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High-energy e6ects at low momentum transfer, both in the direct and in the crossed channel, are intro-
duced into a self-consistent calculation of low-energy m.-2r scattering. These effects are assumed to be domi-
nated by top-level Regge trajectories. The general method consists of combining the generalized Chew-
Mandelstam and Ball-Wong techniques with self-consistency. It can be extended to complex angular
momenta and thereby used to calculate the parameters of the assumed Regge trajectories. A rough self-
consistent calculation gives a mass of 712 MeV and a half-width of about 75 MeV for the p meson, and a
value of 15 mb for the total cross section at very high energies.

I. INTRODUCTION reasonable assumption, at least for calculating the pa-
rameters of the p meson. On the other hand, Singh and
Udgaonkar" found that high-energy contributions to
the fixed-energy dispersion relation are important in
a, self-consistent calculation of the E~. These contribu-
tions were taken into account by using the strip ap-
proximation, which relates them to low-energy reso-
nances in the direct channel. Thus one is able to make
a low-energy calculation which includes high-energy
eRects in the crossed channel without having to calcu-
late the high-energy amplitude explicitly. This pro-
cedure has also been applied to ~-A scattering by
der-Sarkissian" and to a self-consistent calculation of
the deuteron by Bose and der-Sarkissian. "

The main difhculty with the Singh-Udgaonkar ap-
proximation is the assumption that the interiors of the
double-spectral function regions are unimportant, an
approximation which is hard to justify. Moreover, it
has been found that one cannot get a reasonable P-wave
resonance in the ~-x problem if one uses this method,
at least if the approximations of I are used. For these
reasons, we shall take high-energy effects into account
simply by assuming that the high-energy crossed-
channel absorptive parts are dominated by top-level
Regge poles" in the direct channel. This was, in fact,
suggested, in I and partially used in Ref. 10. It may
be regarded as being in some sense a Regge-pole Singh-
Udgaonkar approximation, since it also relates high-
energy contributions in the crossed channel to low-

energy resonances in the direct channel. Moreover, if
one makes certain simplifying assumptions, it leads to
a simple result which, although it is quite different
from the Singh-Udgaonkar formula for x-x scattering,
would reduce to that formula if the scattering particles
were suKciently massive.

Finally, high-energy direct-channel inelastic effects
are also included in the present calculation. Here one

HERE have been several "bootstrap" methods
proposed for calculating the m-x amplitude from

the requirements of analyticity, elastic unitarity, and

crossing symmetry. ' ' Of these, only the methods of
Chew and Frautschi' and of Chew' are designed to
calculate the high-energy and low-energy amplitudes
simultaneously, although numerical calculations have
not yet been attempted in either case. In addition, an
attempt was made to extend the method of I to make
high-energy calculations. ' However, many high-energy
eRects were left out in that calculation.

In the present paper, a more general extension of the
method of I is given. The original method consisted
of setting up an effective-range formula, whose pa-
rameters were determined by requiring that its value

and derivatives at a suitable matching point be the
same as those given by a fixed-energy dispersion rela-

tion. " The crossed-channel absorptive part coming
into this dispersion relation was then approximated by
the contributions of a few partial waves, and it was

required that the assumed parameters of these waves

be equal to the calculated values. Such a calculation
is capable of giving a self-sustaining P-wave resonance.

Since only a few partial waves were retained, high-

energy effects were completely ignored in the above
calculation. It was argued in I that such eRects would

not make much difference. %e shall see that this is a

*A portion of this work was completed while the author was
a visitor at Brookhaven National Laboratory, Upton, New York,
Summer, 1963.
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Here t~ is a separation point in the t channel between
the low-energy region which is dominated by reso-
nances and the high-energy region which is dominated
by Regge poles in the s channel. Now for 0&v) vz, , we
are within the t-channel Lehmann ellipse, and so the
appropriate procedure for t & t~ is to expand in the
partial waves of that channel:

cc t 2s
A, '(t s)= P (21'+1) ImA, ' ——1 P,

$/ =0 4 (t—4)
(13)

This gives us A~ & '(v) through Eq. (11).'s
To find At &~&(v) we shall assume that the amplitude

for t) t& is dominated by the top-level Regge pole in
the s channel. Lower level poles can be brought in in
the same way, however. Thus, in this region we have"

it is convenient to use the representation

1

A, '(v) =- dz Z, (z)A'(s, —2v(1 —z))
2 —1

ds Q((—s)Ar(s, —2v(1 —z)), (21)

sinful tI

ding( —1—A (r4(+1)), (22)
2v

which has been shown by Frazer to be equivalent to
Eq. (8).ts Thus, the contribution of a Regge pole is

Prr 1 ' t')
Agr(v) =Q — dt'I'g 1+—iA'(t', 4(v+1))I' p 2 —4v 2vi

where Ar'(t, s) is here understood to be given by Eq.
(14). The extra factor of 2 comes from the fact that
both t- and I-channel Regge poles are contributing. If
we now substitute Eq. (22) into Eq. (2) we can find
8~1(v) for v) (tn/4) in terms of the P and n. The
elastic approximation E~r(v) 1 can always be used in
the region v& (fn/4).

If we know the p and n, we now see that we have a
self-consistency situation for the low-energy partial-
wave amplitudes. We can assume certain forms for
the ImA~I(v), which when substituted into Eq. (13)
enable us to evaluate A P &r i (v) through Eq. (11).This
may then be added to Eq. (20) and the general ap-
proach of the preceding section may be used to calcu-
late A P (v) for v) 0. Self-consistency then requires
that the assumed forms for ImA~r(v) be the same as
these calculated forms. This should be suQicient to
determine the low-energy amplitude.

I2 (')+HI'(') 2'

)Ar(s, t) =- p ( ) 1.

2 sinmn(s) (s—4)

2t
+(—&)'~ (.)(&+, (&4)

(s—4)

where n(s) is the position of the pole of A~r(v) in the
l plane and P(s) its residue. From Eq. (14) the absorp-
tive part for t& tD is then

A '(~, )= l L2 ( )+IjP( )&- (1+2~/( —4)) (15)

To get an explicit expression for Agr&~i(v) we use the
fact that, since t~ is large, we can use the approximations

(16)&-(1+2~/( —4))=~ ( )(6'2 )",

Qi(1+2~/ (~—4))=&s(l) (~/2v)

~ ( ) = [2 I'( +l)j/[ "'I'( +1)j,

~s(l) = [z-'"P (i+1))/[2"'I'(i+ 2)l

(17)
where

In the preceding section a method for obtaining the
low-energy amplitude self-consistently was given, as-
suming the values of P(s) and n(s) for small negative
values of v. However, these functions can also .be
calculated if we follow the procedure of the preceding
two sections for unphysical values of /. Then a point
l=n(sv) on the Regge trajectory can be found by
calculating the value s=s„ for which

(19)

If we make these approximations on substituting Eq,
(15) into Eq. (12), we obtain

p Ct(rr)cs(l) tn
A gr &~& (v) = —v'(2n+ 1)— (2o)

V A —l

(18) IV. EVALUATION OF REGGE-POLE TRAJECTORIES

where to = 2. This expression can be continued to regions
where the original integral diverges.

The Regge hypothesis also enables us to compute
EP(v) for v& (tn/4) since the amplitude there is domi-
nated by Regge poles in the t and I channels. To ob-
tain their contribution to the partial-wave amplitude,

An alternative procedure would be to use some low-energy
Regge expansion, such as the one proposed by N. Khuri, Phys.
Rev. 130, 429 (1963). This would probably be much more com-
plicated to use, however.

D-(.„)'(v,)=0, (23)

"W. Frszer (unpublished —the result is presented in Ref. 9).

where vv= (sv/4) —1. The value of p(sv) can be de-
duced by erst finding the residue of the corresponding
pole of H~r(v) in the v plane for /=n(s„). This is jUst

I'-(..)'= —&-(,,)'(vv)[tiD-(. „)'(v)/»j.=.. ' (24)

The residue of the corresponding pole in AP(v) in the



LOUIS A. P. BALAZS

1 " Imn(s')
n(s) = up+ — ds'

s —s
(26)

l plane is then

p(s )=v„' (v„—vir)' " ' I' i, & t dn( v)/d v], ,„=.(25)

The above method can, of course, only be used for
v) vi„since there is no way of finding E(v) for v( vr, .
Moreover, in practice we can calculate only a few
points on the trajectory anyway. However, we can
always extrapolate n(s) and P(s) away from these
points. One way of doing this is to use the fact that
for nonintersecting trajectories we can always write"

V. P-WAVE RESONANCE

We shall now use a rather crude version of the above
method to make a self-consistent calculation of the
p meson. In evaluating Ai'&z&(v), we drop everything
in the expansion (13) except a zero-width p-wave
resonance at v= vg. This means that the left-hand cut
starts at v= —vg —j.. Thus, if ve take vt, = —v~ —1,
the integral in Eq. (7) will be zero.

The kernel approximation (6) will be made exactly
as in I, i.e., we use a straight-line interpolation through
x~=0.16 and @2=0.02, for which m=2. The zero-width
resonance is also set up as in I, i.e. , we put ReDi'(v)

(v—va)/(vp —va) and Xi'(v)~iVi'(va), which leads
to

1 " Imb (s')
b (s)= bp+ ds'—

s —s
(27)

with

(I'i')'L"/(v+ 1)J'"
ImIIi'(v) =

(,—,.) +(r,') I,'/(, +1)1'
(30)

where b(s) = v "f'&P (s), and ap and bp are real constants.
Since we are only interested in values of s&4, we may
make the substitution x= s' ', and approximate the
kernels in Eqs. (26) and (27) in the same way that we
approximated the kernel in the X function. This leads
'to

and
ReDi (vg) =0 (31)

Pl = (VR VP)iV1 (VB). (32)

Equation (30) can now be approximated by a delta
function, the integral over which is equal to the in-
tegral over Eq. (30) in the limit of small I'i . This gives

0,' s =Gp

m b'
b(s) =bo+2

~=~ v;—v

(29)

Imai'(v) =~r, 'b(v —»), (33)

which, together with Eqs. (9), (11), and (13), leads to

vzl i v+1) vx+1
A, 'ii&(v) =12P» 1+2 ~Q, 1+2 . (34)

v Vii v
where the v, are determined by making the kernel
approximation as good as possible. Moreover, as dis-
cussed by Chew, ' the fact that Imn(s) and Imb(s) are
small over a fairly large range above threshold effec-
tively shifts the lower limit on the integral to a much
higher value. Thus, it is necessary to approximate the
kernel in a much smaller region, which reduces the
number re considerably. The real constants a; and 5;
can then be calculated by fitting Eqs. (28) and (29)
to m points on the trajectory. These points would be
determined in the manner described in the preceding
paragraph. The most convenient values are those
which lie in the region vr(v(0, since n(s) and b(s)
are real in this region. In practice, however, we may
choose any values for which Imo. and Imb are small.

If we require that the calculated parameters of n
and p be the same as the assumed values, we should
be able to calculate these functions. Now in the last
section we saw how the low-energy amplitude can be
calculated at the same time. Thus, we have an ex-
tended "bootstrap" situation, whereby we can calcu-
late self-consistently both the low-energy partial-wave
amplitudes and the parameters of the Regge trajec-
tories simultaneously. The latter, of course, give the
low-momentum transfer amplitude at high energies. "

'P V. Singh, Phys. Rev. 127, 632 (1962).

To evaluate Ai'&~&(v), instead of using Eqs. (28)
and (29) we shall make the usual cruder but simpler
assumptions that"

Ci(n) (2n+1) (P/v )= const,

Ren= 1+e (v —vg),

(35)

(36)

VP I t —6(vg—v)

1(H& (v)—
vg —v tp

(37)

It is interesting to note that the Grst factor in this
expression is exactly the same as the one that would
be obtained by using the Singh-Udgaonkar approxi-
mation" and keeping only the contribution of a zero-
width p-wave resonance to the s-channel absorptive
part. Since tp(Qtg) however, the second factor is not
even roughly unity. This may explain why the Singh-

~' B. M. Udgaonkar and M. Gell-Mann, Phys. Rev. Letters 8,
346 (1962). See also Ref. 15.

where e and vg are constants (see Fig. 1). For the p

trajectory, which dominates in the I=1 state which
we are considering here, v~=vg. Then if we equate
the left-hand side of Eq. (35) to its value at v=vz,
neglect Imn, and use Eq. (25) to evaluate P, we get



LO% —MOMENTUM —TRANSFER PION —P ION SCATTERING 871

Beg(s)

X=O

I

Sfe

Udgaonkar approximation was not applicable to the
~-x problem. For the m-N and N-N problems, however,
$p is much larger, and so that approximation should be
quite reasonable.

Inelastic effects for v& (tn/4) can be estimated by
the method given in the third paragraph of Sec. III.
This is done in the Appendix, where the approxima-
tions made are described in detail. One finally obtains

n' v(e ln2v)'
R,'(v)

tT~ ve ln2v —2
(38)

where 0-~ is the total cross section at high energies.
Equation (38) has the form shown in Fig. 2. To simplify
the calculation further this was then approximated by

v+1 's tD)
Rr'(v) —1+ — Rr' —

i

—1 Hi v ——
) (39)

4) & 4

where 0 is the usual step function. The factor $(v+1)/
vj"' is essentially unity and is inserted only to simplify
the evaluation of a certain integral. If we now sub-
stitute Eqs. (7) and (39) into Eq. (4), and remember
that the integral in Eq. (7) is zero, we have

Fro. 1. Schematic plots of the Pomeranchuk (I=O) and the
p(I=1) trajectories, assuming that Eq. (36) holds. The positions
s, and sfo represent the positions of the p and f' resonances,
respectively.

In what follows, we shall take vp= vp= —2 as in I.
Ke shall assume that the I=O and I=1 Regge tra-
jectories have the same value of e. If we also assume
that for the I=O trajectory, " v&= —1 and that the
recently discovered f' particle" lies on it with spin 2,
we obtain c=1/20. From the factorization theorem
it has been deduced'4 that o-g=15 mb, which gives
Rr (tn/4) through Eq. (38). In choosing tn, we assume
that the Regge behavior sets in immediately above
the resonance region. Since the f' is the highest known
resonance in the m-x system, we shall thus take 1~=80.
If we now assume certain values for I'~' and v~ we can
calculate the f; in the manner described above. This,
in turn, can be used to find F~' and vg through Eqs.
(7),

' (40), (31), and (32). We can then vary the as-
sumed F&' and v& until these are equal to the calculated
values. Since none of the above equations entail any
numerical integration, this can be readily done by
hand and leads to vgI"~'= 1.6 and vg=5. 5, which corre-
sponds to a mass of 712 MeV. A plot of the partial-
wave cross section,

o '= 12~Lp/(p+1)]'ts ImIIr'(p), (43)

R, (t )
t

has a half-width of 75 MeV if we use Eq. (30). These
values should be compared with those deduced from
pion-production experiments, " which range from 725
to 770 MeV for the mass, and 30 to '75 MeV for the
half-width.

It is interesting to note that if we let tD —+~, the
above problem reduces exactly to the one in I, where
high-energy effects were completely ignored. The mass

fb

Dt'(v) =1—(v —vs) P I,t(v, x;-')
i=0

where

I.t(vp&) =

+ Rt' ——1 I;„(v,x; ') f, (40)
4

1 (tn
I;„(v,or) = ln —+to —ln~ ——v

s.(v+to) 4

and f = (1+x;vs) 'f, for i)0 while

0 i=1 i i p

with xp= —vp '.

(
2 (o

in')'t'+ (co—1)'"Q
rr(v+to) o)—1

1/2

»Ep +(p+1)"1, (41)
v 1

to/4

Fro. 2. The function R& (v). The elastic approximation is made
for v ((tn/4). For v) (tn/4) the solid line is a schematic plot of
Eq. (38). The function first drops somewhat but eventually rises
to infinity logarithmically. The dashed line is a plot of Eq. (39).
The very high-energy contribution is unimportant.

~ This is required by the Chew-Frautschi saturation principle.
See Refs. 5 and 15.
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"experimental" 71--m scattering.
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and half-width obtained there were 585 and 110 MeV,
respectively, if we use Eqs. (30) and (43). These
numbers do not differ too much from the ones ob-
tained above and so the calculation is certainly in-

sensitive to the choice of t~. This also justi6es the
assumption made in I that high-energy effects can
be neglected as a Qrst approximation, at least in the
~-x problem. But, as already pointed out, such effects
can be quite important in other problems.

VI. HIGH-ENERGY CROSS SECTION

e (I+p)

A DI;0) (p)—
4m'c(1+ p) to

(44)

Assuming that the p is the dominant low-energy con-
tribution in the crossed channel, Aio&~'(p) will have
the same form as Eq. (34), except that Pii has to be
replaced by Poi. For pa and I'i' we shall take the values
calculated in the. previous section. The function Ei'(p)
can be easily seen to be exactly the same as Ri'(p).

If one now calculates the f; as before, one finds that,
to within about 5%, Dio(—1)=0. But from Eq. (23)
this just means that the calculated n(s) is unity at
s=0. Thus, v~= —1 is the self-consistent value for
I=O and so the Chew-Frautschi saturation condition"
comes out of the calculation. If one then calculates
o.

&
——4x'P(0) through Eqs. (25) and (32) one obtains

0&——15 mb almost exactly. This means that the self-

consistent value for 0-& is essentially equal to the
"experimental" value deduced from the factorization
theorem '4

The only remaining undetermined parameters in the
problem are e and tD. Now e could be calculated self-

consistently by going to more unphysical "states, " but
this would complicate the calculation considerably.
However, the value chosen here was such that it gave
the saturation condition correctly. Thus, if we assume
that condition, e may be said to have been determined
also. This leaves t~, which, however, is not an arbitrary

parameter in the usual sense, since it merely separates
two regions within which two different approximations
are made. In fact, if the low-energy region is syste-
matically improved by bringing in more partial waves,
increasing e, and inserting intermediate-energy inelastic
effects, one should increase t~ at the same time. In
other words, tD is merely the point at which the low-

energy approximations can be expected to break down.

In the above calculation a-~ was taken from experi-
ment. However, it can always be calculated by going
to the I=O, l=1 unphysical "state.""This time the
Pomeranchuk (I=0) trajectory dominates in A io&~'(p),

and so, in Eq. (36), we take pz= —1." Then, if we

use the relation ai=4m'P(0), which can be deduced
from Eq. (14) with the help of the optical theorem,
but otherwise follow the same procedure as for the

p trajectory, we get

This can generally be estimated on an a priori basis.
For instance, if only low-energy resonances are kept,
as in the above, the strip-width estimate of Chew' can
always be used, since tD corresponds to the width of
the strip in Ref. 9. It gives tD=4e '. If one assumes
this estimate, one may say that t~ has also been de-
termined, since the value chosen for tD did satisfy this
rough relation.

APPENDIX: INELASTIC EFFECTS IN THE P WAVE

At very large values of s, the dominant contribution
to the amplitude will come from the Pomeranchuk
Regge pole in the t and u channels. " From Eqs. (14)
and (16), the t-channel contribution for s) tD is

z [2o.(t)+1)]
A'(&,s) =p(r)

2 sinn. n(t)
u(f)

X [1+e ' '"]Ci[n(t)], (A1)
2v~

where p~= (&/4) —1.' If we make the assumptions (35)
and (36), but this time in the t channel, and equate
the left-hand side of Eq. (35) to its value at p, = p~ = —1,
we get

A '(r, s) = 3P (0) (s/2)'+i" ( tan-,'ir ~t —i)

Now, because of the factor

(-',s)l"= exp[-', et ln(-', s)],

Ar(t, s) will be important only in the region

gati

(-,'e) in(-,'s) &1,

(A2)

which for s)to corresponds to ~t~ &20. But in this
region the approximation tan(s~et)~(s7ret) is valid to
about 10%. Making, therefore, this approximation and
setting (s/2) 2p, we obtain

Ar(t, s) =6PP(0) exP[i~et ln2P](sirens —i). (A3)

If this is inserted into Eq. (21), the resulting integral
can be carried out exactly and gives

where
A, '(p) =P(0)[ag+iar],

aa ', 7r e (Ii+I2/2 p——), —

ar =Io+Ii/2 p

(A4)

(A5)

(A6)
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1—exp[—ve ln2vj
Io 4

e ln2v

Ip 4v—exp[ —ve ln2v]
I1———4

e ln2v

I,+8v' exp[ —ve in2vj
Z, = —8

e ln2v

(A7)

(AS)

(A9)

could drop all the exponential terms in Eqs. (A'7),

(A8), and (A9). This does not aRect the final result
very much and corresponds to setting the lower limit
—4v equal to —~ in Eq. (21). Such a procedure is
not unreasonable, since 4v&80 with s&tD, and Az(t, s)
is important only in the region ~t~ &20, as we have
seen. A further simplidcation results from the g
posteriori observation that ttzts((uzs. If we make all
these approximations, we finally obtain

If we note that, for s&t~, [v/(v+1)]'t' 1, we ob-
tain from Eq. (2),

s' v(e ln2v)'
Rt'(v)

o t, vt.'ln2v —2
(A11)

al
E.r'(v) =

«&zt +az
(A10)

where we have used the relation at=4''P(0), which
can be obtained by combining Eq. (14) with the
optical theorem. To simplify our result further we

With ot ——75 mb this gives Err(tn/4) =5.31. If we did
not drop az we would get Rt'(gn/4) =5.28. These two
are practically indistinguishable. The latter value was
the one actually used in the calculations of Secs. V
and VI.
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Three-Meson Model for p-p Scattering and Regge Poles
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By considering a dispersion relation for that amplitude of P-P scattering, whose imaginary part in the
forward direction is related to the total cross section, it is shown that the one-meson-exchange model (taking
into account independent exchanges of the pion, the p-co vector pair, and an l =0, scalar 271- resonance or
meson with a mass somewhat~greater than two pion masses) and high-energy behavior of the p-p and p-p
scattering cross sections as given by the Regge pole hypothesis, are consistent with the existing p-p scattering
data. In our demonstration the energy range involved is larger than previously used in the demonstration
of either of the above two aspects of p-P scattering. Further by considering a dispersion relation and high-

energy behavior of another amplitude of P-P scattering, it is shown that the second type of coupling of the
Pomeranchuk pole is zero. This reduces the number of unknown parameters in the expression for polarization
at high energy.

1. INTRODUCTION

"'T has been shown by several authors' ' that the
so called one-meson-exchange model, taking into

account independent exchanges of one pion, one g,
one p, and one ~ only, gives an excellent approximation
to the experimentally observed nucleon-nucleon scat-
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' Riazuddin and M. J. Moravcsik, Phys. Letters 4, 243 (1963}.
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(to be published). See also, R. S. Mckean, Jr., Phys. Rev. 125,
1399 (1962); and D. B. Lichtenberg, J. S. Kovacs, and H.
McManus, Bull. Am. Phys. Soc. 7, 55 (1962).' A. Scotti and D. Y. Wong, Phys. Rev. Letters 10, 142 (1963).
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tering In Refs 2 3 and 4 it has been necessary to
postulate the existence of an /=0 scalar meson or
resonance of mass 3 to 4 m with a rather large coupling
constant with nucleon. So far, there appears to be
contradictory evidence on the existence of such a
meson or resonance.

The energy involved in the above demonstration of
the goodness of the one-meson-exchange model is up
to 350 MeV. On the other hand, it has also been shown
that high-energy behavior' of the nucleon-nucleon
scattering amplitude or cross section can be explained
in terms of the Pomeranchuk pole, P' trajectory, and

' S. D. Drell, in Proceedings of the 106Z International Conference
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