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The ground-state energy of a system composed of an arbitrary number of nucleons coupled to a meson
field is investigated. In the investigation, the nucleons are treated as an external source coupled to the meson
field. Thus, only the mesons are treated as a quaritum field and the ground-state energy is the energy of the
zero-meson state. By using Fredholm determinants, the energy of the zero-meson state for the coupled
source-field system is calculated relative to the energy of the zero-meson state for the noninteracting source-
field system. The ground-state energy of this system is used to define the two-nucleon potential. This poten-
tial is calculated for two static nucleons coupled to a neutral scalar field and to a symmetric pseudoscalar
field. In the case of the neutral scalar field, the well-known exact result is obtained. For the symmetric
pseudoscalar field, the result is in good agreement with the potential studied by Gartenhaus.

I. INTRODUCTION authors, notably Brueckner and Watson' and Henley
and Ruderman. ' The method used by these authors in-
cluded calculation of the field-theoretical scattering
amplitude for two nucleons and substitution of this re-
sult into the Lippmann-Schwinger relation. The latter is
an integral relation between the scattering amplitude
and the effective potential. Thus, the potential is defined
as the kernel that gives the proper scattering amplitude
for two nucleons.

It should be mentioned that Brueckner and Watson
use a more elaborate method of calculation, which
includes many effects that occur in higher orders.
Despite the difference in the Brueckner-Watson and
Henley-Ruderman techniques, their results more or less
agree. Both use the results of the Foldy-Dyson trans-
formation, which gives the low-energy pion-nucleon
interaction used in their calculations. Brueckner and
Watson argue that the pair term is suppressed, so the
interaction finally used is that between static nucleons
with a gradient coupling to the pion field. The calcula-
tion includes only fourth-order terms; higher order
terms are assumed to be of such short range that they
lie well within the region of the phenomenological re-
pulsive core.

There are a number of objections to the foregoing
method of calculation. One objection is the uniqueness
of the solution of the Lippmann-Schwinger equation.
Also, it certainly is not to be assumed that the scattering
data should ultimately yield all the bound-state proper-
ties of the two-nucleon system. In line with the unique-
ness problem, there are ambiguities as to what types of
Feynman graphs are to be included in the calculation. '
Such a situation seems to call for a more precise de-
finition of the potential and for an unambiguous pro-
cedure for calculating it.

As opposed to the foregoing method of calculating the
two-nucleon potential, we define the energy of an
external source coupled to the meson field. This energy
is defined in such a manner that the source can be made

' 'HE approach presented in this paper for solution
of the problem of internucleon forces was inspired

by a calculation of Wentzel' for the pair theory of
nuclear forces. Schwinger' has done a similar calculation
for a Dirac field in the presence of an external Maxwell
field. The solution of the problem of two static nucleons
given in this paper is similar to one oftered by Frank, '
but it divers in the formal apparatus used and in the
treatment of the vacuum meson field.

We make use of Baker's analysis of the Fredholm
determinant. 4 Baker has applied the determinantal
methods proposed by Schwinger' ' to the pion-nucleon
system and has used them to calculate the low-energy
pion-nucleon scattering.

At this point we must state what we mean by a two-
nucleon potential. This potential must be a function of
the separation, spin, and isotopic spin variables of the
nucleons that describes the interaction between the
nucleons in such a way that we can use it for the poten-
tial energy term in the Schrodinger equation. The result-
ing Schrodinger equation must give the bound states and
the low-energy scattering of the system. For this pur-
pose, the potential must be independent of the meson-
field variables and must not be a function of the energy
of the nucleons. It should describe the interaction with
sufhcient accuracy to enable us to calculate the low-

energy scattering of the nucleons, as well as the bound
state properties of the two-nucleon system. Since our
potential will be suitable only for describing the low-

energy scattering data, the short-range part of the
potential must be adjusted phenomenologically. This is
usually done by inserting a strongly repulsive core.

Such a potential has been calculated by several
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up of any number of nucleons. It turns out that this
de6nition allows us to derive the two-nucleon potential
in a completely unambiguous way.

We find that the source-6eld energy is given by the
two following additive terms: (1) the term due to shift in
energy of the source because of the "dressing" effect of
the mesons and (2) the term due to the shift in the
vacuum energy of the meson field. The latter contribu-
tion arises from the shift in the energy levels of single-
meson states when the meson 6eld is coupled to the
source; this term is the one studied by Wentzel' and
Schwinger. ' The term arising from dressing of the source
is called hM, because it corresponds to the mass re-
normalization in the case where the source is a single
nucleon. It is AM that gives the major contribution to
the potential for the pion-nucleon system.

Although we do our calculation using a static source,
care is taken to formulate the problem in such a way
that recoil of the nucleons can be included.

II. ENERGY OF THE SOURCE-FIELD SYSTEM

The model that we concern ourselves with in the re-
mainder of this paper is that of a meson 6eld coupled to
an external, classically prescribed source. Thus, there
are no 6eld equations of motion for the source. The
possibility of a relativistic treatment of the nucleons is
discarded from the start. However, we formulate the
problem in such a way that the motion of the nucleons
could be included, but without the possibility of the
formation of nucleon pairs. In short, the nucleons may
recoil, but the number of nucleons is strictly conserved.
The Hamiltonian for such a system can be written in
the form

H=HO+Hi,

In Eq. (1), P is a hypothetical field that represents
the source and M is the energy of the noninteracting
source. If the source happens to be n nucleons with the
eigenvalues Pi, P2, , p, then P can be represented
by a product of the Heisenberg operators, fi(pi),
A(P2), , P (P ), for the individual nucleons in the
source. In this case, M is given by E(pi)+E(p,)+
+&(P ), the sum of the individual nucleon energies.

The only quanta created or annihilated in the proc-
esses described by our Hamiltonian are the quanta of the
meson 6eld. The ground state of our system is con-
sidered to be the state with the source, but with no
meson quanta present. For convenience, we refer to this
state hereafter as the zero-meson state.

For Ho of Eq. (1), representing the noninteracting
source and field, the ground-state energy is given by

EQg —k QQ Mk+M ~

Epg is clearly infinite. The ground-state energy for the
interacting system, which we call E„diverges in the
same way. We might, however, expect the difference
E,—Ep, to be convergent if defined properly. It is this
difference

p

that we study.
In order to calculate the ground-state energy of the

perturbed system, we assume that the Hamiltonian has
been diagonalized and expressed in terms of a set of
normal-coordinate fieM variables

H= ,' Qg Op[At(k-)A (k)+A(k)At(k)]
y (M+aM)~. (6)

The A (k) are the meson-field normal coordinates and
satisfy the same commutation relations as the a(k):

where

and
Ho ——-', P~ o)~[at(k)a(k)+a(k)at(k)]+M~ (1)

Hi ——Pi, [V(k)a(k)+ Vt(k)at(k)]. (2)

[A(k),At(k')]=dpi, , [A(k),A(k')]=0. (7)

If we now assume the existence of a vacuum state ~fo)
such that

A(k) (y,)=e(y,)=0,
This Hamiltonian is similar to the one used by Wick'

for the scattering of pions by static nucleons. The a(k)
are the annihilation operators for the meson-field
quanta, and they satisfy the commutation relations.

[a(k),at(k')]=bgt, , [a(k),a(k')]=0. (3)

In the event that we wish to deal with pions specifically,
k represents the set of variables (k,X), where L is the
momentum vector and X is the isotopic spin index of the
pion annihilated by a(k). V(k) is the source current that
may contain the variables of any number of nucleons.
We have assumed a linear coupling of the mesons to the
source, so V(k) obeys the relations

Vt(k) = [a(k),Hi], [a(k),V(k')]=0. (4)

The second part of Eq. (4) is a property of linear
coupling, but it is not an essential part of our formalism.

' G. C. Wick, Rev. Mod. Phys. 27, 339 (1955).

then the A t(k) generate eigenstates of the interacting
system and can be said to create "physical" mesons.
Similarly, the 4 operator can be thought of as creating
the "clothed" source.

Assume that the coupling between the nucleons and
the meson field is "turned on."The effect of the coupling
is to shift all the energy levels away from their un-
perturbed values. AM is the energy shift of the source
due to the dressing effect of the virtual meson cloud that
appears when the coupling is turned on. Similarly, the
Qi, are the shifted single-meson energies of the field.

Examples of the A (k) operators are easily found. The
a;„(k) operators that arise in the problem of meson
scattering are such operators. They annihilate physical
mesons interacting with the source and create the eigen-
states of the total Hamiltonian. It can also be shown
that the Hamiltonian expressed in terms of the a;, (k)
operators is exactly of the form of Eq. (6). The normal
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6eld coordinates are by no means unique and may vary
according to the boundary conditions on the problem.
The u; (k) demonstrate that such normal coordinates
exist, which is sufhcient.

The ground-state energy of H is

If the eigenvalues of H' and Hp' are represented by E~
and Eo)„respectively, D(E) can be written as

(13)

We have grouped the terms in Eq. (9) in such a way
that we need only the sum over all the energy shifts of
the mesons, plus the "renormalization term" for the
source. We can now evaluate E„by determining the
"renormalization energy" for the source and the energy
shifts for all the single-meson states. We use the sym-
rnetrized form for the Hamiltonian in Eqs. (1) and (6)
in order to derive Eq. (9).

In the remainder of this discussion we shift the refer-
ence energy of the Hamiltonian by a constant and use
the following Hamiltonian:

(10)

H&' ——2), t U(k)u(k)+ Ut(k)ut(k) j—hM. (11)

Here the zero-meson state has zero energy, and the one-
meson eigenvalues for H and Hp are Qi, and cubi„respec-
tively. The variables for the source will be carried in the
state vector.

Equation (10) is the normal product form of Ho, and
it is the form most commonly used in literature dealing
with low-energy meson physics. The normal product
form of any of the dynamical variables has the property
that the vacuum expectation value of the dynamical
variables vanishes. The vacuum expectation value of the
energy is just what we wish to calculate, so the normal
product form, which subtracts off the vacuum energy,
is not the appropriate energy operator for the derivation
of Eq. (9). Once Eq. (9) is established, we can use Eqs.
(10) and (11) to calculate Q), and cv)„which are now the
energy eigenvalues of the single-meson states in the
interacting and noninteracting systems, respectively.

A more general proof that the energy shift of the
vacuum state of the meson field is 2 P), (Q),—~i,) is given
by Schwinger' in his treatment of the vacuum energy of
fermions coupled to an external source.

III. THE FREDHOLM DETERMINANT

This section outlines the properties of the infinite
determinants that are useful in calculating E,. The
material is based largely on the work of Baker, ' and the
reader is referred to his paper for a more complete
discussion.

If the system under consideration possesses certain sym-
metries, most of the eigenvalues present in Eq. (13) are
degenerate. For example, the eigenstates of the various
constants of the motion, such as linear and angular
momentum are, in general, degenerate. In a field theory,
there may be two states whose particle numbers diGer
but whose other eigenvalues, including their energy
eigenvalues, are the same. For example, suppose we have
a meson field with mass nz. Above the threshold energy
for two mesons, E&2m, we may have states with either
one or two mesons present and with the same eigen-
values for the other principal constants of the motion.

We denote by p the eigenvalues of a set of observables
that, together with the energy, are sufhcient to form a
complete set of observables for the system. An impor-
tant observable present in the set is the physical, or
"asymptotic, "particle number. If we restrict ourselves
to a collection of e asymptotically incoming or outgoing
particles, we then say we are dealing with the subset
p„only.

By a proper arrangement of the factors in Eq. (13),
we can separate out the degeneracies from D(E) and
write

D(E)=II II — =II»(E)
7 E Apple 7

In the D„„(E),each eigenvalue Eo~), appears only once,
if at all.

The hermiticity of H' and Hp' implies that all the
zeros and poles of D~(E) lie along the real axis. For
D~„(E) there is a continuous distribution of simple poles
starting at em along the positive real axis.

From Eq. (13) we conclude that D~(E) is analytic in
the E plane, which is cut along the real axis. Writing
D(E) in the form

D„.(E)=1+ E
Ep),=eem

(16)

indicates that each D~(E) ~ 1 as ~)Et~ ~.
Because there is no more than one factor of

(E Ep&y) ' in each of the D—~„(E) we have the repre-
sentation of

Formal Properties

D(E) is defined by

where r~„A are the residues of the simple poles of the
D~„(E). It turns out that, for our purposes, the sub-
determinant referring to the one-meson states is of
primary interest. For the sake of simplifying a compli-
cated notation, we suppress the index y in the rest of
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this section. Accordingly, we may factor D(E) into

~1k
D(E)=Di(E)Dp(E)=I 1+ Q Do(E). (17)

soo=m E—Eop

Di(E) is the subdeterminant of D(E) referring to one-
meson states, and Dp(E) involves at least two mesons.

Now, we wish to exhibit explicitly the dependence of

D(E) upon (E—Epo) '. To this end, we define

Go~"'(E) = (1—IEo~&(Eo~I) (1g)
E—IIO'

where
I Epo) is an eigenstate of Hp' with eigenvalue Ep~.

In the following equation, we make use of the property
that the determinant of the product of operators is the
product of the determinants

D(E) =det[1 —Gp~ '"(E)Hi' —(E Epq) —'I Eon&(Eoo I
Hi']

I
Eo~&(EooIHi'I 1—Go ""(E)Hi'] '

=det[1 —Gp~@»(E)Hi'] det 1——
Eok

Performing the Fredholm expansion of the second factor in Eq. (19), we find

I Eo~)(Eop I
Hi'[1 —Go""'(E)Hi'] '

det
E—Eok

(Eop I
Hi'[1 —Go""'(E)Hi'] 'I Eoo)

(EolIEop&(EokIH1'[1 Go '"(E)H1'] 'I Eol& (EolI Eok)(EokI Hl'[1 Go ' (E)Hi'] 'I Eo )
~ ~ ~

(—1)" E—Eok E—Eok
+Zs'oi" so~

(Eo IEpA&(EoiIHi'[1 Go "(E)Hi'] 'IEol& (Eo IEok&(Eo~IHl'L1 Go '"(E)H1'] 'IEo )
~ ~ ~

E—Eok E—Eok

(20)

In Eq. (20), all terms except the first two vanish because all the minors have all their rows identical. We make use
of the property that a determinant, with any pair of identical rows, vanishes. Thus,

I
Eo/, &(EQJ, I

Hi'[1 —Gp" o"(E)Hi']—' (EQ„IHi'[1 —GQ ' (E)H]']—'I (E)oi&
det 1— =1— (21)

where

(Eop
I
Hi'[1 —Go~~o" (E)Hi'] '

I Eop&

D(E)= 1— DNso x (E)
E—EpI,

D+~"(E)=—det[1 —Gp~~o" (E)Hi'] .

(22)

(23)

In Eqs. (17) and (22), we have two equations showing explicitly the behavior of D(E) about any pole Epz(2m.
We use these relations to calculate the residues rip of Di(E). To begin with, we expand the residue in Eq. (22)
about Epp and, comparing it with Eq. (17),

(E,„IH, '[1—G,~~"(E,&)H,']—'I Ep )
D(E)

I ~ ~„=D~~"(Eop) 1—
E E

Letting

—(~l~E)(Eo.IHi'[1 —Go "(E)Hi'?'IEo~&
I z=zo.+0(E—Eo~) . (24)

—I

Zp= 1— (EooIHi'[1 —Go '"(E)Hi'] 'IEo~) Iz-zoo
dE

neglecting everything of order E—E» in Eq. (24), and combining the result with Eq. (17), we get

~1k' (EoaIHi'[1 —Go" o"(Eo~)Hi'] 'IEo~&

I
1+& D (E)Ig ~ D ~o (E,„)Z, i+D~E. —

zo~' E Eo„. — Eok
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Equating like powers of F—Fpj, yields the two relations

Dp(Eok) ~kk = —D~""(Eok)
X (Eok (

Hi [1 Go (Eok)H1 ] ( Eok) (25)

In fact,

Hpi Epk&

=Ho'[1 Go—&k»(Ek)H, '][1 Go—~~»(Ek)Hi'] ')Eok&,

D~~ok(Eok)Zo '= Dp (E)Di~~'"(Epk) .

Finally, we get

(26)

(
FI,—Hp'

~k Hp H1= Ho
) P )+Eok ) Eo ),

I,-IIo' EI,—Bp'

haik=

—ZoDi'"'(Eok) and, consequently,
(Eok(Hi'[1 —Go~"k(Eok)Hi'] 'IE»& ( 7) H (E H )

—~(Ek—Ho H, ) (yk&

as the expression for the residues of the subdeter-
minant Dk(E).

In order to arrive at Eq. (27), we found it necessary
to restrict Epk to the range Epk(2m, where Dp(E) has
no poles. Nevertheless, Eq. (27) is still valid in the
region E)2ns if we replace

~
Eok} by

~
Eokyi&. This can

be seen by the fact that the whole derivation goes
through if we divide Eq. (22) and Do(E) by the factor

(EokV ~Hi'[1 —Go ""(E)»'] '[EokV&
1— (28)

~Epky& ranges over all the eigenstates of Ho' that are
degenerate with the single-meson state in the region
2m&A(3m. Thus, the modified equations have simple
poles at E=Ep~. This procedure can be repeated for all
regions nnk(Epk((n+1)ns. For more detail on this
point see Ref. 4.

so that
(Ek —H') ~A)=0, (34)

and, thereby, Eq. (32) is verified.
With regard to Eqs. (32) and (34), it is interesting

to note that
~
pk& is that eigenstate of the total Hamil-

tonian that goes over into the eigenstate ~Epk) of Hp',
as the interaction between the nucleons and meson field
is removed. Usually, one can construct the eigenstates
of H' with the eigenvalue Epj„and relate it to the state
~
Epk&. However, such a state does not properly account

for the shift in energy of the meson states as the coupling
is turned on. From the derivation of Eq. (34), it is clear
that the eigenvalue Ek is equal to Epk+AEk, and that
we obtain this energy shift by using the propagator
Gp 'pk(E), rather than (E Hp') '. —

YVe turn now to the problem of normalizing the states.
The normalization is found from

Construction of the Eigenstates of H'

If we write Eq. (13) in the form

o(o)-ii(~ —' '
), (29)

»'= Q. l~.&

=(E-1[1-H 'G"'-(E.)?
X [1—Go~"'(Ek)Hi'j-'I Eo.)

= (Eok~ 1+[1—Hi'Go~~ok(Ek) j 'Hi'Go~~ok(Ek)'Hk'

X[1—Go"s»(Ek)H, 'g —'
~
Epk), (35)

or
where AEk is the shift in energy of the state

~
Epk) when

the coupling between the meson field and the source is
turned on, and compare this with Eq. (22), the = 1—(d/dE)(Epk

~
H, '[1—Go" ok(E)H, ']—'

~
E,„)~

k kk
identification (36)

can be made by noticing that D(Ek) =0. Furthermore,
if ~pk) is an eigenstate of the total Hamiltonian with
eigenvalue EI„and if it is normalized in such a way
tha, t (Eok~pk)=1,

Ek EQI.= (Eok [H' —Ho'(leak) =—
(Epk (Hi'

~
yk}. (31)

This suggests

I k.&= [1—Go~""(E.)»'7-'IEo
& (32)

~F-a =~1 —~pI,

=(EoklH, [1—G.' '(Ek)H, '? IEok& (3o)

is the so-called state-vector-renormalization constant
for the physical states. If one examines the Feynman
diagrams that contribute to Z2 in the expansion of
Eq. (36), taking into account the special properties'of
Go~~ok(E), it is clear that Zp is the same no matter how
many mesons are present in the state ~Epk). It is
appropriate, therefore, to call Z2 the renormalization of
the source or the physical zero-meson state. Physically,
Z2 represents the probability of finding the bare source
in the physical source state. Z~ varies with the number
of nucleons in the source. For example, If Z2") is the
state vector normalization constant for a source of one
nucleon, it differs from the renormalization constant for
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two nucleons Z&&'&. They are related by the condition
that

Zg(2) ~ (Zm(&))2

as the separation of the two nucleons becomes infinite.
Finally, we examine the question of the energy shift

due to the dressing of the source. In the case of one
nucleon, this is just the mass renormalization. Assuming
that we have adjusted the ground. -state energy of Ho so
that it is zero, (i.e. , let Ho~ Hp), we wish to do the
same for the ground-state energy of H. From Eq. (30),
we see that the energy shift of the zero-meson state is

(37)

where
~
0) and

~
fe) are the noninteracting and physical

states, respectively. Sy subtracting the c number, AEO,
from Hj, we achieve the renormalization of the source
energy.

Hereafter, in analogy with the problem of mass re-
normalization, we refer to AEO as AM, and replace H~

by Hg —dM:

I

Eos

~ dE

E5
I

l

Eoe Eos

FIG. 1. Relationship between dE and d E&'&.

k &"'R+y&=ko t"&R+yo&=e~+P (39)

where the superscript e refers to a particular natural
mode of the box. From Eq. (39), it follows that

de= (R/m-)dk (40)

with waves in a box, the spectra of the perturbed and
unperturbed waves are entirely diferent, as indicated
in Fig. 1.

The phases of the perturbed and unperturbed waves
at large distances, r, from the center of the box are
k~&"&R+g~, and ko~&"'+@+, respectively. We apply an
arbitrary boundary condition on the phases at the
surface of the box

(0
~

H j
~

leap)

= (0
~

H t —5~
~

lf p) = 0 . (38)

Equation (38) now deftnes hM. Thus, by adopting the
Hamiltonian of Eq. (11),we have removed, from D(E),
the pole at the origin.

Relationship of the Energy Shifts
to the Observables

and that the phase shifts are given by
"e,=y" yo' —R(k—&0& ——k, &'"') . —

Now, if we write the energy shift in the form

d1' dE 8~)
(k, &"' —ke, '"&)=-

dke dk Rl

(41)

The results of this subsection are based primarily on
physical arguments so that we may quickly develop
some relationships important for the application of the
properties of D(E). These relationships are of funda-
mental importance and are derived in a more formal
fashion in the literature. ' '

For the sake of simplicity, we can say that the aim of
quantum mechanics is to calculate energy levels (or
energy differences) and transition rates. Hence, we
must show how the D(E) is related to these quantities.
We have already shown that the residues of the sub-
determinants are related to the energy shifts, Eq. (27),
so we will say no more about this matter. For the rest of
the problem, it is perhaps simplest to establish the con-
nection between the energy shifts and the phase shifts
in a scattering problem, and thereby define the 5 matrix.

I et us consider the situation where we have perturbed
and unperturbed waves, of type y, in a spherical box.
The relationship between the energy-level spacing dE
and the energy shifts are shown in Fig. 1.The Eo, repre-
sent the unperturbed spectrum of the quasicontinuum,
which ranges from m to infinity, while the E; represent
the corresponding perturbed spectrum. The manner in
which the energy levels are shifted when the system is
perturbed is illustrated by the AE;. It is important to
realize that the b,E; need not have the same value as
one of the AEO, . In other words, as long as we are dealing

' B. S. DeWitt, P'hys. Rev. 105, 1565 (1956).

and make use of Eq. (40), we have

d E,g
—(5~/m )dE. —— (43)

Equation (43) not only gives the general connection
between the energy shifts and the phase shifts but also
shows the difference between the energy shifts and the
energy-level spacing. Only when the energy-level spac-
ing approaches zero as the radius of the box gets
infinitely large, does the relation

DE~I, ——dE=0

hold. This relation is not true, of course, if we are dealing
with a bound state.

IV. CALCULATION OF E,
In this section we apply the properties of D(E) to the

calculation of E,.

2 [f(fI~)—f(~~)j=
k 27ri

1 1« f(E)
E Qg, E cuj,)——

(44)
where C is the contour shown in Fig. 2.

Vacuum Energy of the Meson Field

In order to calculate E„,we need a way to sum all the
energy shifts of the one-meson states. In order to ac-
complish this, let us consider a function f(E), regular in
the E plane. For such a function we can write the follow-

ing relationship:
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E PLANE

and

ReD~, (E+ie) = —',[Dv, (E+ie)+D~, (F—ie)]

rp, (~up)
=D„&-s(E). (52b)

~a E—
COIc

Using Eq. (49) in Eq. (48), we find

Dp, (E+ie)
)

D&, (E—ie)
dE lnFio. 2. The countour used in Eq. (44).

4mi »

ImDp, (E+ie)
dE arctan; (53)

ReDp, (E+is)

r~, (E)

Dv,~s(E)
1 1

=Dr(E)E
E—Qfc E—M fo

=~Zs(EVilHi'[1 —Go' (E)Hi'] 'IE») (54)

or Equation (54) finally allows us to write( 1 1
lnD, (E)=P~

~ kE—Qi, E—roy

(46) 00

s Z(fix —~.)=—2
II; 2g» mEquation (44) can now be written as

1
2 [f(f~s)—f(~~)]=

k 27/ $ C

&(arctanirZs(Eyi~ Hi'[1 —Ge~~(E)Hi'] '
~
Eyi), (55)

lnDi(E) . (47)dE f(E)
comparing Eq. (53) with Eq. (43), as follows:

m

The function Di(E) can be expressed by
E Q,I,)—

(45) mE cd'J—
where k is the label for a complete set of observables and and from E s. ~52ab~ and t'27~ we 6nd

ranges only over single-meson states. We can relate
Eq. (44) to Di(E) in the following way:

dDi(E)
ReD v, (E+is)

Letting f(E)=E, and integrating Eq. (47) by parts,
yields

dE lnDi(E)
2%2

1
s Z(~2.—~.) = ——Z

k 2'' ~1

so that we are led to the relation

dE 8„(E), (56)

1 " Di(E+ie)
dE ln . (48)

2iri „Di(E—ie)

We now factorize Di(E) into subdeterminants relat-
ing to different eigenvalues for single-meson states of a
complete set of observables k, where k is the set (nil„yi),
coI, is the energy, and p& represents the eigenvalues of the
complete set excluding the energy:

(1/ ) tan)„(E)
= —Zs(E/i~Hi'[1 —Ge~ (E)Hi'] '~Eyi). (57)

This last result is in agreement with a well-known ex-
pression used for calculating phase shifts. 4

The Fourth-Order Potential

Di(E) =II» (E)

r~, el,
»r(E) =1+2

&is A COP

It is clear that D~, (E) has simple poles and that

(49) If we collect the results of Eqs. (9) and (55), we get
the following relation:

1

(5p) E„=AM+ —Q
2' »

&(arctanirZ&(Eyi
~
Hi'[1 —Gs~g(E)Hi'] —'

~
Epi). (58)

D~, (E*)=D„,(E)~,

which allows us to write,

ImD7, (E+ie) =—[Dp, (E+ie)—Dp, (E—ie)]
2i

(51) Considering the case of a meson held coupled to two
static sources that have a separation x, we find that E,
is a function of the separation. The potential is

U(x) =E.(x)—E„(~),
= —m g r7, (nil)5(E —cubi), (52a) and our problem now becomes one of evaluating U(x) to

fourth order in the coupling constant.
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(a)

(b)

FIG. 3. Diagrams contributing to AM, up to fourth order.

Now, AM is obtained from Eq. (38) by expanding

(Ol (Hg —AM)L1 —Go~'(0)(Hg —AM)] 'l0)=0
to fourth order in H~ and using the property that

Go'"'(&)
I ~~)= 0 (59)

If, in addition, we have a source coupled linearly to the
meson field, only those terms containing even powers of
II~ are retained. In this case, the fourth-order expansion
of AM is

V( )V ( ) V(P)V()U'(P)V"( ) V()V(P)V ( )V ( ) ) U(q)V (q)aM= —
l P 1+Z

Mq Pt M~(G7&+Cd')Q)q Mq Mp Mq Mq q Mq

Equation (60) includes just the diagrams shown, in Fig. 3(a). The horizontal double line represents the collection.
of nucleons constituting the source and should not be construed as necessarily representing a single nucleon. Per-
haps a few words are in order regarding the fact that, in the two-nucleon case, diagrams corresponding to the fourth-
order terms of Fig. 3(b) occur, whereas, for a single nucleon, no such modifications to the single-nucleon line occur
in fourth order. The answer is found in the denominator, which is changed in such a way that it exactly compensates
for the terms corresponding to the diagrams in question. Realization of this fact allows one to verify, by use of
Eq. (60), that AM for two nucleons infinitely separated is equal to twice AM as calculated for a single nucleon.

It remains for us to evaluate the phase-shift terms up to fourth order using Eq. (57). The result is

V(k) AM &"V (k)
tanb, ((ak) =z. 2

V (k)U(q)V (q)V(k) V(q)U (k)V (q)V(k)

CO&Mq M& COq Mq M& COq

M Is q MIt, Mg —
COq MIMq M& Mq

Vt(k) V(q) V(k) Vt(q) V(q) Vt(k) V(k) Vt(q) V(k) V(q) Vt(q) Vt(k) V(q) U(k) Vt(q) Vt(k)

M&COq CO&
—

COq Mq COy Mq My COIt, Mq MqM& MA; COq

V(k) V(q) Ut(k) U'(q) V(q) V(k) V'(k) V'(q)- —
V(q) V'(q)

1++
2

(61)

where AM"~ is the second-order mass term.
In order to proceed further with the calculation of E„

we must specify exactly the number of nucleons present
in the source. In case we are dealing with two nucleons,
V(k) will be of the form

V(k) = V (k) &'&+ V (k) &'&, (62)

where V&'~ and V&2& contain the variables of the first and
second nucleons, respectively.

Neutral Scalar Field

The properties of the neutral scalar field coupled to a
static source are well known. ' The two-nucleon poten-
tial, in this case, can be found exactly, and we will use
this result as a check against the present method. One
important property of the neutral scalar field is that
there is no scattering from a static source (the phase
shifts are zero). Thus, according to Eq. (58), the only
nonvanishing terms are those belonging to AM. Ex-

panding the denominator of Eq. (60), retaining terms up
to fourth order, and using the property that the V(k)
commute with each other,

&.= —Z. V(q) U'(q)/~' (63)

In addition, the source current for a source consisting
of two nucleons is

V(q) = (4~)"'&(f/~) L~(k)/(2~k)"'j
y (~ik'xy+ elk xs) (64)'

where cV= (quantization volume) '~', f is the rational-
ized couphng constant, m the mass of the field quanta,
p(k) is the cutoff function for the nucleons, and x~ and x2
are the positions of nucleons one and two, respectively.
Letting x~ ———x2, and substituting Eq. (64) into
Eq. (63),

, l~(q) I'
E„=——— d'q (1+cos2k x) . (65)

2' 2 fg COq

'0 G. Wentzel, Qeuetgns Theory of Field's (Interscience Pub- E uation t,'65~ ives us the energ of the zero-meson
lishers, Inc. , New York, 1949). state as a function of 2x, the separation of the nucleons.
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(a)

(b)

Fio. 4. Representative processes occurring in Eq. (71).

For infinite separation we have

(66)

V. CHARGED PSEUDOSCALAR FIELD

Proceeding along the lines that led to Eq. (67), we
use

f t)(k)
V(k)() = (4)r) "'iN

r)s (2o)),)"'
X(ci(')(r&') ke ') '*+~),")(r(') ke') '*) (6g)

as the source current for two static nucleons coupled to
the charged pseudoscalar field. The cr('& and ~('& are the
spin and isotopic spin indices, respectively, and the
superscripts refer to the different nucleons.

The second-order term for AM is easily calculated:

which must be interpreted as twice the renormalization
energy of a nucleon, i.e., the sum of the self-energies of
two noninteracting sources. The potential energy of two
nucleons is defined so that it is zero when the nucleons
have an infinite separation. We call U(2x) the potential
energy, so that

1 rf ' Iv(q)l'
Lr(2x) =E.(2x) —E„(~)=

I

— d'q
2~'km GDg

(67)

This is the well-known expression for the potential
energy of two static nucleons coupled to the neutral
scalar field.

X(3q'+(r(') q(r") q~(') ~ ~(') cos2q x). (69)

The x-dependent term is the second-order potential
derived from ordinary perturbation theory. Carrying
out the calculation for the fourth-order terms in hM,
we find second- and fourth-order modifications of each
nucleon line, one-meson exchange with modified vertex
and nucleon line, and two-meson exchange. These
processes are illustrated in Fig. 4. The evaluation of the
fourth-order terms produces

f '

27r2 m
d'q (3q'+~") ~ ~(')(r") qlr(') qcos2q. x)

GO@

I v(q)I'I v(p)I'-
(Pqd p (3p'q'+p'~"'~"'(r"'q(r"'q cos2q x) (3o),+iso),)

3 3

P'qs 4o) ' 1 (f 4

+ —9o),—4o)„+
(d& o)v M&+o)& 4K (5$

Iv(q)I'Iv(p)I'
tPqd p

CO~ GOq
2 3

3'& 2~(&) .~(2)~
X +2~"'~"' ~"'pXq~"'pXq+(p q)' 3+ cos2(p+q) x

o)p+Mq o)@+o)q

fi', Iv(q)l' —1

1+ —
I

d'q (3q'+c(') ~ z(s)(r(') q(r(') q cos2q x) . (70)
2ms m) o) s

This expression for AM can be greatly simplified by following the renormalization procedure outlined by Chew"
for our pseudovector coupling model. We notice that the denominator is just Z2( ', as we have defined it for the two-
nucleon source, evaluated to second order in f. The x-dependent part of Zs(') can be shown to be quite negligible
as compared with the x-independent terms, at least in the region outside the repulsive core, say, 2x&0.5 m ".
In any case, the renormalized coupling constant is defined by

f„= (Zs(i)/Zi(i)) f (71)

Recalling that the x-independent part of Zs(s) is just (Zs('))', and noticing that the second term of hM supplies the
vertex modifications required for (Zi&'))', we can replace f' appearing in Eq. (70) by f„'.To second order in the

"G. F. Chew, Phys. Rev. 94, 1748 (1954).
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coupling constant, f„' is given by

f 2 P 1
I

d3I(,

32r'(m COy3

(72)

From the way we de6ned the zero-meson state, it is understandable that our renormalized coupling constant
should depend upon the separation of the two nucleons. It is also reassuring that f„, in the limit of large x, should
be very nearly equal to the renormalized coupling constant obtained for meson-nucleon scattering. The remainder
of the second terms in Eq. (70) represents the propagator modification for the second-order term. The effect of such
modifications has been estimated by Brueckner and Watson to be small and, accordingly, we neglect it.

The contribution of 63f to the two-nucleon potential is found to be

f l'
I ~(v)I'

U(2x)= — —
I (P(t q„" ~ "e'" qqp( )'q cos2q ~ x

22r2 m) G)g

42r4 (m)
lI ~(v) I

'I U(P) I'
d3Pd3q +2&(') ~ &( ) I+(2) p)&q&(2) ~ p&(q

~q ~2 — ~2+~(73 2 r

+(p q)'(3+2 &'& ~ &'& co&2(p+q). x, (73)
(3)27+ (d q

which is just the potential studied by Gartenhaus. "
To Eq. (73), we must add the effect of the shift of the

energy of the pion field using Eqs. (SS) and (61). Cal-
culation of this term is exceedingly dificult, but we can
estimate the general effect without too much labor. If
we denote the contribution to the potential of these
terms, by AU(2x), we have

AU(2x) =— dqk

2'
Z, (x)g, (x)—Z2(~ )gq(~)

)& arctanm- (74)
1+qr'Z, (x)Z2(~ )P, (x)P, (~ )

where Q, (x) represents the x-dependent part of Eq.
(61). A simple calculation shows us that P, (~) is al-
ways several orders of magnitude greater than the
x-dependent terms in the region outside the repulsive
core (2x)O.S m '). This occurs primarily because the
sum over q brings in terms proportional to e ' ' and
e ', where a is the cutoff momentum. Thus, the con-
tribution of Eq. (74) is quite negligible compared with
Eq. (73).

VI. CONCLUSION

We have used the formalism of Fredholm deter-
minants to calculate the two-nucleon potential. The
resulting expression is very similar to the Gartenhaus
potential. The main difference is that the potential is
developed as the ratio of two power series in the

'2 S. Gartenhaus, Phys. Rev. 100, 900 (1955).

coupling constant, unlike the perturbation expansion.
This results in the renormalized coupling constant hav-
ing a small dependence of x.

One formal advantage shows itself in the use of the
propagator GO~Eq(E), which leads to the exclusion of
the troublesome "ladder" diagrams. The inclusion of
such terms seems to be necessary when using a formalism
based on the Lippmann-Schwinger equation, as well as
in a Tamm-Banco' treatment of the two-nucleon
system, as was pointed out by Feldman. ~ Indeed,
Henley and Ruderman found that they were necessary
in the neutral scalar theory for removal of the fourth-
order terms. We have found that the "ladder" terms
may be excluded, and that the correct expression for the
potential in neutral scalar theory also may be obtained
by using the formalism of determinants.

The fact that the procedure developed in this paper is
a well-defined procedure for calculating the energy of a
source composed by arbitrary numbers of nucleons
should make it suitable for study of the triton or He'.
Wentzel applied the method of determinants to the
study of the energy of a proton lattice interacting
through the pair theory. ' A similar study for a source
composed of many nucleons could yield information
regarding the size of the two-body interaction relative
to the many-body interactions.
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