are the new poles and y are the new residues.
Each term in (9) has a cut starting from s=0 along

the positive real axis. However, as we shall demonstrate
later, one can easily show that the cuts of the first and
second term cancel in the region 0&a&so.

The question now arises about the converse of
Theorem 1. Namely, if one starts with (2) and is given
the fact that c(v) has the following two properties:

(i ) c(v) has a unique interpolarion which is mero-
morphic in the half-plane Res& ——,', with a finite
number of poles at v=0.,', Reo. )—~;

(ii') as Rev-+co, c(v) (sp) " and as ~Imv~-+po,
c(v) -+ 0; what will be the properties of tt(l) in that case P

Theorem 2. If c(v) satisfies the conditions (i') and (ii')
then tt(l) will have a unique interpolation which is
meromorphic in Rel& ——,

' with poles at n, ', n —2,
n, '—2n; Re(cr —2rt)) ——', . As ~i~~pe, a(l) ogle '&.

Proof. The proof is very similar to that of Theorem 1.
If (i') and (ii') hold then one can write (9) and this in
turn will give us a dispersion relation in s as in (4).
Using that we define u(l) in the usual manner by

Qi(s)s 'tls=F(l, n'); Reu') ——', .

This last integral can be performed' and the result is
regular in the region Rel'& —

~ except for poles at l=n',
n' —2, , u' —2m. The easiest way to see this however
is to use the expression for Qt(s) in terms of a hyper-
geometric function of argument 1/s', and then make
use of the hypergeometric series. The asumptotic be-
havior of tt(l) follows easily from (9) and (10) and is
closely related to the behavior of Qi(s), s)sp, for
large ~l~.

One detail which so far we have failed to mention in
both Theorems 1 and 2 concerns the question of the
uniqueness of the continuation to the left. Namely, in
the case of Theorem 1 does c(v) as defined in (7) and
(8) coincide for integral values of v=n, with tt(Rent,
with the ttth derivative of f(s) divided by tt. and
evaluated at s=0. Using (3) one can compute these
derivatives and compare the result with (7) for v=rt,
a& ReaI. The results are identical.

In the two above theorems we have for simplicity
limited the discussion to cases where a(l) and c(v) have
only poles in their corresponding right half-planes.
However, it is not difficult to generalize Theorem 1 to
the case where a(l) has cuts of finite extension in the
half-plane Rel) ——,'. Corresponding cuts will also show

up in the v plane. The converse is also true.
At first sight Theorems 1 and 2 seem to be contra-

dictory for the number of poles seems to increase if we

go from the l plane to the v plane and it also increases
if we go from the v plane to the l plane. However, one
can easily see that there are cancellations which avoid
this contradiction. For example if we start with a(l)
having one pole at l=n such that ~3&Ren&~7, then in
the v plane we would have two poles n~'=n and 0,2'

=a—2. Now suppose we start in the v plane with the
poles v=n~' and v=+2' and go back to the l plane.
Then we would have a pole at 1=o.~' ——o,, but the residues
will be such that the pole at l=cx~' —2=a—2 will just
cancel with the pole at i=+2'=—a—2. We thus get
back to one pole at l=n in the / plane. Thus, it still
makes sense to talk about the variable in which we
have the least number of poles as the more natural one
for the purposes of physical interpretation, if not for
calculation.

Another question which naturally arises at this stage
concerns the relationship, if any, of the singularities

6 See Ref. 5, p. 325, (26).
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of u(l) in the left-half plane, Rel& ——'„ to those of c(v)
in the half-plane Rev( ——,'. Do theorems similar to 1
and 2 hold for the left half-planes' The answer to this
question is in the negative since one can give a fairly
simple counter example. Consider the function f(z)
= (b—z) ', b&z. We can write the two expansions

f(z) =2 (2~+1)Qi(f )Pi(z),
l

f(z)=Zf " 'z"
(12)

If (i) and (ii) hold for a(l,s) then. (13) will converge for

~
f~ &fp and Is= 2s(cosh( —1). A theorem similar to

Theorem 1 will now hold for c'(v, s) except in the present
case the poles of c' will be at v =n n —1, n, —2, etc.
The proof of such a theorem will be identical with that
of Theorem 1. Following the same steps, we obtain an
expression analogous to (7) for c'(v, s)

00

c'(v, s) =— Ds(1+I'/2s)i' " 'dt'

gp

Thus in this case a(l) = (21+1)Q~(b) and c(v) = b " '. In
the right half-plane both have no poles. However, while

a(l) has an infinite number of poles at l= —1 —2

n, .
, in—the region Rel& —-'„c(v) is an entire func-

tion of v and has no poles anywhere in the v plane.
Theorems similar to 1 and 2 hold if instead of the

power series expansion (2) we take expansions in terms
of other polynomials, e.g. , Gegenbauer polynomials, for
example. However, in this paper we shall not go into
the details of a general theorem giving the class of
polynomials for which a result similar to Theorems 1
and 2 holds. For what follows we shall be mainly in-
terested in an expansion similar to (2), a power series
expansion in the momentum transfer variable.

In the above discussion we have suppressed the
energy variable s. The amplitudes f are functions of s
and the momentum transfer variable t, where a=1
+I/2s. We can consider the expansion

f(s, i) =P c'(v, s)t".

Here the integer e' is determined by the condition

—;&Re(~—2'') & ——,',
and the function G (x) decreases at least as fast as
g—'~' as g~ao. One can derive (16) from the expression
for P (x) in terms of hypergeometric functions of argu-
ment 1/x'. r We can now substitute (16) in (15) and
obtain

I(n, v) =Is(cr, v)

+00 +10] —(I—tX) ] —( V—n+1) Pn'0y
—( v—a+n)

+ +
v —n+1 v —cr+e

-,'&Re(n —e) & —-,'. (17)

Here Is(n, v) is regular in the region Rev& ——,'. The new
residues, y, , are all proportional to P. In the Appendix
we give the expressions for the first few y s in terms of

p and n.
It is easy to verify from (14) and (17) that as

Rev —+~, c'(v, s) Ip
" and that as ~Imv~ —&~, c'(v, s)

vanishes if Rev& —~.

We shall now write down the Watson-Sommerfeld
transformation for (13) in order to show explicitly how
one can write the pole contributions in such a way that
they exhibit the right cuts in the t plane as was ac-
complished for the usual Regge poles in an earlier
paper of the author. ' For simplicity let us assume we
have only one pole in the l plane with Rect(s) & —rz. For

~

I ) & to we can carry out the Watson-Sommerfeld trans-
formation on (13) and obtain

* '" '(, ) - V()(—I)-'
f(s, i) =- ( t) "dv rr P— —

2 i;„sinvr v i ssin~(=cr —j)
-', &R ( —)&——,'. (18)

that P (x), x&1, Ren& —rs, can be expanded in such
a way as to factor out all the terms that grow faster
than x '~' as x —+~. Namely, one has

P.(x) =gs(cr)x +gr(n)x"—'+
+g (rr) x '"'-+G (x) . (16)

+g P, P., (1+&'/2 )I' " 'Ch' (14)-— .
t,p

The 6rst term above is regular in the region Rev) —2.
One has only to study the integrals in the second term
I(n, v),

1(cr,v) =p P (1+t/2s)i " 'dt, Ren& —-', . (15)
50

One can easily show that I(n, v) is regular in v in the
region Rev& ——, except for poles at v=n, n —1, ~ ~,

a—I; where the integer e is defined by rs&Re(a —e))—~. This result follows most directly from the fact

When Ren=e', where I' is any integer, and Imn is
small, then by substituting the expressions for the y, 's

given in the Appendix the sum above reduces to a
Regge pole term of the usual form, i.e., 7r[PP ( z)/— —
sing.n .

Both terms in (18) define a function of I which is
analytic in the t plane except for a cut along the posi-
tive real axis. As was done in Ref. 8 we shall show that
the cuts of the two terms in (18) actually cancel in the
region 0&t(to. To do that we note that in the strip

7 Higher Transcendental J'enctions, Bateman Manuscript Proj-
ect, edited by A. Erdelyi (McGraw Hill Book Company, Inc. ,
New York, 1953), Vol. 1, p. 126, {23).' N. N. Khuri, Phys. Rev. 130, 429 (1963).
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—1(Rev&0 the function (t)" has the following more result which will be useful in Sec. IU,
representation,

R(t; n —j)=p c(v; n —j)t",

sine v

dh, —1(Res (0.
x+t

(19) wl ere

Ke can substitute this representation in the integrand
of the first term in (18) and obtain

t —(v-a+ j)
0

c(v, n —j)=y, (s)
v —a+j

(25)

f(s, t) =

where

If Re(n —j))——,
' the sum of the series (25) gives (24a)

b(»s) ~ ( ") ' and if Re((r—j)(——', it gives (24b).
dx —

m P y;(s), (20)
x—t—se i=o sins (n —j) III. POWER SERIES EXPANSIONS IN THE

RELATIVISTIC PROBLEM

1
x"c'(v,s)dv.b(x, s) =

2~i
(21)

Now we know that c'(v, s) (to) " for large Rev. Thus,
we can perform the integration in (21) for x(to and
obtain by closing the contour to the right

b(x,s) = —g y, (s)x &', x(to.
j=0

(22)

This enables us to rewrite (20) as

b (x,s)
f(s t) = dx

]0 S—t—Z6

—gy (s)
j=0

~(—t).-~'—dx+, (23)
o x t se —sin—s (n —j)

to gt—i

R(t; n(s) j)= —y, (s)—
x —' m( —t)

—
&

dx+
x t i c s—ins—(n —j)

Re ( —j))—-'. (24a)

The contribution of a pole in the left half-plane,
Re(n —j)(——', would be given by

where we must remember that Re(a —j))——',. The
first term has now the proper cut. Similarly one can
easily check that for the two terms in the brackets the
discontinuities in the region 0 &t(t0 cancel each other.
We must stress here that in the discussion (18)—(23)
we have chosen that branch of the function (—t)"
for which the cut is on the positive real axis.

From (23) we can now identify the full contribution
of a pole in the v plane at v =n —j and express it as

We can expand each of the two terms above in power
series and write

A(s, t) =P ci(v,s)t"+P cs(v,s)u", (27)

where
00

ci(v, s)=— Ai(s, t)t " 'dt)

00

cs(vis) =— A~(s, u)u " 'du.
7I 4

(28)

The series (27) converge for s, t, and u lying inside the
small Mandelstam triangle, i.e., the Euclidean region.
The usual partial-wave amplitudes are dehned by
formulas similar to (28), namely, '

1 "dt (
a(i) (l,s) =— —

Qi~ 1+—Ai(s, t'),
4 2qs ~ 2qs

1 "dg I
a, , (l,s) =— —

Q 1+—A„(s,u) .
T' 4 2g 2g

(29)

Before we discuss the crossing-symmetric Watson-
Sommerfeld transformation, we shall in this section

briefly define, for the relativistic problem, amplitudes
corresponding to c'(v, s) of the previous section and point
out the relation between their singularities and those
of the usual partial wave amplitudes.

We consider elastic scattering of two spin zero
particles with equal mass, m = 1. The invariant ampli-
tude, A(s, t), we assume satisfies a dispersion relation
for fixed s,

1 "A,(s, t') 1 "A„(s,u')
A (s, t) = — dt'+ — du'. (26)

~(t; ( )—j)=vs( ) tB )
X—t—$6 Here 4q' =s—4 and the amplitudes of even- or odd-l

parity, a+(l,s), are related to a(i) and a(» by
Re(n —j)(—-', . (24b)

ak (l~s) =a(i) (l~s) & a(s) (l,s) . (30)
In the striP, —1&Re(n—j)&0, the rePresentations S for exain ie V N ('rrhov 7h Eks T or F' 41
(24a) and (24b) are identical. Finally, we write one 1962 (1961) )translation: Soviet Phys. —JETP ].4, 1595 (1962)].
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One can now easily prove theorems similar to those in
the previous section relating the singularities of ci(p,s)
to those of a&i&(l,s) and vice-versa. Of course similar
results hold for c2(v,s) and @&2&(l,s). We shall not do
this here since it involves a trivial repetition of the
previous section. We would like to make only two
remarks.

First, the expressions in (28) are much simpler than
those in (29) and one might as well study the analytic
properties of c» and c2 in the v plane. If for example
they turn out to have only poles for Rev) ——,

' then
u(»~ and u(2) will have only poles in the right-half l
plane. " Second, the argument of Gribov and Pomer-
anchuk leading to the conclusion that u(»), (2) must
have an essential singularity at l= —1 does not auto-
matically apply to c» and c&. An optimist could hope
that the trouble discovered by Gribov and Pomeranchuk
is kinematic in nature and related to the poles of the
Legendre function Q~ for negative integral values of /,

and that ci(v,s) and c2(v,s) do not have the same
difFiculty.

P (~', ~')

(s' —s) (f—t)
(31)

Here we have again neglected to write down subtrac-
tions, but as we shall see below these will not be
necessary for our discussion. We stress again that in
all this section f(s, t) is just a mathematical object
having certain properties and is not an actual scattering
amplitude.

We now define the two variables s» and s2,

si ——1+2t/ (s 4), —
s2 ——1+2s/(t —4) .

(32)

In terms of these variables one can write down the
following two partial-wave expansions

or
f(s,t) =P ~(2l+ 1)ai(l, s)P~(si), (33)

f(s,t) =Pi(21+1)a2(l,t)&((s,). (34)
'0 Such a suggestion has already been followed by N. Nakanishi.

He considers a certain subclass of diagrams in a @8 theory and
by studying c& and c2 shows that for that subclass the partial-
wave amplitude is holomorphic for Rel&0. See ¹ Nakanishi
(unpublished).

IV. DOUBLE WATSON-SOMMERFELD
TRANSFORMATION

In this section we shall consider a special nonphysical
case of a function of two variables, f(s,t), and show how
under certain assumptions one can write a double
Watson-Sommerfeld transformation which will exhibit
the Regge poles of both channels simultaneously. We
do this at this stage because it will make the discussion
of the full relativistic crossing-symmetric case in the
next section easier and clearer.

Let us start with a function f(s, t) which satisfies the
following representation,

From (31) it follows that (33) will converge in an
ellipse in the s» plane centered at the origin and with
semimajor axis si ——1+8/(s —4). A corresponding ellipse
exists for (34).

Let us further restrict the function f(s, t) by assuming
that both ai(l, s) and a2(l, f) are meromorphic in / in
the region Ret) ——,'. For simplicity we take the case
where both a» and a2 have only one pole each which
for some real values of s or t shows up in the region
Rel) ——',. For ai(l, s) we have a pole at l=ni(s) such
that

Reai(s) )—-', , so& s &si. (35)

Similarly for a2(l, t) we take a pole at l=a2(/) such that

Re~, (~) & —-,', (36)

For values of s and 3 outside the intervals given in (35)
and (36) both a& and cx2 move into the left-half plane.
We take s&, t»4 and so, to(4. This last inequality can
be relaxed and one can take so, to) 4 but it complicates
the algebra below. The first inequality, s», t»4, is
essential. What we are requiring is that any pole which
shows up for some value of s (or t) in the region Rel) ——,

'
should eventually, as we increase s(t), move back into
the region Ref& ——',. If ni(s) is real and has a positive
slope below threshold, s(4, then it is clear that s») 4.
We again stress that we are taking only one pole in
each channel just to simplify the algebra. The argument
below could be carried through for any finite number of
poles if each pole satisfies conditions similar to (35)
or (36).

Now, finally, we shall assume that for large ~l~ both
ai(l, s) and a2(l, t) have the following asymptotic be-
havior similar to (ii):

gi() g)~g—(l+$)$(s)/Ql' g2() f)~8—(l+,')f(&)/Q$ -(37)
where

cosh/(s) = 1+8/(s —4) .
In brief we have assumed that both ai(l, s) and a2(l, t)

have properties very similar to those found by Regge
for the partial-wave amplitude in potential scattering.
We are interested in the implications of such properties
for other expansions.

We go back at this point to the function f(s,t). We
can write a double-power series expansion for this
function

f(s, t) =P c(v,p)s"t"; v, p=0, 1, 2, . (38)

This series will converge absolutely for (s), (1( &4.
Again we ask ourselves the natural question: can one
find a unique analytic interpolation of c(v,p) regular in
both v and p and having the properties necessary for
performing a double Watson-Sommerfeld transforma-
tionP The answer to this question is in the afFirmative
and we shall show in the rest of this section that one
can obtain a double Regge representation which will
simultaneously exhibit the poles of both the s and the t
channels.



g20

btain the following e pFrom (31 we o
c(vtP) &

1 to ~
i 1 (39)dt p(s, t)s " 't "C PtLLL

4

~ '
31, the integralsthe subtractions

In
Regardless of

-' R are large enougRev an ep aa ove converge i
ht-hand side definese that the rigt it is easy «see

) holomorp»c
ac, I

interpolation of c v,p,a unique analytic in er
I

KHUR&

def, nes a function w ' h is holo-e first term abo ve
—' Re@&—

2 Similarlmorphic in the reg o
f th term in (45) is alsoit follows from (44)

Thus the only»ng
our

same region.h lomorphic» the s
from the secondlanes (ome'ties in the right- a Pari

$n the secon d term we can usean d third terms n
d the third we use41 for p an Inthe representation ( )
h terms with Lri andfollows that t

1
(42). From (43 ';n the region, Re»»ive an singularities»do not gi y

4$ can be rewritten as4 can
Rev) Sup, Rect.p(t),

(40)
Rep) Sup, Rect.i(S) .

we have as-that the properties we
'

l bl t 1

e
s) and ap(l, t) wil ena e

t the singular terms.(
~

o M
to factor oue
e first to erive s

ur assumptions a ou
f ld t fo t o o

0 p )

atson-Sommer e r
st

can
, )obtain two represen

'
s(33) d (34). W o

U
o b h f 11oof each of these representations we o ai

two expressions for p(s, t):

S1

c(v, tL) = cp'(P, tL)+— d
7l 4

t1
dts "'tv L~—

71 4

2$ 2$
&& P, (t)Z., 1+

I

—P, tX. .. —,*(t)~.. 1+

2t
y P, (s)Z., 1+

i

—P, s*(s)&-,* 1+

(46)

2t ~-*sP. * 1+1+ —P
s—4

(47)

2t

c '
v is now holornorphic in the region

p(s, t) =o i(s, t)+
2$

rom
6 to a more conveni

2t

'11f 1 1

7r 2$

h
'

ll
(s t)+—p, (t)P.„1+

p g

P (S,t) =o, LS,t,
2$

tt,"Lt)p;(1—+, 4&t&t;t

ri ht-hand side of (46) we cane rom
' '

uit of the back- the ng - ane from the discontinuity o
following form

Here 0.
~ and 0.2 come rom

'
uit o

ttL to ( 1

round term and

c ptL = " — ds Cts " 't v 'i-
&72 S,t ~$)

—'I' as s~~.
a ears and one hasFoi $+ sy (ol( t) t ) no pole terin app

(44)
p(s t s)

—'~' t&tg, s —+~ .
s in 39) we rewrite itTo factor ou s int the singular terms in

as follows

1
c(v, tLL)

=—

1
+

7r2

+-
Vr2

ds dt p(s, t)s

81 00

—V—1 —
LLt
—1ds Ct p(s, t)s

OO

—v—1 —p,—Idt ds p(s, t)s " 't &

( )+— ds dtp sts "—

7l 8]
2

2s )
(tV'-. 1+, i

—p *(t)&-.*
t 4—

(48)

the domainis holomorphic in th
1

'
(47) h h——'. The integras in

sam
' '

in
'

d in as those in (46).e singularities in this same omain
e inte rations in eac term ca

d (17) U i (17) tas was done in 15 and . si

C(v, tL)=Cp P,tL)+c(P LLL; LL!1)+c(P,P; Qp),



CROSS I N 6 —S YM M ETRI C WATSON —SOM M ERF EL 0 TRANSFORMATION 921

where"

1 ~ —
(4)

—(v—~i+i)~) .(s')
c(v,p; n, )=g ds' s'

~'=p 2)ri 4 p —n&(s')+j

(4)
—(v—~&*+i)~r 9 (s')—

(49)

—
(4)

—( —wt)~„.(t )
c(v,p; ns) =Q

i=o 2~'1 4 v ns (—t')+j

(4) ' "+"v *(t')

v —ns*(t')+j (50)

The integers e and n' are determined by the inequalities

-,') sup, (Ren, (s) —)s))—-,',
-,') sup) (Rens(t) —I'))—-', .

—1
P cp(v, p)s"tv=
V, hatt

$00

s—'5001

$00

s—'4001

cp(v, p)
(—)"(—t)" (52)

sin%'p sin&p,

To sum the other two series in (51) we have to use

(49) and (50). A typical term would be

R(t; n&(s) —j)=p s"V'
V, )tt 27ri

00

ds's' —" '

)t'(4) '" "+"vv(s') (4) '" "+"&0*(s')

p nr(s')+—i p nt*(s')+i—

For the first term one can easily apply the W-S formula
twice and obtain

The functions y~; and y2, are the new residues and are
all proportional to Pt and Ps. An expression for these
functions in terms of P and n is given in the Appen. dix.
We again assume that not only the P's but also the 7's
vanish faster than x 't" for large values of their argu-
ments. This condition is necessary if one wants pure
Regge asymptotic behavior and explicit crossing sym-
metry. We shall come back to a discussion of this point
at the end of Sec. V. The function cp(v, p) is holomorphic
in the region Rev) ——',, Rep,)——,'. It is clear from (49)
that c(v,p; nt) is regular for Rev) —s. However, in the

p plane it is regular everywhere except on the curves
p=nt(s) —j, j=0, 1, , I, which are traced as s varies
from 4 to inanity, and on the complex conjugate curves
p=nr*(s) —j. Similarly, c(v,p;ns) is regular in p for
Rep,)——,', but in the v plane we have to exclude the
curves, v=ns(t) —j, and their complex conjugates. Al-

though the properties of c(v,p;nt) and c(v,p;ns) seem
rather complicated we shall see in a moment that when
one substitutes (49) and (50) in (38) and carries out
the summations one obtains just the contributions of
the poles in a form identical to (24a,b).

It is not dificult to verify that, as Rev —+ pe, cp(v, p)
(4) " for all p with Rep) —sr; and that as Rep —+~,

cp(v, p) (4) & for all v with Rev) —sr. Similarly cp(v,p)
vanishes when either Imv —+&~ or Imp —+&~ or
both. The same type of asymptotic behavior holds for
c(v,p; nt) and c(v,p,' ns).

We thus have now all the conditions necessary to
apply the Watson-Sorrlmerfeld transformation to the
double power series (38). For

~
s), ~

t I (4 we have

The reason for using the same symbol for (53) as was
used in (24a,b) will become apparent in the next few
steps. Since ~s~ &4 we can easily perform the sum-
mation over v and obtain

ds'
R(t; n, (s)—j)=p

ft=o 2' $4 s —s

(4) (v ~&+i)—~) .(s') (4)
—(v—~&*+i)~) .e (s')

X (54)
p nr*(s')+i—p n)(s')+j—

As we have already assumed that p»(s) vanish as
s~~, and using the fact that nr(s) and y»(s) are
analytic in the cut s plane, we can perform the integra-
tion over s' by closing the contour with a large circle
in the s plane and get

—(4)
—(v—~s (8)+i)~) .(s)—

R(t; n&(s) —j)=p tv

p nr(s)+j—
p=0, 1, 2, ~ . (55)

Here we have made use of the fact that there are no
ghosts and no bound states. Otherwise, we would have
extra terms in (55) coming from those values of s on
the physical sheet for which p —nr(s)+ j vanishes (p,

and j are integers). The function nt(s) will have a non-

vanishing imaginary part for all values of s on the
physical sheet except if s is real and lies in the interval
—~ &s(4. If for any s=s„—~ &s,&0, nt(s, ) is a
positive integer or zero, then that will correspond to a
ghost pole. Following Gell-Mann" we assume that in
that case P(s,) is zero as he demonstrated for the
Pomeranchuk trajectory. If for s=sp, 0(sp&4, nt(sp) is
an integer or zero, then that would correspond to a
bound state at s=sb and a pole in f(s,t) at that point."The upper limits of integration in (49) and (50) are at iirst

s1 and t1, respectively. However, using our assumption about the
asymptotic behavior of the y's, we can make these limits ~ by
adding and subtracting terms regular in the v and p half-planes
and absorbing the extra terms into cp(v, p).

'~ M. Gell-Mann, in Proceedings of the D6Z International Con-
ference on High-Energy Physics at CERÃ (CERN, Geneva, 1962),
pp. 533-542.

f(s, t) =P c(ppv) ts" +Q c(v,p; nr)s"t"
V sItt VsP

+Q c(v,p, ns)s "tv (51).
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We are excluding such poles for the present since in
(31) we clearly started with an f(s, t) with only branch
cuts. At the end of this section we shall come back to
the case with bound states.

Finally, we must stress that strictly speaking in all
this section we should have used ni(s —ip) instead of
ai (s) and yi;(s i—p) instead of yi;*(s). At least the
integral (54) over s' should be understood in that sense.

The series (55) is identical with (25) and the notation
is justified. In fact one can now easily sum (55) by
using the W-S transformation and the representation
(19). One obtains

+p R(s; n, (t)—j), (58)

where
'400 '600

b(x,y) = dv
(2n-i)' s—'t001

dt4 x"y&cp(v, t4) . (59)

we use (19) twice and obtain

b(x,y)
f(s, t) = dx dy — +p E(t; n, (s)—j)

p p (x—s) (y—t) i=p

Now using the fact that cp(v, t4) (4) " for large Rev
and that it vanishes for large Irnv we can for x(4 close
the contour of the v integration to the right and obtain

b(x,y) =0, x&4, y) 0; (60)

or and in a similar manner

m (—t)"—'—
dx+

0 S—t—Z6

g(~I—j')

R (-.()-j»—: (56b)

The results are identical with (24a,b) for the con-
tribution of a pole at a=a&—j in the case of a single-
power series expansion. The expressions for the new
residues yi, in terms of Pi and ai are also given in the
Appendix. The function E. is easily recognized as an
incomplete beta function times yi, (s).

We can now write for f(s,t)

b(x,y)=0, y(4, x)0. (60')

b(x,y)
f(s, t) = dx dy

4 4 (x—s—ip) (y t ip)——

It is also clear from (59) and the fact that cp(v, t4)

vanishes when either Imv or Imp, become infinite, that
that b(x,y) vanishes faster than x 'lp (or y '") as either
argument becomes infinite. The integrals in (59) are
defined as contour integrals.

We thus finally get,

1
f(s, t) = ——

=sQOI

cp(v, p)
dv dt4 (—s) "(—t)&

sine& sine@

j-0 j=o

The integers e and e' are determined by the inequalities
given below (49) and (50). The functions R take the
form (56a) if Re(nl, p j)& ——,

' an.d (56b) if Re(uLp —j)
& —2.1

So far we have been holding s and t in the region
~s(, ~t( &4. We can now continue the right-hand side
of (57) into the cut s and t planes. The first term seems
to have cuts starting at s=0 and t=0; however this is
not the case as we shall see below. The functions E
satisfy a Mandelstarn-type representation similar to
(31) and if in varying s or t, (aL&—j) moves from the
right-half to the left-half plane I' goes in an analytic
way from the form (56b) to (56a) or vice versa. Note
that (56a) and (56b) are identical in the strip —1
(Re(ai, p

—j)(0.
To show that the first term in (57) has the right cuts

The first term above never needs any subtractions. One
could write Mandelstarn-type double-dispersion inte-
grals for the R functions but these however will need
subtractions. We have thus explicitly factored out the
subtractions in terms of Regge pole contributions.

In the process of deriving (61) we have made several
assumptions about f(s,t) and about the P's and n's.
Most of these assumptions are natural in the sense that
they have either been proved for the relativistic scat-
tering problem or at least conjectured on the basis of
analogy to potential scattering. The Inain new assump-
tion in the present discussion is the limitation that the
residues y(x) vanish at least as fast as x 't' for large x.
This assumption is necessary if Regge behavior is to be
made consistent with explicit crossing symmetry. We
shall come back to a more detailed discussion of this
point at the end of the next section.

One condition which we have imposed on f(s,t)
which we wouM like now to relax is the absence of
bound-state type poles. Suppose now that f has a
bound-state pole at s= sb and 0(s~(4. We shall sketch
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with

00 00

L (s,t) =— ds' dt'
7j 4

(31')

We have taken here an S-wave pole for simplicity. It is
clear now that in this case nr(sb) =0, and the residue I'
is related to P by I"=—P(s&)/a'(s&).

We now expand L(s,t) instead of f(s,t) in double-
power series as in (38),

L(s,t) =P„,„c(v,p)s "tv. (38')

below how the preceding discussion has to be modi6ed
to obtain the representation (61)."

In the 6rst place if we have such a pole the repre-
sentation (31) will have to be written as

f(s,t) =I'/(s —ss)+L (s,t),

4gy =s—4

zr ——1+2t/ (s—4)
—z, =1+2u/(s —4).

(64)

proved, under assumptions that are weaker than the
ones we are going to assume, that the weight functions
p;, uniquely determine A (s,t,u). In fact, our discussion
will give another demonstration of this fact. Again to
simplify the algebra we consider the case where there
are no single-particle or bound-state poles in the s, t,
or I planes. As in the discussion at the end of the
previous section, such poles can be included by a small
modification of the analysis below and the result will
not change.

In the s channel we have the following relations that
dehne the cosine of the c.m. scattering angle, sj, and
the c.m. momentum q~,

The expression for c(v,p) will be unchanged from the
previous case. The derivation follows identical steps
until we reach the point where we are summing the
series Pc(v,p, ar)s"t", as in Eqs. (53) to (55). Here we
get an extra term in (55) which comes from contribu-
tion of the pole in the s plane resulting from the fact
that Lp

—n&(s)+jj for tr= j=0 vanishes when s=s&.
This extra term will be given by (pro(ss)/rr'(ss)) (s—ss) '.
From the Appendix we find that pre(ss) =P(ss), since
cr(ss)=0. Thus, when we substitute back into (31')
this extra term will exactly cancel the erst term of
(31') and we end up with an expression for f(s, t)
identical to (61). The bound-state pole at s=ss now
shows up in one of the R functions.

A similar cancellation holds for higher / bound states
or for bound state poles in the t channel.

oo oo ( ip)
Lrs(s, t) =— res dt

s-' 4 4 (s' —s) (t' —t)
(63)

similar expressions hold for Lss and Lrs. In (63) we
have not written any subtraction terms. This as we
shall see below is not necessary. Martin" has recently

"The author is indebted to S. B.Treiman and R. Blankenbecler
for helpful remarks on this point.

"A. Martin, Phys. Rev. Letters 9, 410 (1962).

V. CROSSING-SYMMETRIC WATSON-SOMMERFELD
TRANSFORMATION

In this section we shall use the results of the previous
section to obtain a crossing-syli&lnetric Regge repre-
sentation for the invariant scattering amplitude in a
full-relativistic problem. We consider the case of equal-
mass, neutral, spinless particles. We start by writing
down the Mandelstam representation for the amplitude
A (s,t,u),

A (s,t,l) =Lts(s, t)+Lss(t, N)+Lrs(s, N), (62)

where

We shall consistently use the indices 1, 2, 3 to denote
the s, t, I channels, respectively. For each of the other
two channels there are relations like (64) which can
be obtained from it by permutting the variables s, t, N.

As usual one separates A(s, zi) into even and odd
parts in s~ and write the partial-wave expansion for
the s channel as,

a, i+& (t,s)
A &+& (s,zr) =P (2t+1)

X ~i1 +P)1 . 65

Two other expansions can be written for the 3 channel
and the I channel, respectively.

Proceeding as in the previous section we now assume
that the a, (+'; j= 1, 2, 3; can each be analytically con-
tinued into the right-half / plane, Rel& ——,', except for
poles which might show up in that region. Following
Oehme, "we consider only moving poles. For simplicity
we again take only one pole in each channel and choose
that pole to be of positive signature, i.e., a pole in a;(+).
For example, in the s channel we assume that art+'(t, s)
has a pole at l=ur(s) such that

Rent(s)) —rs, se&s&sr, ss&4; sr) 4; (66)

"R. Qehme, Phys. Rev. Letters 9, 358 (1962).

and Recur(s) & —rs for any real s outside the above in-
terval. We assume that as s varies from —~ to
+ oe at& &(t,s) has no poles that show up in the region
Rel& —~. This last assumption is made just to simplify
the algebra and is not necessary. We make similar
assumptions about as'+'(l, t) and as&+'(t, u), introducing
two more poles ns(t) and as(u). For each of these poles
we have inequalities like (66) holding. Finally, we as-
sume that each of the amplitudes a;t+& for large ~t~

behaves as in (37).
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Instead of expanding the whole ainplitude A(s, t) in
a double series in s and 3, we write A as the sum of
three double series one corresponding to each of the
terms in (62). Wc write

A (s,t,l) =Q ci2 (v7t4)s"tv++ c23(v7t4) t"Nv

Here again we have

)ri2& )($7t)~E ' t ~N)
7 s)4.

Similarly by taking the double discontinuity in s and
u we obtain

V 9ttt V, PC
9I ( 2N

+P ci, (v7t4)s"Nv. (67) pi3(s, l) = o )3")(s7u)+—Pi(s)8~11 1+
V4P 4i 4 s—4

The series given here will converge absolutely for s, 3, u
inside the Euclidean region, 0&s, t, N(4 and s+t+N=4.

Following the previous section we can now write the
c;; as double Mellin transforms of the corresponding p;;,

00 00

c;,(v, p,)= —dx dyp;;(x, y)x
— 'y v—',

4 4

~, j= 1, 2, 3. (68)

From here on the argument is identical with that of
Sec. IV. We shall sketch it briefly, stressing the

differences.

It follows from (68) that c,;(v») is holomorphic in
the region

Rev& sup, [Rea;(x)j,
Ret4& sup. [Ren;(x)j.

To extend the region of analyticity further to the left
we have to use representations for p;; analogous to
(41) and (42). Applying the Watson-Sommerfeld trans-
formation to the s-channel partial-wave expansion (65),
and taking the double discontinuity in s and t, we get

2t )
p (s, t) = o &') (s,t)+—P (s)I'., 1+

4t s —4)

2f—6,"'(s)P.;(1+, 4(s(s„S&4. (69)
s—4

2u )—)4,"P„(1+ ~; 4(s(s, ; ss&4. (71)
s—4P

The first term satishes

o.43&')(S71) n '" I—4~
1 S)4. (72)

From the partial-wave expansions in the t and I chan-
nels we get four more relations analogous to (69) and

(71), two from each channel. Thus, for each p,, one ob-
tains two relations similar to (41) and (42). One of
these relations exhibits the poles of the i channel and
the other the poles of the j channel. Again, results
similar to (44) are valid for each p,;.

It becomes evident at this stage that the situation
for each c,, (v,p) is completely analogous to that of the
previous section and almost identical results follow.

We first obtain

C47(V») =C47 (V»)+2C77'(V»I ~s)+2 47'(»7~7') 7

7',
, j= 1, 2, 3. (73)

Here c„,'o) (v») is holomorphic in the domain Rev& ——,'-,

Ret4& —~. The other two functions, c,;(v»;n, ) and
c,;(v»; n, ) are defined by (49) and (50), respectively,
and have corresponding analytic properties.

We can now apply the Watson-Sommerfeld trans-
formation to each of the three series in (67), keeping

s, t, u in the Euclidean region, and we obtain

A (s, t, m) = —— dv dt4 [c),&') (v»)( —s)"(—t)"+cg,&"(v»)( —t)"(—m) "+cia"'(v»)(—s) "(—u) "j
SII1XV Slllmy,

rts1

+Q (—',)[R(t; 4);i(s) r)+R(u; 4)—.1(s)—r)j+P (2) [R(44; n2(t) r)+R(s; n2(t) —r)]—
r=0 r=0

+P(-,')[R(s; n3(N) —r)+R(t; 6).3(u) —r)]. (74)
r—0

The functions R are defined in (56a,b). The integers
e;, i = 1, 2, 3, are determined by the inequalities

—,') sup, (Ren;(x) —e;))——,'. (75)

We can now continue the right-hand side of (74) for

values of s, t, I outside the Euclidean region, always
keeping s+t+u=4. As in the previous case the first
term can be written as the sum of three Mandelstam-

type integrals with the correct cuts and no subtrac-
tions. The argument is identical to that of (57)—(61),
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and we get

bis(x, y)
" " bss(x, y)

" " b»(x y)
A(s, t,u) = dx dy + dx dy + dx dy

4 (x—s) (y —t) 4 4 (x—t) (y —u) 4 4 (x—s) (y —u)

n2

+P $R(t; ni(s) r)+—R(u; ni(s) —r)](s)+P [R(u; ns(t) —r)+R(s; ns(t) —r)](-,')
r=o

n3

+P $R(s; ns(u) —r)+R(t; ns(u) —r)](-', ) . (76)
r=0

The functions b;, (x,y) are defined by

( 1 2 ~ aoi

b,, (x,y) =
~

dv
&2~i ——zooI

2

"We do not include here any threshold poles. Namely, those
poles which for energies very near threshold lie arbitrarily close
to the line Rel= —$ and have Rel& —$, but which move back
quickly into Rel &-$ as we increase the energy from threshold.
The contributions of such poles could be easily absorbed into the
background terms if instead of integrating along the lines Rev
= ——,

' we use the line Rev= ——,'+e with ~ chosen such that all
threshold poles lie to the left of Rel = —)+s.

We also have the result that b,, (x,y) =0 when either
x(4 or y(4. Furthermore, b,, (x,y) vanish when either
argument becomes infinite.

The representation (76) has some interesting features
other than its explicit crossing symmetry. We originally
started in (62) with a Mandelstam representation
which had subtraction terms even though we did not
explicitly write them down. We ended up in (76) with
an expression that has three Mandelstam-type terms
that need no subtractions plus the full contributions of
all the physical Regge poles in all three channels. By
physical Regge poles we mean those poles which for
some real interval of s, t, or I lie in the region Re/) ——,'."

Under the assumption we have made about the
asymptotic behavior of the residues y, , (x), it is easy
to check that (76) will lead to the usual Regge-type
asymptotic behavior for all channels. For example, for
large positive s and 3 near zero (i.e., u large and nega-
tive), (76) will have a term proportional to ass(t)
X(—s) '&'& which gives the usual Regge behavior.
However, there will also be terms proportional to pi„(s)
and unless these residues vanish faster than s 'i" we
would end up with an additional non-Regge-type
asymptotic term coming from these residues. Of course,
in our derivation we made use of the condition y, ,(x)

x '~' as x —+~. If, on the other hand, someone had
obtained (76) via another procedure, it is clear that the
crossing symmetric result in (76) will be in contradic-
tion with pure Regge behavior if y,„(x) x as x —+oo

and a& ——,'. Thus, our restriction on the y's seems to be
unavoidable. A similar statement could be made about
the necessity of having the trajectories move back into

the region Rel& ——,
' for large positive or negative s, t,

or u.
Near a resonance when Rem, =m, m a positive integer

or zero, and Imn, is small, the R functions in (76) just
combine to give us the usual Regge term proportional
to p,p., (s)/sin~n;.

In conclusion, we would like to stress that in this
paper we have been mainly interested in exploring
some of the consequences of the analytic properties of
the partial-wave amplitude as a function of complex
angular momentum /. Mainly we have shown the close
relationship between these properties and the analytic
properties of the coefficients of expansions other than
the partial-wave expansion as functions of their re-
spective indices. For simplicity of the discussion we
have started by assuming the simplest type of singu-
larities in the / plane, i.e., moving poles. However,
results similar to, but more complicated than, those
derived in this paper could in general be obtained if
one starts with more involved singularities in the l
planes (poles and cuts). Of course, again in that case
one will have to impose certain conditions on the nature
of these cuts.
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APPENDIX

In this short Appendix we shall give a few of the
formulas which relate the new residues y,„ to p, and o,
Here we note that 0;; stands for the position of the pole
in the l plane and P; is the residue (times L2uq+1])
of the partial-wave amplitude at l=o,;. The formulas
are the same for both the relativistic and nonrelativistic
case except for the fact that in the first case q'= &s(s —4)
and in the second q'=s.
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P. 2at
Yi2=

(2q') '—'gm

p.

r(-,'+,)

2!r(n,—1)

r(-'+ ')

The results are

p, 2-' r(-,+,)
Pi0

(2q2)-' g~ r(1+n,)
P' 2 ' I'(-'+ ')

Pil
(2q') ' 'V'~ r(n')

—-,'&Reo. &-''

p, 2(Ãt 2

(A1)

(A2)

those values of s for which n;(s) is a negative half-odd
integer. We recall that under the usual analytic prop-
erties of n, (s) this function is real for s on the physical
sheet only if s is real and —~ &s&4.

The imposition of this condition on P, (s) is not really
necessary. For the poles of y;, (s) resulting from the
r functions in (A1—3) do not lead to ghost poles of the
amplitude in the s plane. To see this let nt(sq)
= —(2m+1)/2 where rt is an integer. In that case
yt„(s) will have a pole at s=st. This will lead to an
additional term in (55) and the contribution of the
Regge pole will be now

(2q') '-'Q~ 2!r(n;—1) (2q') ' ' Q~
n, (,—1) r(n, + ',)-

Ren;) 2. (A3)
(-', —;)r(,+1)

The other y;„ for r=3, 4, , e; can be computed by
6nding the'residue of the function I(n;, v) at:the pole
v=n; —r. As in (15) the function I(n;, v) is given by

I(n v)=p; I',
~
1+—

~t
" 'dt, Ren, )——,'. (A4)

to 2q

In the discussion in Secs. III and IV we have as-
sumed that y;„(s) are regular in the cut s plane. How-
ever, if we continue (A1)—(A3) in s the gamma func-
tions r(~+n;(s)) will have a pole whenever s is such
that 0., is negative and half-odd integral. For the
simplicity of the discussion we did assume that we have
a ghost-killing mechanism similar to that of Gell-Mann
mentioned below (55). We took P, (s) to be zero for

f oo g—(n++)—r

R'=R(t; nt(s) —r)— dx. (A5)
S—Sy

Here ft„ is the residue of yt„at s=st. Both terms in
(A5) have poles at s= s~. However, it is clear from (56b)
that these poles exactly cancel each other and the
amplitude will have no ghost at s=s~. We can use R'
instead of R in (61) and (76).

Finally, we mention that the factors r(—',+n) also
appear in Gell-Mann's expressions for the residue
quantities g in Ref. 12, pp. 537 and 538. There again
one presumably assumes that the pole in F as o. —+
—~~(2n+1) is destroyed by a zero in the other factors.
Both in the present case and in that of reference 11 the
pole in I' for n= —

2 is destroyed by a (2n+1) factor
which is included in P. The problem discussed in the
last three paragraphs here will thus not arise in the
case of trajectories for which n(s)) —

2 for all s in the
interval — &s&4.


