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Derivation of Partial Amplitudes and the Validity of Dispersion Relations for
Production Processes~

D. 11RANSON, P. V. LANDSHORR, $ AND J. C. TAYLOR

(Received 20 May 1963)

Certain desirable requirements lead to an essentially unique definition for partial-wave amplitudes in
production processes. This defInition is given in concrete form and the case of particles with spin is treated.
An application is included as an example of the usefulness of the partial amplitudes. A dispersion relation
is given that is satisfIed by the complete amplitude and probably also by the partial amplitudes.

1. INTRODUCTION

' 'NVKSTIGATIONS of scattering amplitudes (corre-
~ - sponding to two particles coming in and two emerg-
ing) from the 5 matrix standpoint have reached an
encouraging stage. The formulation of the problem
of their determination now seems to be almost under-
stood, in terms of basic properties of analyticity, cross-
ing symmetry, and unitarity. Also, its solution gives
promise of being tractable, largely because it seems
possible to postulate so much analyticity for the matrix
elements. The problem of production amplitudes (where
more than two particles emerge), with which one is
concerned in its own right and also to complete the
scattering problem, is in a much less happy state. This
is partly because of the presence of so many more
variables and partly because of the complicated ana-
lyticity properties of the amplitudes, ' which are largely
the result of final-state interactions.

In the case of scattering, one prefers to work not
with the complete amplitude but with the partial-wave
amplitudes. Among the desirable properties of these are:

A. They seem to have an easy physical interpretation.
B. The series expansion of the complete amplitude in

terms of the partial amplitudes converges throughout
the physical region of the cosine of the scattering angle
and even also in a domain of the complex cose plane
surrounding the physical region.

C. They simplify the unitarity condition. (In fact,
since angular momentum is a constant of the motion,
they reduce by two the dimensionality of the integrals
occurring in the unitarity condition. )

The property A enables one to fix attention only on a
small number of partial waves: One can 6nd reasons for
supposing these to be much larger than others. A
corollary is that the partial-wave series is almost certain
to converge in the physical region of cos9, though to
extend the domain of convergence into the complex

plane, as in 8, one needs information about the ana-
lyticity properties of the complete amplitude (the
Lehmann ellipse); there must be no branch point in
the physical region.

In Sec. 2 of this paper we investigate partial ampli-
tudes for production processes with the requirement
that they satisfy the properties A, 8, C above. It is
found that these requirements lead to an essentially
unique de6nition of the amplitudes; one arrives, in
fact, at the prescription described in some generality
by Gunson and Taylor. '' A concrete definition is
given in Sec. 3 and in Sec. 4 an application is made as
an example. It is shown that the two-particle branch
points of the complete amplitude are two sheeted. This
is well known for scattering amplitudes, which im-
mediately leads one to suspect that it is true also for
production amplitudes. (Certainly in perturbation
theory the nature of branch points is independent of
the number of external particles. ) For simplicity, the
exposition of Secs. 2, 3, and 4 is con6ned to the case
of spinless particles and of three particles in the 6nal
state. In Sec. 5 we discuss the extension to the case
when particles with spin are involved; this involves
projecting the spins of the particles on to a "moving"
axis. In Sec. 6 we briefly mention some complications
provided by extra particles in the 6nal state.

We have said that we shall, in particular, require
convergence of the partial-wave series in some domain
surrounding the physical region. In some applications
one may be content with convergence for real, physical
values of the variables. After all, these are the only
values that have anything to do with physics and the
procedure of analytic continuation to the complex
plane is only a mathematical tool. We shall not enter
into a discussion of this here because the necessary
mathematical conditions for the convergence of a
partial-wave series, even in the physical region, seem
to be rather uncertain. ' Even when there is the limited
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FIG. 1. The pro-
duction process under
discus sron.

convergence there remains the question of whether one
is permitted to perform the operations (multiplication
of partial-wave series and interchange of order of in-
tegration and summation) that lead to property C.

We have said that the analytic properties of produc-
tion amplitudes are complicated. Analytic functions
have many powerful properties, such as being deter-
mined completely by specification of their values in a
very small region, but in practice the only usefulex-
pression of analyticity properties seems to be a dis-
persion relation. It is desirable that such a dispersion
relation involve only integrals over real contours and
this is not easy to achieve for production amplitudes. '
In Sec. 7, however, we give a prescription which, at
least in perturbation theory, does yield such a disper-
sion relation for the complete amplitude and would
seem to be useful for computational purposes. The
partial amplitudes probably satisfy similar dispersion
relations and in Sec. 8 we describe a method for deter-
mining the positions of the singularities of the partial
amplitudes.

2. KINEMATICS AND DYNAMICS

In this and the following two sections we confine our-
selves to a discussion of the case in which two spinless
particles come in. and three emerge (Fig. 1). The
momenta are as labeled in the figure and we take

p, =Pl, 'l=1 2 3.
There are five independent scalar variables which may
be chosen in a large number of ways. We shall define the
complete energy

and the orbital angular momentum of this pair with
respect to p~. A complication. is that the spin of the
(p&p3) pair is naturally measured in the center-of-mass

system of the particles p2, p3, while the orbital angular
momentum is naturally measured in the over-all center-
of-mass, and it is not simple to combine angular
momenta in different Lorentz frames. 7 Thus, instead
of the spin. of the (p2p3) pair, it is actually convenient
to use its helicity. '

This prescription is very useful for an approximate
calculation when the partial energy s& is chosen to be
near a resonance of the (p2p3) system and all other
interactions in the final state can be neglected. Other-
wise, the final-state interactions lead to difhculties.
Consider the singularities represented in Fig. 2, each
of which corresponds to final-state scattering and repre-
sents a singularity dependent on the variable s3. There
will be similar diagrams for singularities depending on s2.

Figure 2 (a) gives a singularity at

$3= fÃy F2

For 6xed s,s~ this does not represent a physical value
of s3, except that when

~2s (~1+~2)sl ~1(~lm2+~2 'm3 ) O) (2.4)

it is on the edge of the physical region. Thus, (2.4)
represents a surface of "end-point" singularity of the
partial amplitude, since the latter is defined by an
integral of the complete amplitude over the physical
region. Beyond the unfamiliar situation of leading to
physical region singularities of the partial amplitude,
the diagram of Fig. 2(a) does not lead to much trouble—
provided we can find the discontinuity across the corre-
sponding cut. It does give difficulties, however, if the

s= (kg+k2)'

and the three partial energies

s'= (p +pI)'
These satisfy a linear relation

s = sy+$2+$3 = (Bsy +tl$2 +ts3 ) ~

(2.1)

(2.2)

(2.3)
(b)

so that two more independent variables would be needed
to form a complete set.

To define a partial amplitude one integrates out some
of the variables, using suitable weight functions, and
so is left with a function of v continuous variables
(1 ~& v ~& 5) labeled by (5—v) discrete indices. A common
choice is to take as the continuous variables s and s~,
leaving three discrete indices. One of the latter will
certainly be the total angular momentum J, while the
other two will be related to the spin of the (p2p3) pair

(c)

Fio. 2. Some of the singularities that may occur
in the physical region.

7 A. Macfarlane, Rev. Mod. Phys. 34, 41 (1962).
G. C. Wick, Ann. Phys. (N. Y.) 18, 65 (1962); L. Cook and

B.Lee, Phys. Rev. 127, 283 (1962).
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two internal particles m&, m& can be replaced by two
other particles, of total mass M greater than (mt+ms).
The situation is similar for a multiparticle intermediate
state, Fig. 2(b), where we again call M) (mr+ms) the
total mass in the intermediate state. For sufficiently
large s, the corresponding singularity s3——M' comes
inside the physical region. Thus, the condition 8 of Sec.1
clearly cannot be met. Similar troubles come from
"anomalous" singularities in the physical region, ' for
example, the diagram of Fig. 2(c). As yet, little is
known as to how widespread is the occurrence of these.

The situation, then, is that it may be possible to find
some range of the variables s, s~ such that the require-
ments of Sec. 1 are met, but even this is not certain.
What is sure is that the range is not very extensive. To
get over the difficulties one retains all the partial
energies s; as continuous variables, with two discrete
indices. When the s; are specified, the three-momenta
in the over-all center-of-mass system are fixed, so that
the final state may be regarded as a rigid body. To
arrive at", the partial amplitude from the complete
amplitude, one integrates over two variables, which

may conveniently be angles describing the orientation
of the initial momentum with respect to the rigid body.
Except for kinematical singularities resulting from an
unfortunate choice of these angles, one then has ana-
lyticity in a domain in the four-dimensional complex
space of these two variables inside which the physical
region is contained. '

3. PARTIAL-WAVE AMPLITUDES

In this section we describe the "rigid body" partial-
wave amplitudes for three particles in the final state.
We give the consequences of parity conservation and
identity of particles, but for clarity of exposition defer
the question of spin to a later section. The work is, in
fact, a more detailed but less general exposition of
something first done by Gunson and Taylor. '' We
imitate many of the techniques of Jacob and Wick, "
and follow closely their notation and also that in Rose's
book on angular momentum. "

We first quote our main result. Take any polar axis
and azimuth plane fixed with respect to the final
momenta in the over-all center-of-mass system, and
define corresponding polar and azimuth angles O~, C for
the initial momentum. Our partial-wave expansion for
the amplitude is

The main object of this section is to show that J refers
to the total angular momentum and A. to its component
in the direction of the polar axis. The inverse formula is

I3gs(s, s,) = d(cosO)de I3(s,s, j O~C) I'gs(O. ,C) . (3.2)

The effects of parity conservation and of identity of
particles depend upon the choice of polar axis and are
considered at the end of this section.

First, consider the definition and normalization of the
three-particles states. The normalization convention to
be used is contained in the completeness relation

dpidpsdps
I 1 il »s) (p p 1 sl =I(3).

2coi 2or2 2co3
(3.3)

Here I(3) is the projection operator on to the three-
particle states in question, and the co; are the energies
of the individual particles.

We shall only require a particular projection of the
relation (3.3) as we work in the center-of-mass system
with given total energy E. Choose a system of axes
Ox' fixed in space and so define a set of Euler angles
n, p, 7 to specify the orientation of some set of "moving"
axes OXI'Z fixed with respect to the rigid framework
of the three center-of-mass momenta. Then we may
label the states by E, a&t, cps, a, P, y and we have

i
s,s, ; nPy)dsidssdnd (cosP)dy(s, s;; nPy i

32$

=~'(0)&(@—v'~)I(3) (3 3)

The angular-momentum states will be defined by

2I+1
is,s, ; JAM)=

Sm'
dud (cosP)dy

D~s'*( PV) Is,s'; PV) (3.6)

1
i E, N rQ&s j rxP'r)dM rdMsdQd (cosP) d'y(E j co]GDs j (xP'y

i

8
=P (Q)b (5—E)I(3), (3.4)

where (5g) are the total energy-rnornentum operators.
Alternatively, we may use the labels s, sr, ss, n, P, 7:

B(s,s;; OC) = P B~s(s,s,) &~s*(8,C').
J

(3.1) Following the notation of Rose's book, " the rotation
matrices are defined by

9 P. V. Landshoff, Phys. Letters 3, 116 (1962).' This result follows from the Jost-Lehmann-Dyson representa-
tion. See R. Ascoli, Nuovo Cimento 18, 754 (1960).

» M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
'2 M. E. Rose, E/ementary Theory of Angular MomerItum (John

Wiley 8z Sons, Inc. , New York, 1957). Note that our convention
is that, if the effect of a rotation through Euler angles o., P, y
appiied to a vector q (rather than to the axes) is to transform it
into q', then If s~~q)= ~q').

Dsrsr ~(aPy) =(JMiR p, i''), (3.7)

where the state vectors are ordinary (normalized)
angular-momentum states, and E p~ is the rotation
operator for a rotation designated by Euler angles n, P, y.
Using (3.7) and the unitary property RtR= 1, one can
deduce the effect of any rotation on the state defined
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in (3.6):

Rt„r
~
s,s, ; »M) = P Dm'~s((ql ) ~

s,s, ; J&M') (3..8)
fM'j &~ J

This equation tells us that J is the total angular
momentum and M its component along the (fixed) Os
axis. A may be visualized as the component of angular
momentum along the (moving) OZ axis. This may
be seen most easily by realizing that the functions
D~+J are familiar as the wave functions for a sym-
metric top, where the quantum numbers have the same
interpretation.

The completeness property of the rotation matrices,

(2~+1)DMA'(nPV)D~~" (n'0'7')
J ) M / ~( J I

h I ~& J
= 87r'8 (n —n') & (cosP —cosP') 8 (7—7'), (3 9)

leads to the inverse of Eq. (3.6),

~s,s;;np~)=P P P D~~'( Pv)ls, s';»M)
J iMi&J ih[&J (3.10)

At this stage it is necessary to introduce the initial
two-particle states. Our conventions are summed up
in the completeness equation

1
~
s; 8$)s '~'kd(cos8)dg(s; 8$

~

=8'(V)8(@—V's)T(2) (3 11)

and the equation

That is to say, the polar angles O', 4 are those defined
early in this section; and Eq. (3.1) is recovered if the
notation B(s,s, ; 04) is used for expression (3.13).

Finally, for completeness, we add that Eqs. (3.5)
and (3.11) imply that the differential cross section is

iB(s,s;; 04) ~'. (3.16)
8si8$28 (cosO) 84 16s3 'k

8 (cosO)
dS i.d$2dC'

Bsi8sg8 (cosO~) 84

would describe the angular distribution of p3.
If parity is conserved we must have

B(s,s; 04) = g'gB(s, s; 0 7r —4) (3.17a)

Particular Coordinate Systems

Thus far, we have not used any particular definition
of the axes OXYZ Axed relative to the Anal momenta.
The most convenient choice will depend upon the
problem at hand, but we discuss two obvious possi-
bilities. We give the consequences of parity conservation
and identity of particles for each of them.

A. Choose the Z axis along one of the final (center-of-
mass) momenta, say pa, and the Y axis in the plane of
the three final mornenta. Then the polar angle 0' is
simply the angle between p3 and the initial mornen. turn.
Hence, this might be an appropriate choice of coordinate
system if one particle were receiving special attention.
For example,

~s 8$) —P Fj~ (8$)
~

s JM). (3.12) where g(g') is the product of the intrinsic parities of the
initial (final) particles. We deduce from (3.17a) that

Here the polar angles 8, P define the orientation of the
center-of-mass momentum k with respect to the fixed
axes Obeys. The normalized spherical harmonics are
related to the rotation matrices by

D~os(&80) = [47rj(21+1)]'"I'J~*(8y)

We may now consider the center-of-mass matrix
elements

(s,s, ; nPyi Tis; 8y), (3.13)

where 5'=1+iTh'(ki+k2 —pi —p2 —p3), and transform
to the angular momentum representation with the help
of (3.10) and (3.12). Since the total-angular-momentum
operators commute with the T operator, we may write

(s,s, ; J&M ~T~s; JM)=8q~ 8~itr Bsz(s,sf), (3.14)

and then (3.13) becomes

Dii~ '(nfl) I'z~*(8&)Bz~(s,s,) . (3.15)

BJA(s, s~) = n'rlB J —A (s,s;) . (3.18a)

Hence, according as g'g= &1, the expansion (3.1) con-
tains only cosAC or sinAC.

If the particles with rnomenta pi and p2 are identical,
the syrrunetrized wave function is simply

~
s; sis2, »M)+

~
s; s2si, »M), (3.19a)

but it is not so easy to construct symmetrical states
for three identical particles in this coordinate system.

B. A more symmetrical choice of the Z axis, for
three-particle systems, is perpendicular to the plane Of
the three final (center-of-mass) momenta. The X axis
is conveniently chosen to bisect the angle between, say,
pi and p2. We denote the angles and quantum numbers
in this system by , 4, J, A.

If parity is conserved we have

B(s)s; O~C) = g'gB(s, s;; m —O~ 4) (3.17b)

[1—g'g (—1)s+~)Bsq(s, s,) =0. (3.18b)
As a consequence of the definition (3.7) of the rotation If particles pi and p& are identical, a symmetrical state is

~ ~ ~ ~ ~

matrices, 3.15 is equal to the right-hand side of Eq.
(3.1), where (8$) —& (84) under the rotation" E fi~ '.

~
s,sis2, 8$$)+

~
s, s2si, ir —8, ~+&, —P),
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Now define
BJlL(s)s )~

Egg(s, s;)=
1+2m p(s)As(s)

(4.3)

or

Fn. 3. The two-particle discontinuity, as given
by extended unitarity.

so that the corresponding discontinuity of E» is

BJA(+) BJL( )
dlSCEJ g = . (44)

1+2vrp(+)As(+) 1+2m p( —)As( —)

is,stss, JAM)+( —1)sis, ssst, J, —A, M). (3.19b)

Note that the quantum numbers A. and A. are funda-
mentally different. The only partial amplitudes that
coincide in the two schemes are 7=4=0 and 7=4=0.

Using the relation p(+)= —p( —), we can reduce this
to an expression whose numerator is zero because of
(4.2), so that Ezs actua'lly does not have the two-
particle cut. But,

4. AN APPLICATION

We now show, as an application, that the two-
particle branch points of production amplitudes are
two sheeted, as is the case for scattering. ' The basic
equation for this work is the extended unitarity condi-
tion" which, in diagrammatical language, gives the dis-
continuity across a two-particle cut to be Fig. 3. Our
method of attack follows closely that of Zimmermann. '

As suggested in Fig. 3, we are concerned with the
discontinuity across the cut attached to the branch
point s= (M+M )'. Extended unitarity gives this
discontinuity as"

B(+)—B(—) =p(+) A(+)B(—. )did

=p(+) A(—)B(+)dn, (4.1)

where 8, 2, respectively, denote the production and
scattering amplitudes and

s{[s (M—M—')'7[s —(M'+ M')'7) '~'

p(s) =

The labels (+) and (—) in (1) indicate whether the
functions are to be evaluated with s on top of or under-
neath the cut. The variables in 8 other than s are cot
to be taken round cuts [here we have in mind particu-
larly the normal threshold cuts associated with the
of partial energies, ' such as Fig. 2(a)7.

We insert in (4.1) the partial-wave decompositions
of 8 and A. For A we make the usual expansion

A (s,ce) =Qq (27+1)Aq(s)Ps(costs),

and for B use Eq, (3,1), Then

diss»
=4 p(+)A~(+)B~~( )=4 p(+)A~(—)Bs~(+)—
=2~p(+)[A~(+)B~~( )+A~( )B~~(—+)7 (4—2)

"D. I. Olive (unpublished).

Bs~=Ess. 1+As

2~s[(s—(M—M') )(s—(M+M')'-)7' '
X (4.5)

P
(+)~—
fm) ~

.A

FIG. 4. The branch point (3II+M'} corresponding to Fig. 3 and
the physical threshold P, with their attached cuts, draw@, in the
complex s plane. The discontinuity in Fig. 3 is evaluated between
the points (+) and (—).

hence, since the singularity at s= (M+M')' of Az is
two sheeted, so is that of Bg~.

This completes the proof that the complete ampli-
tude 8 is also two sheeted, except that we have ignored
one question. In order to pass from Eq. (4.1) to (4.2)
above we must examine the convergence of the partial-
wave expansion of B both at (+) and at (—). This we
now do for a particular case. I.et P be the production
threshold s= (mt+ms+as)', which marks the beginning
of the physical region for the amplitude 8. Suppose
that, as in Fig. 4, our branch point s= (M+M')' is the
only singularity on the right-hand cut in the s channel
that lies below P. We shall choose to evaluate the dis-
continuity in (1) an infinitesimal distance below P, as
indicated by the positions of (+) and (—) in Fig. 4,
with the partial energies fixed an infinitesimal distance
below their physical thresholds. If we further suppose
that these physical thresholds s;= (m, +m&)' represent
the lowest singularities in the s; channels, time-reversal
invariance then requires that 8 take complex-conjugate
values at (+) and (—). Thus, if we prove the conver-
gence of the partial-wave series at (+), it is guaranteed
also at (—).

To do this we use the result of Ascoli' that for
physical values of s,s;, the complete amplitude 8 is
analytic in some region R of four-dimensional complex
(cosO~,C) space analogous to the Lehmann ellipse for
scattering. [Ascoli actually works with variables differ-
ent from cosO, 4, so we have to check that we have not
introduced any kinematic singularities through our
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choice of variables. That we have not may be seen from
the fact that there is a one-one correspondence between
sets of values of (s,s;, cosO', C) and configurations of the
momenta. ] We start with this result for s at the
point A in Fig. 4, an infinitesimal distance above P, and
for the s; just above their thresholds. Then" the physical
region of cosO, 4» is contained well within R. Since 8 is
an analytic function, the boundary of R can only
change infinitesimally if we make an infinitesimal con-
tinuation in s, s, to bring s to the point (+) and the
s, just below their thresholds. Hence, the "physical"
region of cosO, C is still clear of singularities, which is
sufhcient' to ensure that the partial-wave expansion is
absolutely and uniformly convergent at (+).Thus, we
may derive (4.2) from (4.1) and also deduce that the
two-sheeted property of the partial amplitude is shared
by the complete amplitude.

Finally, note that we have shown that the two-
particle branch cut in the total energy s is two-sheeted;
crossing implies similar properties for the corresponding
branch points in the partial energies s;.

S. INCLUSION OF SPINS

We now briefiy discuss one possible method of intro-
ducing spins into the partial-wave analysis. We shall
work with coordinate system 8 of Sec. 3, so that the
polar axis OZ is perpendicular to the plane of the three
final momenta. We introduce quantum numbers Xi, X2,

X3 that are the components of the spins of the final
particles in the direction OZ; these are analogous to the
component A of the total angular momentum. To de-
scribe the spins of the initial particles we use their
helicities p~, p2.

Our main results in this section are the partial-wave
expansion and its inverse, Eqs. (5.6) and (5.7), the
completeness condition (5.9) on the three-particle
states, and an illustrative polarization calculation,
Eq. (5.11).

First, we define the three-particle states. As in Sec. 3,
define a set Oxys of axes fixed in space and a set OXI'Z
of "moving" axes that are 6xed relative to the Anal
momenta, with OZ perpendicular to all three of them.
Let n, P, y be the Euler angles that describe the orienta-
tion of OX' with respect to Oxyz, and R p~ the
corresponding rotation operator. " Suppose that the
momenta which transform into p, under R p~ are p, '.
Then Os is perpendicular to each of the p and so the
direction Os remains well defined if we make a pure
Lorentz transformation that brings any of the p to rest.
Hence, it is useful to define the single-particle state
IX,) to represent the ith particle at rest with the Os
component of its spin having eigenvalue X;. Let 1.(q)
represent the operator for the pure I,orentz transforma-
tion which takes a particle from rest to a state with
momentum q. We can then define the final states in

either of the two equivalent ways

I s,s, ; npy, li, X~X3)

2J+1
I s,s, ; JxX;iV) =

8x'
dn d(cosp)dy

XD "*(P~) Is,s' P»l ') (5»
transforming under rotations in exactly the same way
as the states in Eq. (3.8). It follows, once again, that
J and 3f represent the length and Os component of the
to/al angular rnomenturn; and A may be pictured as its
OZ component.

Equation (5.1) tells us that, with X= (Xi+4+&3),

I
s, s, ; n, P, y —2~; lI,;)=e" »

I s,s;; nPy; 'A;) .
Therefore, from the y integration in (5.3), 2A is even or
odd according as B is even or odd.

For the initial two-particle states we use the helicity
states

2J+1», '"
(Is; Jp,M)=

I
d(cose)dy

4~ i
xD~„'*(ygo)ls; 0&,~ ), (5 4)

where j= 1, 2 and p= p, &
—p2. This definition is in accord

with the phase convention for the helicity state of Wick'
rather than Jacob and Wick."

Inverting Eqs. (5.3) and (5.4) and writing

(s,s, ; J'AX;M'I Tls; Jp,M)
= 4s'8m~ (s;; AX~

I
Tq (s) I g~) ~

we obtain
2J+1», '"

(s,s, ; nP~, l, I TIs,gy, ~,)= g I D~;*(nP~)
JMA 4x )

xD „sQ00)(s;; Ali;I T (s)ly;). (5.5)

Using the fundamental properties of the rotation
matrices Lwhich follow from the definition Eq. (3.7)j
and introducing the symbol B for the amplitude,
Eq. (5.5) becomes

g»»» Pl@2 (s s. ~ If&O+Q)

2J+1 '"
Dz„s(CO»I')(s, ; AX,

I Tz(s) I p&). (5.6)
J,A

Note that (5.1) is not a product of independently de-
fined one-particle states, since the angles n, P, y depend
upon the set of all three Anal momenta for their
definition.

Definition (5.1) has the obvious but essential property
that

I s~s;
& npv, X»x2x&) =R~ev I

s&s~~000&)'»~2~3)~ (5. )

which enables us to de6ne angular momentum states
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The Euler angles C, O~, 4 are the transform of P, 8, 0
under the rotation" R s~ '. Therefore, O', C are just the
polar and azimuth angles of the initial center-of-mass
momentum k with respect to OX', as in Sec. 3. The
angle 4' corresponds to a rotation of the initial state
about the initial momentum. It is not measurable, and
occurs merely in a phase factor e l"~ throughout the
expansion (5.6). It will be relevant only if polarized
initial states are being considered, and it must disappear
from all final results of calculations of experimental
quantities.

The inverse of Eq. (5.6) is

(s, ; AA;
i
T (s) i p;)

2J+1 1/2

D „*(CO@)B, (s,s, ; CO'+)
4m.

Xd (cose)dC . (5.7)

Parity conservation results in the following general-
ization of Eq. (3.18b):

(s,s, ; Al,
I Tq(s) I

ai')
=gg'( —1)~+~(s, s;; AX,

i Tq(s) i

—y;). (5.8)

The completeness equation for the three-particle
angular momentum states follows from the obvious
generalization of Eq. (3.5) with the help of Eq. (3.9).
It is

�

8K dsyds2
is,s, ; JAR,M)(s, s, ; JAR;Mi

2J+1 32g

This equation would enable one to express three-particle
contributions to the unitarity equation.

The quantum numbers X, have an obvious relation
to polarization of the final particles perpendicular to
their plane in the center-of-mass system. However,
polarization in this direction would be rather difficult
to measure in an experiment. Therefore, as an illustra-
tion of the use of the X;, we calculate, in terms of the
partial amplitudes, the polarization of one particle,
say, particle 3, in the plane perpendicular to its rnomen-
tum p3 and the initial momentum k.

It will be convenient to choose the Ox axis to be
parallel to p3, instead of the possibility mentioned for
coordinate system 8 in Sec. 3. Then the direction in
which we are seeking the polarization, pa Xk, has direc-
tion ratios (0, —cosO, sinO sinC) referred to OXI'Z.
The polarization is the expectation value of the spin
operator in this direction in the rest frame of particle 3;
this direction is well defined, since it is perpendicular
to p3 and so unaGected by the pure Lorentz transforrna-
tion that carries the center-of-mass frame into this
rest frame. Let B(X3) be the scattering amplitude with
only its X3 dependence made explicit. For simplicity, we

suppose particle 3 to have spin ~2. Then the required

expectation value is, referring to Eq. (5.1),

-,'N(O, C) Q B*(X,)(z, iR.„-'

X [sinO sinC 0 z c—osOgrj. R~p~ i
X3')B (Xa')

=-;X(OC) P B*P„)(l,
i

X3,X3~

X [sinO' sinC 0.,—costa.„ji
lI,&')B(X3')

=2&(OC'){[iB(-',) i~—iB(—-', ) i'g sinO' sine

+2 Im[B*(——',)B(—,')j cosQ), (5.10)

where $(O C) = (cos'0~+sin'0' sin'C)'" Therefore, the
required polarization I'(s,s;; O'C) is given by

I'(s, s, ; OC)
a$$8$2a (coso) BC

lV(O~C) P {sinO~ sinC
32s'~'kzv Pl@8

X [IB»&2,ve'"'(~, ~, C'8+) I'—
I B~o 2,-ice'"'I'3

+2 cosO" Im[B»», pg"'"' B),g„g)g"'"'])) (5.11)

where m is the total number of initial spin states. Finally,
the expansion (5.6) should be inserted into (5.11).

6. EXTRA PARTICLES

We now briefly discuss the question of final states
with more than three particles. Coordinate system 8
is clearly not applicable because the momenta in the
final state are no longer in a plane, but system 3 can be
generalized. There is, however, a complication arising
from the dimensionality of space. This results in Gram-
determinantal relations among the scalar products of
the momenta which are quadratic in form. When these
are solved square roots appear and so specification of
the values of the variables does not 6x the con6guration
of the mornenta. In effect, one also has to specify the
signs in front of the square roots.

This may be illustrated most simply for a four-
particle final state. Any speci6cation of the total energy
and the five independent partial energies leads to tzvo

configurations of center-of-mass final rnomenta; one is
the mirror image of the other.

7. DISPERSION RELATIONS

As we have said in the Introduction, a dispersion
relation ideally includes only real contour integrals.
Another requirement is that for as large a part as
possible of the integration contour the integrand be a
physical quantity. One's first hope is to fix all the scalar
invariants except one and to obtain a dispersion relation
in the remaining one. Final-state interactions ("triangle
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FIG. 5. A schematic diagram of the physical region and the Wu
region in the real five-dimensional space of the I.orentz invariants.
The straight line defines the variable s in which there is a simple
dispersion relation.

singularities" ) make this impossible, however, ' because
complex singularities inevitably occur.

We here describe a dispersion relation for the com-
plete production amplitude which we hope may prove
useful. " Its validity, at least in perturbation theory,
follows directly from the work of Wu."Let us consider
again the simplest production process, Fig. 1. Wu has
discovered a certain convex region in the five-dimen-
sional space of the 6ve real independent scalar in-
variants, which we shall here call the Wu region. The
physical region for a given channel stretches away to
infinity and is disjoint from the Wu region (see the
schematic diagram of Fig. 5). Suppose P is a point on
the edge of the physical region, with coordinates

variable s, to be a real analytic function —that is, it is
real on some part of the real axis in the s plane. To-
gether with the results of Ref. 2, it further follows that
this, in turn, is the necessary and sufhcient condition
for cut-plane analyticity in z, with cuts only on the
real axis.

Secondly, for the dispersion relation to be useful one
wants the variables to take physical values for s~&0.
This demands that

(or one or more );=0, but this would make the line
miss the Wu region') and that the p;, ii,

' have suitable
values not greater than zero.

The characterization of the Wu region is not
simple" ";in the equal mass case it is bounded by the
normal thresholds and triangle singularities in each
variable. (In other cases it is more complicated"; if the
external particles are unstable it will not exist at all. )
Since it is convex and symmetrical among the variables,
the point

is at its center (all the masses being equal to unity).
Hence, we can easily give an example of a suitable
choice of variables:

Here s, s; are as defined in. Eqs. (2.1) and (2.2) and
t, , t are the momentum transfers

s= 9+s,
s, =4+-', s, (7 3)

Only five of the variables s, s;, t;, t are independent,
because of linear relations like Eq. (2.3). If we choose
Axed real numbers X;, p;, p to comply with these
relations, then for varying real s, the equations

(7 2)

define a straight line through P. The relation (2.3), for
example, implies

If the Axed numbers are suitably chosen there is a useful
dispersion relation in s.

Two points will be considered in making a choice.
First, the line will pass through the Wu region, as in
Fig. 4. It follows directly from the work of Wu" that
this is a necessary and sufhcient condition for the

amplitude, regarded as a function of the single complex

' Our dispersion relation is different from the parametric dis-
persion relation of Muraskin and Nishijima [Phys. Rev. 122, 331
(1961)g, which involves integration over va ues of the invariants
that take the momenta off the mass shell."T.T. Wu, Phys. Rev. 123, 678 (1961).

-15 -9 -8 -6 -5
~ ~

X&C

FIG. 6, Some of the singularities in the complex s plane
when s is defined by Eqs. (7.3).

'6 J. D. Boyling (unpublished)."S.W. MacDowell, Phys. Rev. 116, 774 (1960).

(This choice corresponds to the three final-state three-
rnornenta being equal and the initial momentum being
perpendicular to the production plane. ) For this choice
of variables some of the simpler singularities in the
s plane are shown in Fig. 6. Unfortunately, the discon-
tinuities across the attached cuts, though simple to
evaluate, " involve integrations of the amplitude for
values of the variables not confined to the line defined
in (7.3). This will complicate the application of the
dispersion relation.

One may expect to find a similar dispersion relation
for the partial amplitudes, for which the t;, t are inte-
grated out. The right-hand cut is presumably again as
in Fig. 6, but the left-hand cut will be replaced by the
analog of the "circle cut" for scattering partial waves. "
This cut comes from singularities of the complete
amplitude, such as normal thresholds, associated with
the variables t;, 3 . These produce singularities in the
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Fio. 7. The mo-
mentum vectors for
Fig. 1, drawn in four-
dimensional complex
Euclidean space.

integrals defining the partial amplitudes, by the
familiar "end-point" and "pinch" mechanisms. A
further discussion of this is the subject of the next
section.

8. SINGULARITIES OF THE PARTIAL AMPLITUDES

If one intends to make use of the analytic properties
of the partial amplitudes, either by means of a disper-
sion relation or otherwise, it will be necessary to know
their singularities. We here describe a geometrical
method for determining their position, "though we are
not able to supply a general method for deciding on
which Riemann sheet they lie, if any. We remark first
that some of the singularities of the partial amplitudes
Ltype (b) below) depend on the choice of polar axis.
In many applications these can simply be ignored be-
cause, although they are important for the individual
partial amplitudes, one often performs a summation
over the index A. and then any dynamical singularities
associated with the choice of polar axis must disappear.

Consider the vector diagram for the momenta in the
process of Fig. 1. The momentum vectors form the
pentagon ABCDE of Fig. 7, which is drawn in four-
dimensional Lorentz space. The figure is real for
physical momenta; we are also concerned with un-
physical momenta, in which case the coordinates of the
vertexes may become complex. In fact, it will be con-
venient to draw the figure in Euclidean space, so that
the coordinates are complex even for physical momen-
tum. In the center-of-mass system the vector BK, of
length Qs, is in the time direction, while the initial
three-momentum ir would be represented by the per-
pendicular from A on BE.The partial energies s~, s3 are
represented by the squares of the lengths shown in the
figure, while the momentum transfer mrs ——(Ps—ki)' is
the square of the length AC.

Our analysis of the singularities of the partial ampli-
tudes, as defined by the integral (3.2), is based on the
now familiar lerrima of Hadamard applied to Inultiple
integrals. " Let S=O denote the various surfaces in

' This method was developed some time ago by one of us in
company with J. C. Polkinghorne. %'e are most grateful to Dr.
Polkinghorne for allowing us to include a description here.

' J. C. Polkinghorne and G. R. Screaton, Nuovo Cimento 15,
289 (1960);P. V. Landshoff, J. C. Polkinghorne, and J. C. Taylor,
ibid. 19, 939 (1961).In particular, see the Appendix of the paper
by J. C. Polkinghorne quoted in Ref. 21.

or (b) "end point":

S=O, 0'=0 or

Notice that when. 0~=0 or ir the coordinate 4 becomes
redundant, so that one does not have to include in (b)
the extra condition BS/tlC =0. Also, since the integral
we are considering is, except for a phase factor, inde-
pendent of choice of azimuth plane, there are no end-
point singularities associated with C.

A third type of singularity may be produced by two
different surfaces S~ and S~ touching one another. The
equations for this are

(c) Si——Ss——0,

85285i BSg 852
+X = +X =0 for some 'A.

|3(cosa~) 8 (cosO) 84 84'

Notice that, in perturbation theory at least, there is an
additional condition on S~, S2 that one must correspond
to a Landau diagram" that is a contraction of the
Landau diagram for the other. This is so that the
Feynman parameters for S~, 52 at the contact be the
same. This may be seen to be necessary by inserting
the Feynman representation for the amplitude into the
integral and then considering the singularities of the
resulting multiple integral over cosO, 4 and the
Feynman parameters. This argument is probably valid
also outside the context of perturbation theory, since
Feynman parameters can still be assigned to the 5
surfaces. "

The Eqs. (a), (b), and (c) above can be solved
algebraically, but we give here a geometrical method
of solution. This is based on the dual diagram construc-
tion" for the surfaces S. For the simplest example,
however, we do not have to consider dual diagrams.
This is the case when 5 corresponds to either a pole or
a normal threshold, with equation

tea=Ã'.

Let us examine the conditions (a) above. The equation
S=O requires the length of AC in Fig. 7 to be equal to

ML. D. Landau, Nucl. Phys. 13, 181 (1959l; J. C. Taylor,
Phys. Rev. 117, 261 (1960)."J.C. Polkinghorne, Nuovo Cimento 23, 360 (1962).

(cosO, 4) space that are the singularities of the inte-
grand, that is, of the complete amplitude. (The singu-
larities of the complete amplitude that do not depend
on cosO, 4 are carried straight through into the partial
amplitudes. ) The necessary, though not sufhcient,
conditions for a given 5 to produce a singularity of the
integral are of two types:

either (a) "pinch":

BS BS
=0

ci (cosO~) 84
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FIG. 8. A triangle singularity.

A, while the other two equations require that it remain
equal to E when infinitesimal changes are made in
either cos0' or C or both. Such changes correspond to
a deformation of the pentagon ABCDE subject to the
lengths BE, BD, EC remaining fixed. They may be
achieved by fixing the points BCDE and displacing A
(there are two independent displaceinents, either in or
out of the three-dimensional space defined by BCDE),
which amounts to rotating the plane ABE about BE.
Such an infinitesimal rotation can only leave AC fixed
in length to erst order if C lies in the plane ABE.
Hence, we must construct ABCE plane and AC=X
which, in the equal-mass case, leads to the relation

cy's(3M +ss—s —Q )= (m' —ss)'m'. (g. ].)

C

FiG. 9. The dual dia-
gram for Fig. 8.

This equation gives the position of the singularity of
the partial amplitude. As we have said, we have no
general method for determining the Riemann sheet
properties of the singularity.

Although, as is explained above, the type (b) singu-
larity is usually not required, it may also be found.
One takes AC=)V and draws the momenta in the con-
figuration 0~=0 or ~. Suppose, for instance, the polar
axis is chosen along p~ so that p~ is parallel to the initial

Fzo. 11. (a) A tri-
angle singularity (b)
A normal threshold
singularity, obtained
by contracting the
line m~ in (a).

(b)

momentum k when 0=0 or m; this corresponds to D
being in the plane ABE in Fig. 7. Hence, one obtains a
relation among s, s~, s~ that is the equation for the
singularity of the partial amplitude.

Now we discuss the type (a) singularity correspond-
ing to Fig. 8. This figure represents a singularity of
the complete amplitude whose position depends on
f,s

——(ki —Ps)' and 4,'= (ks —Pi)'. Its equation S=O
may be found from the dual diagram" in Fig. 9, where
the lines m„m~, m, represent the internal masses and
the figure is drawn in a plane. We now embed Fig. 9 in
Fig. 7, as in Fig. 10, and seek the condition that in-

finitesimal displacements of A with BCDE Axed are
compatible with the presence of PA, PD, PC.

Describe the points in the diagram of Fig. 10 by
four-vectors with respect to some origin. We make

A —+ A+bA, so that P —+ P+8P

and keep B, C, D, E fixed. For PC, PD to remain fixed
in length to first order,

(P—C) fiP=O=(P —D) bP.

Fro. 10. Fig. 9 em-
bedded in Fig. 7.

FIG. 12.The dual dia-
gram for Fig. 11(a).
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and for PA to be unchanged,

(P—A) (bP —bA)=0.

But since P, A, C, D are coplanar we may write

(P—A) = X(P—C)+ts (P—D) .

Insert (8.4) in (8.3) and use (8.2) to get

(P—A) bA=O.

(c) singularity by two different surfaces Si, S . The sim-
plest example is when S1 is the surface corresponding to
Fig. 11(a) and Ss the surface corresponding to the con-
traction of Fig. 11(a) drawn in Fig. 11(b).The dual dia-
gram for Fig. 11(a) is drawn in Fig. (12), which is a plane

(84) figure. That for Fig. 11(b) is similar, except that the
line m, is omitted and no~, m, are collinear. The re-
quired value of s3, representing a singularity of the
partial wave, is obtained by including m, amd making

(8 ~) mb, m, collinear. This gives

Since the possible displacements bA are perpendicular
to the plane ABE, the condition (8.5) implies that P
lies in this plane. It is now only a matter of geometry to
determine what constraint this implies among the
lengths BE, BD, CE and so derive the equation in-

volving s, s1, sa corresponding to the desired singularity.
This is, of course, a tedious calculation.

Lastly, we give an example of the generation of a type

ss ——m, '+mb'+ (mb/m, ) (m +m, —Ms') . (8.6)

When (8.6) is satisfied the surface Si, Ss actually do
more than touch in (cosO,C) space; they coincide.
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A representation of a scattering amplitude is described in which asymptotic behavior of the Regge type
is exhibited in crossing symmetric form. It is based on Legendre transforms, which have similar meromorphy
properties to partial wave amplitudes but use variables of the type (s —2m')/2m' instead of the cosine of
the scattering angle. The representation obtained is another example of a class that has similar features
to the crossing symmetric Sommerfeld-Watson transformation developed by Khuri and based on coefficients
of a power series.

REPRESENTATION that retains the crossing

~ ~

symmetry of the Mandelstam representation
while incorporating the high-energy features of scat-
tering amplitudes given by the Regge representation
has been recently derived by Khuri. ' His work helps
to provide further justification of an approximation
suggested earlier by Chew. ' It is the purpose of this
paper to note that a representation with similar charac-
teristics to that of Khuri can be obtained from Legendre
transforms of scattering amplitudes. ' In particular, a
lack of uniqueness is noted and it is suggested that this
may give a valuable flexibility for the application of
Khuri representations in practical calculations.

Legendre transforms' diGer from partial wave ampli-
tudes by the choice of variables of integration. For equal

masses, de6ne x; by

s= 2m'(1+xi), t= 2m'(1+xs), I=2m'(1+x, ), (1)

1 "dxi At'(xt, xs)
A'(xt, xs) =-

'r X1 S]

1 " " dxt'dxs'p(xi', xs')

1 1 (xi xi) (xs x2)

with xt+xs+xs ———1. In the first instance we assume
that the Mandelstam representation holds without sub-
tractions when x,(1,i =1, 2, 3. Write the amplitude A
in three parts corresponding to the three spectral re-
gions, and consider one such part, Ass written 2'(xt, xs),

*Sponsored in part by the U. S. Air Force Ofhce of Scientific
Research, OAR, through the European Once, Aerospace Research,
United States Air Force.

'
¹ Khuri, Phys. Rev. Letters 10, 420 (1963).' G. F. Chew, Phys. Rev. 129, 2363 (1963).' R. J. Eden (to be published).

Define the single Legendre transform 8(lt,xs) by

1
I3 (/1)xs) = dxi Qtr (xi )+ i (xi )x2) y (3)


