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Neutral Scalar Theory with Recoil*

V. BARGER) AND E. KAZES

Physics Department, The Pennsylvania State University, University Park, Pennsylvania

(Received 11 June 1963)

Using the fixed momentum-transfer dispersion relation without subtraction and introducing a cutoB in
the dispersion integrals for "pion" energies larger than (gap)'", the amplitude for scattering of "pions"
(scalar and neutral, mass p) from "nucleons" (spinless, mass 3I))ti) has been calculated. The advantages
gained by this approximation are primarily analytical: (a) The scattering amplitude can be solved in terms
of s and p waves alone for pion energies & (mfa)'"; (b) the full effect of the p waves and of their ambiguities
on the s waves is displayed. The connection between the Castillejo-Dalitz-Dyson ambiguity and the unstable-
particle interpretation has also been established in a special case.

I. INTRODUCTION

' QARTIAL —WAVE dispersion relations for unequal
mass particles are complicated by the presence of

complex singularities and by the presence of a left-hand
cut whose strength can only be determined after all the
partial waves are known. ' ' It would be interesting to
find some model or approximation which leads to the
scattering of a few partial waves and which might
display the effect of the interconnection among the
differential partial waves that is always present in a
relativistic, crossing symmetric theory. Although such a
model is bound to be de6cient, it may still shed light on
a problem whose solutions seems far in the future.

A guide to a suitable approximation is the observation
that all static models lead to the scattering of a few
partial waves. ' " Since a static model is physically
equivalent to ignoring virtual processes of energy large
compared to the target mass (when the latter is much
larger than the mass of any other particle relevant to
the analysis), the same simplification should result if
cutoff's are introduced into the fixed momentum-transfer
dispersion relation. In particular, for the scattering of a
neutral scalar "pion" of mass p from a spinless
"nucleon" of mass SI, the pole term of the fixed mo-
mentum transfer dispersion relation (without subtrac-
tion) yields comparable s- and p-wave amplitudes but
d-wave scattering which is comparatively reduced at
low energies by a factor of oi/3I. Examination of this
fixed momentum-transfer dispersion relation in the next
section shows that when the dispersion integrals are
dominated by the range p(oi&(3fti)'t2, they admit
solutions containing s and p waves alone in the same
range. Only such solutions have been singled out in
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II. SCATTERING EQUATIONS

For the scattering of a neutral scalar pion from a
spinless nucleon, the fixed momentum-transfer disper-
sion relation is

1 ~ 1
T(S,t) =g2 + i+-

M2 —S S+t 3f' 2ttsf 2r —(sr+„—l ~

&(ImT(s', t) + ~, (1)
s' —s—ie s'+s+t 2M' 2tt'—f—

where s and t are the usual Mandelstam variables. If q
and 8 denote the center-of-mass three-momenta and
angle for pion-nucleon scattering, then

$= ((g2+tt2) i 2+($2+~2) lt2)2—=Pj'2

t = —2q2(1 —cos8) .
(2)

As defined in Ref. 3, a generalized R function of g is any func-
tion which is meromorphic in the cut p plane and whose imaginary
part has the same sign as the imaginary part of p. Henceforth, we
shall refer to a function with this property simply as an "E
function. "

9M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(1961).

this work. In terms of Feynman diagrams, the range
tt&~o&(Mtt)'t' corresponds to ignoring nucleon-anti-
nucleon loops and to limiting the number of virtual
pions. For such solutions the complex singularities of
the partial-wave amplitudes are not present.

Using inelastic unitarity the s- and p-wave dispersion
relations resulting from these approximations are shown
to be generalized R functions. ' The solutions of the
integral equations for the partial-wave amplitudes con-
tain a number of free parameters which include the
unknown positions of the zeros of the amplitudes. If the
latter are specified, the magnitude of the residues of the
corresponding CDD poles cannot be arbitrarily large in
this model. The CDD ambiguity of the p waves affects
the upper bound of the residues of the s-wave CDD
poles. By analytically continuing the partial-wave
amplitude to the second Riemann sheet the correspond-
ence between CDD poles and their unstable particle
interpretation is also noted for this model. '
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For our purposes it is more convenient to use the labora-
tory energy of the incident pion ~ which is linearly
related to the square of the center-of-mass energy s by
the equation

s=M'+ p,'+ 2M(o.

The connection between the center-of-mass momentum
and the laboratory energy or is

partial waves which are at least (tz/M)'t' times smaller
than the s or p waves, as will be made clear below. This
is a reasonable expectation for a cutoff model with large
nucleon mass since all known static theories lead to the
scattering of a few partial waves. Since

T((o,t) =
I T(a&,0)+tT'((a, O)j

+I T(s),t) —T((v,O) —tT'(co, t)j,
0) P

pl
2

1+(tz'/M')+ (2(u/M)

The invariant amplitude is given in terms of the
partial-wave amplitudes by the expansion

where
&2i Rebel (o0)g

—2 Immi (co)

2i

Evaluating T(cu, t) and its derivatives at t=0 from
Eq. (1) and using Eq. (2) yields

gzp, z 1 2 "de' ~' ImT(&u' 0)
T(cu, 0)= +-

2Mz ~z (tzz/2M)z zr (O~z 4)& ze

g' 1 2 "dco' cv' ImT'(&o', 0)
T'(a, O) =—

4M' L~—tz'/2M(' zr cu"—(u' —ze

1 1 "d&u' ImT(a&', 0)
(6)

2&m (cv'+(v) '

g' 1 2 "d~' ~' ImT" (u', 0)T"(a),0) =
4M (CO tz /2M) Zl (d G) Ze

1 1 "da)' ImT'(a&', 0)

3f x ((d +M)

1 1 "d~' ImT(a&', 0)

2M' zr „((u'+(g) '

The basic assumption of this work is that when M
becomes very large, those solutions of Eq. (6) which
satisfy

(uMT" (co,0) T'(co,0) T(co,0)/tz' (7)

are the solutions of physical interest. This assumption is
based on a comparison of the pole terms of the above
equations. The solutions for T(a&,0) and T'(&u, O) obtained
on this basis are readily shown to contribute terms
proportional to 1/M' when substituted into the last
two integrals on the right-hand side of the equation
for T"(co,0). We cannot exclude solutions violating
Eq. (7) on mathematical grounds alone; however, for
energies ~& (Mtz)"' this choice results in d and higher

a comparison of the 6rst and last terms in the range of
convergence of the power series in t reveals from Eq. (7)
that

or, equivalently,
(~2 p2

T((u, t) = T((v,0)+tT'((v, 0)+0 tT (~ 0)I ~ (8)
Mco

The contributions of T'"(&o,0) and higher derivatives to
the right-hand side of Eq. (8) involve higher powers of
(&u' —tz')/Mco which is a small quantity for the energy
range of interest in the following treatment. Since closed
nucleon loops have been ignored, the unsubtracted dis-
persion relations assure that the power series in 3 con-
verges up to 4 Mp, ";however, since

I tI &4q'&4(~' —tz')
in the physical region, it follows that for co2(Mp the
power series in t will converge for all scattering angles.
By cutting off the dispersion integrals above (Mtz)'~'

jkeeping less than (Mtz)'t' pions in intermediate states),
it will suKce to keep the first two terms of Eq. (8).
For &o'&Mtz, keeping s, p, and d waves in Eq. (5) and
comparing with Eq. (8) reveals that the d and higher
partial-wave amplitudes are (tz/M)'~' times smaller than
the s- and p-wave amplitudes. For this reason we confine
our attention to the energy range co & (Mtz)'~' and retain
only s and p partial-wave amplitudes.

From Eqs. (6) and for M))tz, it follows that

g'tz' 1 "d(o" ImT((u', 0)
T(cu, O) =

2M2~2 ~ 2 ~~2 ~2
(9)

g' 1 "d(u" ImT'(cv' 0)
T'(a), 0) = — +—,(10)

4~2~2 ~ g ~~2 ~2 2 6

which is the basis of the development to follow. From
Eqs. (4), (5), and (8) we see that for ~'&Mtz

T(~ 0) = (lf'/2V)I:fo(~)+3fr(~) j
T'(~ 0) = (3~/4C')fr(~) (12)

The usefulness of 6xed momentum-transfer dispersion
relations in obtaining partial-wave dispersion relations

' From the Mandelstam representation the absorptive part
of the amplitude ImT(co, t) is real provided that 4@M &t&4p'. —
When Xg loops are excluded, this range is increased to—4'(t&4M'. A convergent power series expansion in t is
restricted by the corresponding intervals.
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must be attributed to the dominance of low-energy
contributions to the integrals of Eqs. (9) and (10),
because a partial-wave decomposition of T((o,t) is
practical only so long as a manageable expression for
T(&u, t) for 0&—t&4q2 can be obtained. For instance,
when co)M the first two terms of Eq. (8) may not be
sufhcient, which also then invalidates Eqs. (11) and
(12). After the introduction of inelastic unitarity in the
following section we shall see that it can be also used as

0 ~

where pi(~) —=4(I2/3W. Referring to the CDD paper, the
most general solution for Hi(f ) is

Ci l
"d~"p, (&u')Ri((o')

Hi(f) =A it +It i+ +——

2r p~ cv (M t)

g' 1 "da)" ImT'((u', 0)+-
4M l2

(13) C1=0,B,=0,

a cutoff in the spirit of our approximation.

III. SOLUTION FOR P-VfAVE AMPLITUDE To satisfy property (iv), we must demand that
Hip')

~ r o
——0 and dHi(t )/dl ~

r=2
——4M'/g'. Imposing

The right-hand side of Eq. (10) defines an analytic these conditions leads to the following values for con-
function stants of Eq. (18):

such that for co') p,
'

lim Ti((02+i&) = T'(a),0) .
a ~0+

Since Im fz&0, it follows from (5) that ImT'(u, O)) 0.
Hence, it is readily seen that Ti(l) is an R function of

Defini.ng for ~&t2,

Im T'((o,O) 4g2
Ri(co), (15)

i
T'(a&,0)i' 3W

it follows from Eqs. (5) and (12) that, for a&2&Mti,

Ri(cv) is the ratio of total to elastic p-wave cross section.
For cv2&Mti a simple interpretation of Ri(&u) cannot be
given since T'(~,0) is no longer the p-wave amplitude.
However, in this region Ri((d) affords a natural way of
introducing the necessary cutoff on the integrals.

Ti(f) has the following properties:

(i) Ti(g) is a real analytic function, Ti(f*)= T,*(l),
except for a cut for real |in the interval (p2, ~).

(ii) As 1 ~ ~ away from the real axis, Ti(P) tends to
zero as 1/f.

(iii) Ti(f) is an R function of t Thus, Ti.O') can have
zeros only on the real axis. Ke denote the position of a
zero by f,i, 2= 1, , e. Inspection of Eq. (13) reveals
that t';i) 0. Since the derivative of the integral term of
Eq. (13) is positive in the interval (O, t~ ), there can be
at most one t,' in this interval. Furthermore, Ti(f') can
develop no poles in this interval.

(iv) Ti(f) has a simple pole at 1=0 with residue

(—g'/4M').

Since, in order that Eq. (18) be an admissible solution
to the integral equation (13), Ai cannot be negative,
there exists a weak interrelationship between physically
allowed values of g', Ri(a&), and the 51 through Eq. (19).

For l in the interval (O,t22) the derivative of Hip')
is strictly positive. If one f; does lie in this interval,
then it is easily seen from property (iii) that its residue
(R' must be such that Hi(ti2) &0

It is noted from Eq. (13) that

Ti(|.)+g'/4M't. (20)

dT20)ldf I r=r = 1/3" (21)

Furthermore, for t22(l (Mti, the real and imaginary
parts of T& are related to the phase shifts by

is also an R function. A solution Ti(f) which itself is
an R function does not necessarily satisfy this require-
ment. This may place additional restrictions on the
residues (R . For example, the condition that (20) be an
R function in the neighborhood of CDD poles results
in the requirement

4M'/g') S.,'/(f, ') ',
which, however, is already contained in Eq. (19) since
Ag) 0.

In the vicinity of a CDD pole the derivative of the
amplitude is positive definite since

We briefly construct the solution for TiO) using the
method previously given by CDD. Introducing the
function

ReTi(t)= sin2 Retitt)e ''
Sq'

(22)3'
ImTi(t ) = (1—cos2 Reb(f )e 2 ™(r'$

Sq'which is also an R function, it follows from Eq. (15)
for real t Wf that

ImH i(cv') =pi((v)Ri(co),
Thus, ReTi(t) must pass from negative to positive

(17) values whenever Ti(f)=0 and the real part of the
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phase shift passes through a multiple of m-. The inelastic
phase shifts also vanish at the point f= f' I.n going
from one singularity f to the next, the real part of the
phase shift increases by a multiple of n. (not necessarily
m as is the case in models which allow no inelastic
process).

IV. SOLUTION FOR 8-WAVE AMPLITUDE

assumed to be small,

lim Tp(f') =D.

If the scattering amplitude has zeros at t,' (note that
all fcP)p' since D)0), then the solution having the
required analyticity and obeying unitarity is

We introduce the function

Tp(co) = T(co,0)—2q'T'(co, O), (23)

"
dco "pp(co') Rp(co')

Hp(t') =&p+-
7i CO GO

which for p'&co'&Mp, is trivially related through
Eqs. (11) and (12) to the s-wave amplitude,

Tp(co) = (W/2g) fp(co) . where

+t Q, (30)
' f"(f" t-)—

1 "dco"pp(co')Rp(co') 61 P 1
+2 — (31)

7l p CO D
Substituting Eq. (23) into Eq. (9) and making use of
Eq. (10), the integral equation (9) can be cast into the
following form:

1 g' ( 2p')
Tp(co) =

(
1+

1+2co/M 2M'k co&) y,
' "dco"pp(co')Rp(co') 8, p

Bp+— +p' Q &0. (32)
co'2(co'2 —~2) ' f P(f. P —~2)2 "dco" ImT'(co', 0) 2 coco'+y')—

(1+2co'/3l) 3I co'+co ) Combining Eqs. (32), (31), (17), and (16), the explicit
form of this restriction is1 "dco" ImTp(co')

(») g' 2 "dco"p (co')Ri(co')- '
+-

-2M' m. „'
~

Hi(co"+ip)
~

'
6) M 2E'

Letting

Since Tp(f))0 and dTp(f')/df)0 for real t in the
interval (O,p, '), it suKces to choose

g2 2 00

D= +— dco" ImT'(co', 0) .
23P m

(27)

This approximation introduces errors for co M which
are not of concern since outside the range p &co & (Mp)'~',
Tp(co) is not simply related to the s-wave amplitude.
Thus, one can define a function

"d~"c p(~')Rp(~')
I
Tp(~')

I

'
T (t-) =D+- , (28)

such that for 3IIIJ)co'&p', lim, p+ Tp(co'+ip) is the
function of physical interest. The solution to Eq. (27)
is obtained by the introduction of the function

H.(f)—=—1/To(l-), (29)

where again both Hp(f') and Tpo) are R functions. Since
the high-energy part of the dispersion integrals is

ImTp(co)/( Tp(co) I'= pp(co)Rp(co) «» co&p, (26)

where pp(co) =2q/II, it follows that Rp(M) can be inter-
preted as the ratio of the total to the elastic s-wave
cross section for IJ,'&co'&3'. With the assumption that
the region co'&Mp, dominates the dispersion integrals,
a good approximation to the inhomogeneous terms of
the integral equation (25) in this range is the constant

1 "dco"pp(co')Rp(co') 64P)— +P . (33)
p~ GO P

The CDD ambiguity of the s waves (61,P,f;P) is in-
fluenced through Eqs. (18) and (33) by the CDD
ambiguity of the p waves ((R,f,'). lf the positions of
the respective poles 1;i, fP are regarded as fixed param-
eters, then larger values of the R allow larger values
oftheR .

From Eq. (28) it is easily seen that

f(T.O-)-D) (34)

is also an E. function. The consequence of this require-
ment is easily established for t in the neighborhood of|P, for example, and yields

1/D) (Rcp/f cp, (33)

which is already contained in the inequality (32).
Whether or not additional restrictions follow from the
requirement that (34) be an R function has not been
established.

The solutions for Ti and Tp given by Eqs. (18) and
(30) do not tend uniformly in the limit of infinite
nucleon mass to the CDD solution of the recoilless
model. However, the CDD s-wave solution can be
obtained from the integral equations (13) and (28) by
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taking the infinite M limit and choosing the particular constant. For the case that we analyze below, only the
p-wave solution Ti 0—.— real part of g turns out to be of physical interest.

From Eqs. (18), (37), and (38)
V. CONTINUATION OF THE SCATTERING

AMPLITUDE TO THE SECOND
RIEMANN SHEET

According to Peierl's suggestion, unstable particles
may be associated with poles of the scattering amplitude
in the lower half plane of the second Riemann sheet. "
We investigate this association within the framework
of the p-wave solution of our model. Since Hi(f) is an
E function, it cannot have zeros on the first sheet off
the real axis.

The second sheet is defined by

H, (g+se)—=H, (|—se) =H, (g+2e) —22pi(g) (36)

g,2

1 "da&"pi(o)')R,((v')
=Ai+-

0) ZV '

g,2

1 4+2 P=-4i+-, , (t i(~')Ri(co'))

(g).2 /tt2)1/2

+p —4i
s (t' ~")' 3f

which by partial integration on cv" becomes

(39)

.8(i —t ')"'
H,zz(f) =H, (i) 2— (37)

As pointed out by Chew, "if R,' is not too large, then
the rapid variation of Hi(t) in the neighborhood of a
CDD pole should produce a zero of Hizz(f) near f,'
As is clear from Eq. (19), very large values of the 5l
are not compatible unless associated with large t,' The.
location of the zeros of Hizz(t) for intermediate values
of the R is a detailed question which will also involve
a knowledge of the ratio of the total to elastic p-wave
cross section.

Let the zeros of Hizz(t) be at t =w'2 We defin. e in

analogy with Eq. (13) and (16) the coupling constant

g; of an unstable particle through

for real t in the interval (t 2,Ezs) where Er is the in-
elastic threshold. " It is consistent with our previous
arg™n~s to approximate pi(f)= 4q'/—3W in this in-
terval by 4(cps —p2)2/2/3M. It is possible to construct
Hirz(t') in the whole complex i plane through the
equation

(ii,i (so 2 tt2)1/2

+Q 4i—
,1 ~ .2 2 M

(4o)

Hi"(wp) =0.

Assuming y((x, Eq. (41) yields

Hi"(x+ieo(y))+iy H (i+xi g(—ye)) =(), (42)
4$

since p~ and E~ vanish at the lower and upper limits of
integration, respectively. Inspection of Eq. (40) reveals
that the real part of g is not necessarily positive.

If the position of the zero z ' of B~Ti is sufficiently
close to a pole t,' of Hi' then the CDD pole term will
dominate the right-hand side of Eq. (40) and RegP
will be positive.

To investigate the identification of a COD pole with
the presence of an unstable particle in the case of
narrow partial width, we write wP=x+iy, where by
definition

dHi"(f')
(38)

where e ~ 0+. From Eq. (42) it follows that

d
ImHi"(x+see(y)) = —y Re—Hizz(x+ieg(y)), (43)

It should be noted that, in general, m,' and g,' as defined
in this manner are complex numbers. This definition
of the coupling constant squared as the residue of the
pole on the second Riemann sheet differs from that
given in Ref. 9. However, for poles near the real axis,
Reg corresponds to their definition of the coupling

n R. F. Peierls, in proceedhngs of the f954 Glasgow Conference
on unclear end Meson Physscs (Pergamon Press Inc. , New York,
1955), p. 296.

"If the continuation to the second sheet had been made across
the branch cut above the inelastic threshold, then the factor RI(g)
would appear in the last term of Eq. (36). The analytic properties
of R&(f) are unknown and might very well preclude the construc-
tion of such a H~ (i) in the whole complex f plane. In fact, we
know that R& (g) cannot be analytic in the entire t. plane since it is
constant in the interval (n2, E/2).

'3 Q. F. Chew, Lawrence Radiation Laboratory Report,
UCRL-9289, 1960 (unpublished), p. 56. See also Sec. 11of Ref. 2.

and from Eqs. (43), (36), and (18) we obtain

ImHi"(x+iee(y)) = —p, (x)L2—R,(x))0(y) (44)

which in view of earher remarks can be reduced to

ImH, "(x+Ze/)(y))
= —4(x—p')'/'/3MX[2 —R (x))8(y). (45)

From Eq. (38) we have the approximate relation

Re(d/dx)Hi"(x+se&(y)) = Re4M'/g p (46)

and combining this with Eqs. (43) and (45) gi~es

y=(«g"/3M2)(x —
t 2)"'L2—Ri(x))e(y). (47)
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E~——1 at a CDD pole; if the residue of the latter is
small, x can be expected to be near the position of the
pole and Er(x)=1. Consequently, for the consistency
of Eq. (47) we see that a zero of HP near the real axis
can exist only if Reg,' is positive. Furthermore, if H&"
vanishes at x+iy for y(&x, then from Eq. (47) it also
has a zero at the complex conjugate point x—iy."The
real part of the Eq. (42) gives an implicit equation for
the value of x. The square of the "mass" corresponding
to this pole is

( iy
mP=M'+p'+2M( x'~'+ (48)

Since the time development of any quantum mechanical
system is given by e ' ", the identification of y/x'~'
with the inverse lifetime of an unstable particle follows
for the zero of B~"with y(0.

The foregoing considerations apply to CDD poles
which cause the scattering amplitude to develop zeros
on the second sheet at points f' for which Rel )y' Sinc.e
HF'(x+i )eis real for 0&x&p', we conclude from
Eq. (43) that y=0 at a zero of Hirr with 0&Ref'&ii'.

Although the presence of a CDD pole term in the
inverse amplitude H» may cause H~" to develop a zero,
the correspondence may not be one to one. In other
words, II&" may have extra zeros which are not directly
associated with the CDD ambiguity. For instance, in
the I.ee-Serber solution for the charged scalar theory
(no CDD ambiguity present) the scattering amplitude
has a pole on the second sheet at a point on the real

'~ R. Jacob aud R. G. Sachs, Phys. Rev. 121, 350 (1961).The
singularities on the second Riemann sheet of the propagator
considered in this paper also occur symmetrically placed with
respect to the real axis.

axis in the interval (O,ii'). Such zeros arise from the
nature of the forces and are not of kinematical origin. "

VI. DISCUSSION AND CONCLUSIONS

The approximation that is central to all the foregoing
is the neglect of processes of energy cu& (My)'~'; hence,
our results are only valid for y&~&(Mp)"'. Since we
are considering large values of M, this includes a con-
siderable range of energies. The description of the s- and
p-wave amplitudes in terms of R functions is clearly
the result of our approximations since, in general, the
partial-wave amplitudes are known to have complex
singularities on the first Riemann sheet. Nevertheless,
the strength of the complex singularities may not
be sufficient to change drastically our results for
ii((u& (Mp)'~'.

For given zeros of the p-wave amplitude the residues
of the corresponding CDD poles cannot be arbitrarily
large as seen from Eq. (19).Although CDD poles with
small residues (narrow widths) may be associated with
the presence of unstable particles, it is not clear whether
they lend themselves to a simple interpretation when
the residues become as large as allowed. At a CDD pole
the real part of the phase shift passes through a multiple
of ~ and the imaginary part of the phase shift vanishes.
Thus, with an unstable particle interpretation of the
CDD ambiguity, the partial-wave amplitude in the
corresponding angular momentum channel must vanish
near the energy at which the unstable particle is
pl oduced.

The authors thank Dr. P. Signell for enlightening
comments about singularities on the second Riemann
sheet.
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