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Regge pole-like terms in the high-energy behavior of production amplitudes are evaluated by using the
leading asymptotic behavior of sums of Feynman diagrams. The forms obtained depend on the way variables
are allowed to tend to infinity.

1. INTRODUCTION

ECENT investigations into the high-energy be-
havior of scattering amplitudes' have been

concerned with two-particle to two-particle processes
only. However, if Regge poles play an important
dynamical role in strong interactions they will also
manifest themselves in the high-energy behavior of
production amplitudes. Kibble' and Ter-Martirosyan'
have suggested heuristically what form this might take.

The rigorous investigation of this problem is haln-
pered by the fact that the complex singularities of
production amplitudes4 prevent the use of the Froissart-
Gribov method of analytic continuation to complex l.
In this note we use the methods which have been
developed' ' to evaluate the leading asymptotic be-
havior of terms of perturbation theory. They are based
on the assumption that the sum of the leading asympp-

totic terms of a series of diagrams gives the leading term
of the sum. These methods will be applied explicitly
only to simple ladder-type graphs, although the exten-
sion of the theory to more complicated iterated systems
which also yield Regge poles' ' is quite straightforward.
It is now known' that perturbation theory also gives
other types of high-energy behavior in addition to the
Regge-pole behavior but these additional terms will not
be considered here. They do not arise for ladder
diagrams.

It will be found that a variable-power asymptotic
behavior is obtained, although the trajectory function
n enters the expression in a more complicated way than
for two-particle processes. The most important result is
that the asymptotic form depends on how many
variables are held fixed and how the remainder are
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allowed to tend to infinity. The form proposed by
Kibble' and Ter-Martirosyan' does not correspond to
any of the limits investigated in this paper.

2. FIVE-POINT AMPLITUDES

We shall consider bosons all of unit mass interacting
through a Vukawa interaction. The diagrams considered
are of the type shown in Fig. 1 with the invariants de-
fined as the squares of the sums of pairs of adjacent
ingoing momenta in the way indicated. The cr, , Pt, pi,
7&', 5, are the Feynman parameters associated with
the lines of the diagram. These parameters will also be
denoted by the collective symbol $ .

The asymptotic behavior of a physical amplitude will

require the addition of a number of terms of this type
corresponding to diagrams obtained by permuting the
external lines. Only those diagrams in which at least one
of the variables s, s1, s2 becomes large, and 31 and t2 re-
main fixed, will give significant contributions.

In order to obtain Regge pole-like terms in the
asymptotic behavior a sum must be taken over all the
different numbers of rungs in the two ladders in Fig. 1.
There are a number of different interesting cases corre-
sponding to different types of limit:

(i) s ~ co; si, ss, ti, ts fixed.

The contribution from the diagram Fig. 1 is

g2r+I

~sr(r+ &)
(]6srs)r —s

where r =trt+rt, and C and D are the Feymnan numer-
ator and denominator functions associated with Fig. 1.
The coeScient of s in D is

g=&i CtroPi ''Po''

0( o(, p

S
FIG. 1. The type of ladder diagram considered.
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The leading asymptotic behavior in s comes from
integration over the neighborhood of the zeros of g, i.e.,
ai —— . ——P„=O.' ' This yields

fJ2r+1 1

m-'I'(r) dvdv'd8
(16m')"—' .o

[ (v,v', ~)] -'~(Z v+2 v'+2 ~—1)
X

[d (v,v', 8; ti, t2)]"

)& (ln s)" '/sI'(r), (3)

where c and d are the Feynman numerator and de-
nominator functions of the contracted diagram, Fig. 2.
The expression in curly brackets in (3) is just the correct
contribution for the Feynman diagram Fig. 2 but
evaluated with two-dimeesioma/ momentum vectors.
Thus, (3) inay be written as

where

(ln s)" '
g'[a'(ti))" "[a'(t2)]" 'p (ti t2)

sl'(r)

'««. ~(r+r -1)
$itgt —1

' d5 dhdb ~(5)+$2+4 1)—
p(t, ,t,) = ~'g'

0 [tl)2(8+ t2$8$1+ (1/2 1]
(6)

A sum is now taken over leading contributions from all
diagrams with m+e equal to a fixed value of r. This
yields

(ln s)" ' [a'(ti))"—'—[a'(t2))
g'p(ti, t~)

sI'(r) a'(ti) —a'(t2)

A final sum over all values of r yields

s~ (t 1) s (~2)

g'p(ti, t2)
a(t,)—a(t, )

where
a (t)—= —1+a'(t)

is the same trajectory function as appears in four-point
ladder diagrams. "

As t2 —+ ti (8) becomes

~ =~ ~.(0,v')=~ II(v +v"-')=—~ (v');
z=l

together with similar properties for A2.

To make the coefficients of A, Al, A2 vanish it is
necessary to set at least two Feynman parameters equal
to zero. These pairs may be chosen as follows: (1) one
a; (i = 1, ,m) with one P, (j= 1, ,e); (2) 8i with Pi,
(3) 4 with ai. Since the scaling procedure' gives us 1)

functions with arguments a,+P; 1we m—ust be careful
to make these arguments linearly independent. We take
them as follows. First, we have the distinguished pairs
(5),Pi), (82,ai). We may then take ( aP,)(i = i, ,n)
and, finally, (a,,P„) (i = I, ,m —1). These pairs span
the space of all possible pairs and are linearly
independent.

We carry out the scalings on (2), (3) first. Under
these the coefficient of A is linear and is retained. How-
ever, when we carry out the remaining scalings it is of
second order and so may be dropped. The final result
is thus independent of k. When we have carried out all
these integrations, we end up with the 6nal asymptotic
form

g2r+1

+r(r —1)
(16~')"-'

dpdp'd63

[co(v,v', ~ )]" '~(E v+2 v'+~ —1)
X

c (v')c (v)[do(v v' 8 ' t t ))" '

&( (ln S)"/kik, S'I'(r+1), (13)

where co and do are obtained from c and d by putting
6i ——62

——0. The integral in the curly brackets in (13)
reduces to

'g'[a'(ti))" 'La'(t2))" '

Summing leading terms for all m and e gives

6 ' may be calculated but it is sufhcient to notice
the following properties:

(a) t4 does not vanish when one of the p's is zero;
(b) when all the P's are zero,

g'P(ti, ti)s '"' ln s,

corresponding to a double Regge pole.

(ii) s, si, s, ~ m, t„ t, fixed.

(10)
a&(t )S (tz) aI(t )S (tg)

~2g5 +
k k Sa'(t )a'(t, )[a(t,)—a(t,)] a'(t )a'(t )S

(15)

We write s= AS, s~——AlS, s2 ——A2S, S—+ ~. The coeS-
cient of 5 in D is of the form

ai ~ a+i. P„k+ai a hi(P, v', 8i)ki

+Pi P„hg(a,v,5g)k2, (11)
where

(iii) s, si ~ ~, s~, t, , 4 fixed.

t) i=~it). (p,v')+pit)-'(p, v')

62=826 (a,V)+aid '(a,V). (12) Fzo. 2. The contracted diagram associated with Fig. 1.
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S,

The integral in the curly brackets reduces to (14). Sum-
ming over m and n gives

s2 '"' 1+n'(t2) ln s2
~2~5s n(t1)ll g n" (t2)

(20)

FIG. 3. The semicontracted diagram associated with Fig. 1.

We write
sy=kys, s ~ ~ .

The property (a) of 61 implies that the leading asymp-
totic behavior is obtained by integrating in the neigh-
borhood of ni —— .——n =0. The P integrations do not
enhance the asymptotic behavior. The resulting form is

S i'»G(ki, t„t„S2), (16)

where the k~ dependence does not factor out of the
expression obtained for G.

(iv) si —+ ~, followed by s2~ ~, s, ti, t2 fixed.

The limit s& —+ ~ is obtained by integrating in the
neighborhood of 0.~= ——n =0. This yields

g2r+-1

2r2F (r)
(162r2)" '

IX (7,7',&,P)]" '&(2 P+-27+2 7-'+2 & 1)—
X

~1(P 7 ti)ED1(7,7 8,P $2, tl t2)j
&& (ln s,)™—1/s, r (222), (17)

The form (20) is independent of s. Note that the form
depends upon the order in which sl and s2 tend to
infinity.

(P2+P4)'= &26',

(P4+P2)'= &46',

(P2+P4)'= &26', (21)

Other invariants, such as (Pi+P2)', may also tend to
infinity, but in the approximation of taking leading
asymptotic behavior this does not affect the form of the
answer Lin the same way that Eq. (4) is independent
of k]. The calculation is identical to that described in
detail in Sec. 2(ii) except that the d lines now consist
of three disjoint lines. The resulting form is

3. HIGHER AMPLITUDES

The types of limit existing for six-point and higher
amplitudes are considerably complicated by the exist-
ence of nonlinear Gram determinant relations between
the invariants. We shall be content to illustrate the type
of asymptotic form obtained by an example correspond-
ing to Fig. 4. The limit considered will be one in which
t1= (p2+ p8) —t2= (p2+ p2+ p4)', t2=—(pi+ p4)' remain
finite and

P,r, i. u'(t2)n'(t2) Ln (t2) —n (t2) jS
X

II u'(ti) Lu(t2) —n(t2) 1
P" P.~o(7)

2r4g2 2X24X421i24S2
where Ci and Di are the Feynman numerator and
denominator functions of the semicontracted diagram
Flg. 3.

The coeKcient of s2 in D~ is

Thus, the leading asymptotic behavior will be given by
integrating in the neighborhood of Pi —— ——P„=82——0.
However, in evaluating this behavior a new feature is
encountered. The property (b) of 61, together with the
presence of 61 in the denominator of the integral in (17),
means that the 8~ integration also aRects the asymptotic
behavior of (17). The effect is evaluated in the
Appendix.

Application of (A4) to (17) gives

(22)
u'(t, )n'(t, )n'(t, )

g2r+1 1

2r2F (r—1) d7d7'd62
(162r2)" '

L o(7,7',~ )]"-'~(E7+2 7'+~ -1)
X

oi(7')o2(7)Ldo(7 7' ~2' ti t2) j' '

(ln si)
—' (ln s2) "+'

X
s,r(222) s2r(rt+2)

FIG. 4. The type of six-point ladder considered.
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dpd8Id82

I c 8 +BP ]t c P P„8 5+d]"
(A1)

APPENDIX

The new feature encountered in evaluating the
asymptotic behavior of (17) is due to the fact that
putting PI equal to zero in the factor AI in the de-
nominator gives a 61 integration which diverges at 51=0.
In order to evaluate correctly the asymptotic form of
(17), it is necessary therefore to integrate in the
neighborhood of PI —— ——P„=82——0 ussd 8I——0. In order
to evaluate the leading asymptotic behavior it is only
necessary to consider the linear terms in h1. The
structure of 6& is such that these terms only involve 5&

and PI. Thus, the leading behavior can be obtained by
evaluating

The 51 integration is performed 6rst to give

1 ' dpd82/ln Bpr —ln(cre+Bpt)]

Lcspt' ' 'p 828+d]"
(A2)

' dps dp~d82

p p2' ' pn82's

XLln(sps p„82S+1)+O(1)] (A3)

1 1 (ln 5)"+I
~ ~ 5 —+ ~.

(r 1)d" ' crc—s SI'(22+2)

1

(r 1)crcsd"—'

The second term in the numerator of (A2) is bounded
when PI ——0 so does not contribute to the leading
asymptotic behavior. It will, therefore, be omitted. The
PI integration is now performed and yields
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The magnitude of recoil and binding effects in the multiple-scattering corrections to the impulse approxi-
mation in low-energy E-d scattering is examined by the introduction of a model which makes tractable the
numerical evaluation of the double-scattering terms. The hnite mass of the nucleons and the rI;p interaction
in continuum states are both taken into account. It is concluded that estimates of multiple-scattering
corrections which ignore these effects are not reliable. The model is used to compute the sum of the cross
sections for E +d ~ E +d, E +d ~ K +p+n. Comparison with the rather limited data available in
the region 100 to 200 MeV/c favors the so-called solution II found by Humphrey and Ross in their analysis
of g-P data based on the Dalitz scattering lengths. A pseudopotential or optical-model-like approach to
meson-deuteron scattering, which may be useful in other problems, is also described.

1. INTRODUCTION

OME years ago, Dalitz' introduced two complex
~

~ ~

~

~

~

~

scattering lengths, which seem adequate for the
phenomenological description of low-energy X,X scat-
tering and absorption processes. Considerable ambiguity
in the values of Ap and 2», the I=0 and I= 1 scattering
lengths, respectively, was allowed by the data, and a
number of attempts were made to reduce the ambiguity
by a comparison of the rather limited data on E —d

reactions with theoretical predictions. ' The present
work was begun in an attempt to estimate the validity
of previous calculations and to improve them, if
possible.

* Supported in part by the U. S. Air Force.
t Based on a dissertation submitted by A. K. Bhatia in partial

fulfillment of the requirements for a Ph.D. at the University of
Maryland, 1962.

$ Present address: Department of Physics, Wesleyan Uni-
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' For a review, see R. H. Dalitz, Strange Particles and Strong
Interactions (Oxford University Press, London, 1962).

2T. B. Day, G. A. Snow, and J. Sucher, Nuovo Cimento 14,
637 (1959);Phys. Rev. 119, 1110 (1960).

More recently, the work of Ross and Humphrey'
narrowed the ambiguity to a choice of two solutions,
so-called solutions I and II, corresponding, respectively,
to

I: AP= —0.22+2 74i F, .At=0.02+0.38i Fi
II: Ap= —0.59+0.96i F At=1.2+0.56i F.

Akiba and Capps4 then showed that only solution II is
consistent with the data of Tripp et cl.' obtained in the
reaction K +P ~ I+sr at 400 MeV/c.

We may, thus, turn the problem around and ask to
what extent an analysis of E —d scattering processes
supports this choice, br better, to what extent one may
correctly predict E —d scattering and reaction cross
sections, using this choice of the phenomenological
scattering lengths.

'W. R. Humphrey and R. R. Ross, University of California
Radiation Laboratory Reports UCRL-9749 and UCRL-9752
(unpublished).' T. Akiba and R. H. Capps, Phys. Rev. Letters 8, 457 (1962).

~ R. Tripp, M. Watson, and M. Ferro-Luzzi, Phys. Rev. Letters
8, 175 (1962); 9, 28 (1962).


