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Bound States of Two Spin Waves in the Heisenberg Ferromagnet
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The simple cubic nearest-neighbor Heisenberg model is discussed in one, two, and three dimensions for
arbitrary spin. The problem of two spin deviations propagating in an otherwise' fully aligned lattice is
reduced to quadratures. The integrals relevant to the bound-state problem are examined. It is found that
bound states exist for all spins and dimensionalities. In one dimension the results of Bethe and others are
reaffirmed. In two and three dimensions the total momentum of a bound pair determines the number of pos-
sible bound states. For positive exchange constant and sufficiently large longitudinal anisotropy there are
bound states of two spin waves with energies below all continuum energies. It is argued that these states
should have a dominant in6uence on the low-temperature thermodynamics.

l. INTRODUCTION

HE Heisenberg Harniltonian conserves the com-
ponent of total spin along the direction of the

external magnetic field. The set of states of the system
having an eigenvalue of this component of the total
spin differing by a given integer, e, from the totally
aligned value comprise an invariant subspace under the
dynamical motion. The quantum number, e, labels the
number of spin deviations or spin waves in the system.

The m=0 subspace contains a single state. Bloch'
showed that the v=1 subspace is diagonalized by a
momentum representation. The m=2 subspace is the
first to exhibit effects of spin wave —spin wave inter-
actions. For a one-dimensional lattice and spin S=-,
Bethe' solved the resulting two-particle problem
completely. He found that in the limit as the lattice
becomes large there exists a unique bound state for
each value K of the total momentum of the pair. He
did not extend his treatment to higher dimensionalities.
Van Kranendonk' was the 6rst to attack the more
general problem; however, unable to carry through
the calculation exactly, he was forced to introduce
approximations which misrepresented the dynamics of
the spin system and led to erroneous results. The two-
particle problem has been discussed more recently by
Dyson4 as a part of his monumental calculation of the
low-temperature thermodynamics of the Heisenberg
model. Dyson derived a bound-state condition valid at
K=O. He verified in two and three dimensions and for
arbitrary S that this condition is not fulfilled and went
on to conjecture that bound states fail to exist for all K.
We shall show below that this conjecture is false. In two
dimensions, because of the very singular behavior of
the relevant integrals at K=0, there exist bound states
for arbitrarily small nonzero K. In three dimensions
there is, indeed, a region of small K for which bound

~ Fellow of the Miller Institute for Basic Research in Science.
' F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932).
s H. A. Bethe, Z. Physik 71, 205 (1931); A. Sommerfeld and

H. A. Bethe, in Hundbgch der Physik, edited by H. Geiger and
Karl Scheel (Julius Springer-Verlag, Berlin, 1933), Vol. 24, Part
2, pp. 604-618.

s J. Van Kranendonk, Physica 21, 749 (1955).
4 F. J. Dyson& Phys. Rev. 102, 1217 (1956).

states are absent; however, as K increases in magnitude,
a threshold is reached above which they appear.

The program of the present paper is to reduce the
two-particle problem to quadratures without approxi-
mation, to pick out a bound-state condition valid for
arbitrary K, and to analyze this condition successively
in one, two, and three dimensions. In one dimension
Bethe's' results are rederived for arbitrary spin. In
two and three dimensions contact is made with Dyson's
discussion, as mentioned above. In a final section a
longitudinal anisotropy is incorporated into the
Hamiltonian and the problems associated with experi-
mental observation of the two-spin-wave bound states
are briefly discussed.

2. FORMULATION OF THE PROBLEM

Consider a finite, cubic array of points, R;, which
may be thought of as the vertices of a lattice of unit
spacing' and side I.. It is convenient to assume that
the lattice has periodic connectivity, i.e., that the point
(R;+LR;) is identical with the point R, for all R; and
R; lattice vectors. Thus, there are no edge effects and
all lattice sites are perfectly equivalent. There are a
total of /=I." lattice points, where d is the lattice
dimensionality. In the formalism to be described below
it will prove compact to let a numerical argument
stand for a general lattice point.

A spin, S(1), of magnitude S is associated with each
lattice point. These spins satisfy (in units such that
hatt

= 1, which will be used throughout) the usual
relations,

LS+(1),S'(2)j=%6(12)$"(2),

LS (1),S+(2)j=—26(12)S'(2),

S+(1)S—(1)+S'(1)IS'(1)—1j=S(S+1),

(1)

(2)

(3)

1:S'(1)1'"'=LS (1)7"'=O,

S+(1)=S*(1)WiSo(1),
~ Since the Heisenberg problem consists entirely of spins and

has no spatial dynamics, the actual size of the lattice spacing
enters the model only through the parameters of the spin-spin
interaction.
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and the arguments, 1 and 2, refer to general lattice
points. The space of states of the Heisenberg model is
the direct product over all lattice sites of the individual
spin state spaces.

The dynamics of the Heisenberg model is governed
by the Hamiltonian

factors can be computed from the commutation
relations. Note that Iss(11)~0 for S=-', .

DeGne now the one- and two-particle Green's
functions,

G,(1; 1', f) = (—i)(OIS-(1; &)5+(1';0) IO)q(f), (14)

P=ls g 5*(1)——,
' p J(12)S(1).S(2).

1)2
(6) Gs(12; 1'2', t) = (—i)'(0 IS (1; f)5 (2; t)

XS+(1';0)S+(2'; 0) IO)r)(t), (15)

The Grst term represents the interaction of each spin
with a time-independent, spatially homogeneous ex-
ternal Inagnetic field, the direction of which has been
chosen as the s axis. The letter p stands for the product
of the spin magnetic moment and the magnitude of
the external Geld. The second term is an isotropic
nearest neighbor exchange interaction,

J(12)=J(21)=J for 1 and 2 nearest neighbors
=0 otherwise.

When J&0 ((0) the system is ferromagnetic (anti-
ferromagnetic) at low temperatures. The summations
are carried out over all lattice sites.

It is straightforward to verify that the spin deviation
number operator,

where

q(f) =1, »0
=0', t(0- (16)

The standard Heisenberg time development is taken:

S(1 ~ f)=&~HtS(1 ~ 0)&
—~Pl

In what follows the time argument will frequently be
omitted. The appearance of the g function implies the
boundary condition,

G,(;t) =Gs(; t) =0, when f(0. (18)

It is instructive to exhibit explicitly the relation between
the Green's functions and the one- and two-particle
wave functions and matrix elements of the Heisenberg
model. The Fourier transform of G, deGned by

e= WS+Q S'(1), (8)

commutes with H. The unique state with n=0, which
we shall designate by I 0) (normalized), is an eigenstate'
of H with energy

G„(;f) =i

has the form

G (1 1' ~ (o)

dM—e
—'"'G„( . ; co),

— 2Ã

Ep———piVS —dXJS'.

The state IO) is totally aligned:

5 (1)IO)= —Sl0). (10)

When J&0 and p&0, IO) is the ground state of the
Hamiltonian (6). Only under these conditions a,re the
states of small n of particular thermodynamical im-
portance. The normalized states of the m=1 and n=2
subspaces are now simply generated from

I 0):

S+(1)IO)=L(25)J"I1), (11)

5+(1)S+(2)I0)=L(25)'(1+8(12))hs(12)J~'I 12), (12)

(OIS (1)" I7)(~IS'(1')" Io)= (—i)"p (20)
( —(~.—&o)+

'
)

where all operators are taken at t= 0 and the
I y) are a

complete orthonormal set of m-particle energy eigen-
states. The ie standing in the denominator is intended
to suggest the operation limps p and incorporates the
boundary condition (18). The matrix elements in the
numerator of (20) can be expressed as

(OI 5-(1)
I y) =

I 25j'IQ, (1)= I 25j"'(1ly) (21)

where
I (12)= L1—g(12)/251.

(OIS (1)5 (2) Ip)=L(25)sh (12)jUQ (12)

(13) =I (25)s(1+8(12))hs(12)J"(12ly). (22)

Here the notation
I
1 . .) stands for a normalized state

in which a unit of spin has been Ripped away from total
alignment on each of the sites 1, .The normalization

'Note that there is perfect symmetry with respect to the
orientation of the z axis parallel or anti arallel to the magnetic
field. The transformation S*(1)—& —S* 1), S+(1)~ S (1) pre-
serves the relations (1)—(4) and is equivalent in the Hamiltonian
(6) to the change, p-+ —p. We might in place of (8) have used
the definition, e'=PS —Zq S*(1), and proceeded to work away
from the unique state e'=0 (e=2SE); however, the results
would be entirely equivalent to using (8) with the sign of p,
Ãcversecl.

When 5= sr, Eq. (22) does not define the nonexistent
wave function Pr(11). The wave functions are ortho-
normal according to

(23)

where the prime indicates summation only over physi-
cally meaningful wave functions. The completeness
relations are

Z. 07t(1')Cr(1) =~(11')
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Clearly, Gi (1;1')has just the form of (20).The spectrum
(30) is just that derived by Bloch for single spin waves

Q Q, t(1'2')$, (12)=6(11')8(22')+t)(12')()(21'). (25);n an otherw;se al;gned latt, ce

Equations (19)—(22) show that the functions Gi and.

G2 contain all possible information about the one- and
two-particle subspaces. In what follows we shall com-
pute G2 by using its equation of motion, the boundary
condition (18), and spatial periodicity, which takes the
form

G ( R' t)=G ( R+I.R" . t)
R; and R; lattice vectors. (26)

Before embarking on the full G2 problem, let us illustrate
the method by constructing the function G&, which will

be a convenient auxiliary in later calculation.
The equation of motion for 5 (1) following from the

Hamiltonian (6) is

(~
I
i—t IS-(1)

( at

+Q J(11)LS*(1)5(1)—S*(1)5 (1))=0. (27)

3. SOLUTION OF THE TWO-PARTICLE PROBLEM

%e are now in a position to calculate G2. The equation
of motion for the combination S (1)S (2) can be
caclulated from (27); however, in writing an equation
of motion for G2 the 5"s resulting from the differenti-
ation of S (2) must be commuted through S (1) to
the left, so they can project onto {0~ according to (10).
The equation of motion obeyed by G2 is

8
i—2(ti+25dJ) G2(12; 1'2')

83

+5 Q J(11)G2(12;1'2')

+5 Q J(22)G2(12; 1'2')

+J(12)Gg(12; 1'2')

—tI(12) Q J(11)Gg(12;1'2')

=()(t)(0) LS (1),5+(1')j )0)= 25tI(t)t)(11') . (28)

The equivalence of the lattice points guarantees that
Gi(1; 1') can only depend on the coordinate difference
(1—1 ). The periodicity requirement (26) is incor-
porated by expressing Gj as a spatial Fourier series
with respect to the k vectors of the reciprocal lattice.
Once spatial and temporal transforms are taken, Eq.
(28) is trivially soluble and the result is

2S
Gi(1 ~ 1~)— Q pic (1—1')

& z~z

vrhere

Equation (27) and the property (10) of the state j0)
imply an equation of motion for G&

..

l
~—p)G (); 1')

—SZ J(11)LGi(1 1')—Gi(1 1')J

= (—i) (25)'L() (11')t)(22')+lQ (12')t) (21')1It,(1'2') . (32)

The last two terms on the left-hand. side of this equation
are a consequence of the commutation process described
above. They make explicit reference to both the position
1 and the position 2 and may be regarded as inter-
actions between particles whose free motion is described

by the three preceding terms. To exploit this analogy,
introduce the symmetrical function

I'2(12; 1'2'; t) =—G, (1; 1')G, (2; 2')

+Gi(1; 2')Gi(2; 1'). (33)

It can be verified directly that I'2(12; 1'2') satisfies

Eq. (32) with the interaction terms omitted from the
left side and the factor h2(1'2') omitted from the right.
With the help of I'2 the equation of motion (32) may
now be transformed into an integral equation, which

incorporates the boundary conditions through the
structure of G&.

G, (12; 1'2'; t) =r, (12; 1'2', t)h, (1'2')

0(k) = 2SJ g (1—cosh, ) . (30)

where

-Z
2(25)' ir

dK, (12; I2; t—t)J(12)

XG (12; 1'2', t), (34)

The sum in (29) is over the set F containing the
reciprocal lattice vectors with components K2(12; 12)=I'2(12; 12)

—-', pl'2(12; 11)+I'2(12;22)$ (35)k;= (27r/L)m;, i= 1, , d

m; integral: —(—,'I.—1) ~&m, ~& ~iL, L, even
—(-,'L—-', )«; (-', L—-', ), L odd.

(31) and the symmetry of G2 in its unprimed arguments has
been invoked. Note the asymmetry between primed
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(12 ~ 1&21) P eiK ~ (R-R')
g KeE

and

&co

Xz —e-"rs(r; r', K,oi) (37)
— 2'

Es(12 1'2') =—P e'*' " "'
g K~@

with

de
Xz —e '"'Ks(r; r'; K,to), (38)

— 2~

cosk r cosk r'(—2)(2S)'
I's(r; r'; K,oi) = P — (39)

jV ae7c0 —2zz —S(k,K)+ze

(—2) (2S)s
Es(r; r'; K,c0) =

where

cosk rLcosk r' —cos-', K r'j
xp (4o)

i ss c0—2zz —S(k,K)+ze

S(k,K) =Q(ki)+Q(ks)
=4SJ g; (1—cos-', E; cosk;), (41)

and E denotes the set of modified reciprocal lattice
vectors with components:

2k;= (2zr/L)zN;, z=1, , d

—(L—2) ~&zzz;~&I. for L and LE;/2zr same

parity, (42)
—(L—1) &&zN; &~(L,—1) for L and LK;/2zr

opposite parity.
' For example, the 5 =-', property, G&(12; 1'1') =0, which follows

from (4), is clearly a property of the integral equation (34),
through the appearance of the factor h2(1'2'). The corresponding
property for the unprimed coordinates, G2(11; 1'2') =0, is not
manifest in (34) and depends on a complicated cancellation
between the "free" term and the "scattering" term. This property
does follow directly from the differential equation (32), due to a
cancellation between the second, third, and 6fth terms on the
lef t-hand side.

and unprimed coordinates in Eq. (34).r Had we used
instead of (32) the corresponding equation for the

primed indices, the analog of (34) would have had the
opposite asymmetry. The asymmetry seems to be an
unavoidable consequence of the spin commutation
relation (2).

Equation (34) can be solved by Fourier transfor-
mation. Sum and difrerence variables are introduced
according to

2R= 1+2, r= 1—2

(36)
K= ki+ks, 2k= ki —k, .

Equations (29), (33), and (35) may be combined to give

m; is integral and goes by steps of two between the
limits shown. Now, G~ can only depend on the co-
ordinate differences r, r', and (R—R'). For fixed r and
r' the variable (R—R') has the periodicity of the lattice,
so G2 can be represented as

G (12. 1&2&)— Q siK ~ (R—R')

g KeE

XG, (r; r', K,oi) . (43)

+ g Es(r; j;K,oi)Gs(j; r'; K,oi), (44)
(2S)' f

where j denotes a unit lattice vector and ranges over
the d spatial directions. If r is replaced by a unit lattice
vector i, Eq. (44) becomes for each r', K, and o~ a set of
d equations in the d unknowns Gs(i; r'; K,cs). By
reinserting the solution on the right-hand side of (44),
we may then compute the full Gs(r; r'; K,o&), from which
the wave functions, energy eigenvalues, etc. follow by
(43), (20), and (22). For general L and K the difficulty
of performing exactly the summations (39) and (40)
makes this full program unfeasible. 8

It is useful, however, to analyze further the structure
of the function Gs(r; r'; K,o&) as a function of its energy
variable, co. If we choose to regard o& as a complex
variable, co~ s, the representation (20) shows that the
poles of Gs(r; r', K,s) as a function of s lie on the real
2' axis at values given by the differences between the
two-spin-wave eigenenergies and Es. Formulas (39)
and (40) show that the functions 1's(r; r'; K,s) and
Zs(r; r'; K,s) have poles at the energies (relative to
Es) of two noninteracting spin waves and are otherwise
analytic. G2 appears to have poles both at the poles of
the functions I'2 and K2 and at the zeros of the denomi-
nator which arise in the solution of Eq. (44). These
latter poles are located at the solutions of

J
det b(ij) — E,(i; j;K,s) =0,

(2s)'
(45)

where fi(zj) and Es(i; j; K,s) are regarded as dXd
Inatrices in the spatial directions', j=1, ~ ~, d, A care-

s When I is even and E;= 7r, it is direct to compute Gs(r; r'; Kp&)
and to carry throu h the program outlined. There are a total of
Pflf+1 —S(2S—1) states of E;=~. All but d of these are de-
generate at the energy (2p+4SJd) of two independent spin waves
of total momentum (k1);+(k2); =m. The remaining d states are
shifted down in energy by the interaction to (2p+J(4Sd —1))
and have wave functions in which the two spin deviations are
restricted to nearest neighbor sites. These states correspond to the
bound states of Sec. 4.

The symmetry of G2 in 1, 2, and in 1', 2' requires that
Gs(r; r'; K,oi) be even in r and r'.

When the representations (37), (38), and (43) are
substituted into (34), one finds

Gs(r; r', K,oi) =Fs(r; r'; K oi)hs(r')
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ful analysis shows that the residue of G2 at many of
the apparent poles vanishes. A more detailed discussion
of the poles of G2 is contained in Appendix A. There
is a close parallel in the treatment of two-particle
scattering by a potential which can be expressed as a
finite sum of factorizable potentials. ' For our present
purposes it is sufhcient to point out that any pole of
G2 at the energy of two free spin waves is certainly not
related to a bound state, so that the only poles of G2
which can correspond to bound states are located at
the roots of (45). The structure of (45) is analyzed in
Appendix B. It is shown there that for given K most
of the real solutions are interspersed between the poles,
$2la+$(k, K)$, of I's and Ks but that a small number of
solutions may lie well outside these bounds. It is these
solutions, shifted by the interaction outside the range
of energies accessible to two free spin waves, which we
shall identify with the bound states.

When S becomes large (N —+ ~), things are par-
ticularly clear, and it is only for this case that the
concept of a bound state becomes entirely meaningful.
As E—+ eo, the summations in (39) and (40) may for
certain purposes" be replaced by integrations,

As a function of the variable t, B2 has a cut along the
real axis —g~ct~&f&gt n~. Possible bound states lie
on the real t axis for t~ ~Q~ n~~. If ts(K) is a solution
of (48) in this region for given K, then

Es+2y+4$JLd—fs (K)j
is the energy of a two-particle bound state of the
Hamiltonian (6). Note that the condition (48) no
longer depends on the exchange constant J except
through t Fo.r p)0, J)0 (ferromagnetic case) Es is
the ground-state energy of the Heisenberg model, so
t~~d. Our program, therefore, is to evaluate as far as
possible the integrals (49) for t& —P~ n~ and Qt, o.~&t
~d, to look for solutions, t~, of the bound-state con-
dition (48), and to use (51) to compute the corre-
sponding energy eigenvalues. Before examining sepa-
rately the various dimensionalities, d=1, 2, 3, it is
convenient to make some general remarks concerning
the condition (48) and the integrals (49).

The rather cumbersome determinental condition
(48) simplifies when all n s are equal, n;= n, i = 1, ~, d.
Under these conditions Bs(is)=Bs(11),Bs(ij)=Bs(12)
for iA j, and (48) takes the form

1 1—p —+-
(2z-)"

(dk), (46) L2$—Bs(11)—(d—1)Bs(12))
&& t 2$—B,(11)+B,(12)hfs-rl =0. (52)

where (dk) represents a d-dimensional volume element.
The functions I' s(z) and Ks(z) in this approximation
have a cut along the real s axis,

For general values of the n s it is convenient to
define a set of integrals, D:

L2p+$(O, K), 2p+ S (ss,K)i, (47)

and are otherwise analytic. Gs(z) may have in addition
to the cut (47) discrete poles at the solutions of (45)
lying outside the cut."These solutions give the energies
of the bound states of two interacting spin waves of
total momentum K. In Sec. 4 we turn our attention to
the evaluation of the bound-state condition (45).

4. THE BOUND STATES OF TWO SPIN WAVES
IN A LARGE LATTICE

The bound state condition (45) may be rewritten as

1 (dk)
Dp(f) =-

o t Et nt coskt

cosh;
(dk)

f—P~ Q~ coskg

1
D;;(t) =D,,(f)=-

7r"

cosk; cost|;
(dk)

Qg n~ c—osk~

The function Bs(ij) is now exPressed as

Bs(sj)=D'~(f) —D'(f) ~f.

(53)

(54)
detL2$8(i j)—Bs(sj)j=0,

where K and s have been left implicit and

1 cosk, (cosk;—cr;)
Bs(sj)=— (dk)

z p f g~ (x~ cosk~—
with

(49)

(s—2p
f=d —

~

and 0&tr~ cos-', Kg&1. ——(50)
k 4'

' M. Baker, Ann. Phys. (N.Y.) 4, 271 (1958).' The replacement (46) misrepresents the summands of (39)
and (40) over distances of order the reciprocal lattice spacing and
will lead, therefore, to errors in energy shifts of order 1/N or in
spatial wave functions over distances of order J."It is mathematically conceivable for the residue of the full
Gs to vanish at a zero of (45). Such a zero does not correspond to
a two-particle energy eigenvalue. While this possibility cannot be
excluded without more explicit calculation, it seems unlikely.

The integrals (53) satisfy a set of sum rules,

1=tDp(f) —g ) Di(t)ni,

fD, (f)=P; D,;(t)n;, (55)

and have simple symmetry when the sign of t is
reversed,

Dp(/) = Do( f), — —
D;(t) =D;(—t),
D' (f) =-D "(-f)

For 8= 1, 2 the integrals D can be evaluated in terms
of tabulated functions. Appendix C gives a repre-
sentation of the D's as Laplace transforms of certain
products of Bessel functions.
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=a
. 1

Fn. 1. Sketch of
ttt(n) for the one-di-
mensional lattice.
Equation (St) gives
the relation between
tg and the energy of
the bound states of
two spin waves.
n =cos~E.

The bound-state condition (48) has the form,

2Sn'(t' —n')'" = (t—n') [tW (t' —n')"'] (60)

For t &—n (lower sign) the signs of the two sides differ,
so (60) can never be satisfied and there are no bound
states. When 5=-, the situation is particularly simple:
Equation (60) yields immediately the unique solution,

ttt(E) =-'(1+n') or E=Ep+2tt+-', J(1—cosE), (61)

which is precisely the energy of the bound spin complex
found by Bethe. ' For higher spin magnitudes and t)n,
it is convenient to rearrange (60) as

C(t) —=4St'[t+n'(S —1)]
=Lt+(2S—1) ']'—=Q(t). (62)

The form of (62) guarantees that there is a unique
solution, t&, with t&0 for arbitrary E. The elementary
inequalities, C(n)(Q(n) and C(1))Q(1), show that
0~3~~1, as expected. For small ~, t~ has the form

ttt (E)= (1/4S)+ (3S 1)n—'+0 (n') . (63)

Finally, when t is in the bound-state region, the D's
and therefore the 82's may be written as power series
in (n,/t),

1 1tas & n'
& (ej)=—+-~ —+-:2 nP ——+0((n/t)')

2t ts 4 8 i-i 2ts

It is easy to show that dttt/dn=1 at n=1. Note that
the qualitative features of the curve ttt(n) are inde-
pendent of S. Figure 1 summarizes these results. The
energies of the continuum correspond to —n()~0.,
so that the distance by which the curve t&(n) lies above
the curve t=n is, except for a factor of 4SJ, just the
binding energy of the bound spin pair at the corre-
sponding total momentum, E.

B. The Bound States in Two Dimensions

(1 1 1=, ,I ——+0(( /t)4)+0 -( /t)' I,
(2ts 2ts Dp(t) =kE(k)/sr(n, n,)' ',

k

~ ~

i
+o -(nlt)'

(57) Evaluation of the integrals D for the two-dimensional
lattice is sketched in Appendix D. For t)ni+ns the
results are

It follows that for n, small the solutions of (48) have
the form

ttt(K) = (1/4S)+0(nP), (58)

i.e., for E,=x there are d bound states at the energy
E=&p+2tt+ J(4Sd 1), in agreement —with our previous
result. ' As the E; become diferent from x, deviations
of the bound state energy go as a,'. Note that when
the n; are near zero there are no bound states with
negative t~, i.e., above the energy cut for J&0.

Let us now examine the two-particle bound states
in detail in one, two, and three dimensions.

D, (t) =—— [(t+n;)E(k)
n,7r(nins)"'

(64)—(t+ni+ns) II (P,s,k)],

Drs(t) =- [(2—k')E(k) —2E(k)],
ksr (nins) "'

O~k'= —— -- -~ 1, k~O,
t' (ni —ns)'—

2Q' (0 PRPs —ks

t n;+n;—
A. The Bound States in One Dimension

Here an elementary integral gives

Dp(t) =a
(p ns) iis

and i, j=1, 2 with i'. The functions E, E, II are, re-
spectively, complete elliptic integrals of the first, second,
and third kinds. "Equations (56) give the integrals D

~ Paul F. Byrd and Morris D. Friedman, in Handbook of Elhi ptk
t&n or t& n. (59) Irttegrats for Ettgerteers aid Pttysecests (Springer —Verlag, Berlin,

1954), Eqs. 110.06-110.08.
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when f & —a&—ns. D;, (f) may be computed from (64) by
use of the sum rule (55). For general n, the complication
of the bound-state condition (48) and the integrals (64)
makes it difficult even to estimate t~ without resorting
to numerical computation; however, certain special
cases can be treated quite easily. These give a fairly
clear idea of the behavior of the two-dimensional bound
states.

If at=as, then P;s= —k, and II can be expressed in
terms of the elliptical integral E." The bound-state
condition factors according to (52), giving

25(2n )/(f —2n ) =! (2/%)E(k) —1], (65a)

25(2 ')/t= j(4/ )Z(k) —(1—k') (2/ )E(k)—1j, (65b)

where
1 ~k= 2a/It !~0 and t'~4a'.

The right-hand side of (65a) and (65b) are always
positive, while the left-hand side is negative for t(0,
so there are no bound states with t~&0, i.e., above the
continuum for J)0. Equation (65a) has a unique
solution for all 0./1 with 20;~3~~2. If the ansatz,
t= 2 n(1+ )e, 0(e«1, and the expansion"

E(k) =ln(4/k')+0(k" ink'),

k"=1—k' (valid when k' is small) are substituted into
(65a), we obtain

Fzo. 2. Sketch of
ts(n) for the two- di-
mensional case nI =a2

The lower
branch merges with
the continuum at
o= (1/25')

&& t:(4/~) —1j
There are no bound
states at negative t.

1 4
2S-7r

that at this threshold the corresponding curve t~(n)
merges with the continuum. Equation (65b) with
$=2o. yields directly the evaluation

4
0&m= ———1 &1

25 x
(68)

for the threshold value of n. The bound-state curves,
f!r(n), are sketched in Fig. 2.

The discussion in the last paragraph was limited to
the symmetric case o.&=o.2. Solution is also possible in
certain limiting cases for 0;&&o.2. When o;; is small, the
expansion (57) gives

( 2mSa
!.=8 exp!—

1+e—a)

1 5S—1
(66) fg= +(n',—+ass)~-', L(5—1)'(nP+nss)'

4S 2

Equation (66) has a solution for arbitrarily small n.
If we adopt as a criterion of smallness e& 1/100, then
the 6nal formula for t~,

( 2sSn)
4(a)=2n 1+8 exp!—

1 n)—
is a very good approximation for &n7/(2 Ss+7). This
result explicitly contradicts Dyson's" conclusion that
there are no bound states in two dimensions. By con-
trast with (65a), Eq. (65b) does not have solutions
for n near unity. Since both (65a) and (65b) have a
single solution of the form (58) for small n, it is of
interest to ask—for what value of n does (65b) develop
a solution? It is reasonable to assert on the basis of
physical continuity and the discussion of Appendix B

"P.F. Byrd and M. D, Friedman, in Ref. 12, Eq. 410.01.
'4 Herbert B.Dwight, Tables of Integrals and Other 3IIathemaHcal

Data (The MacMillan Company, New York, 1957), Eq. 773.3."F.J. Dyson, Phys. Rev. 102, 1217 (1956), after Eq. (100).
The origin of this discrepancy is not hard to Gnd. Dyson s Eq.
(100) is the correct bound-state condition for K=O, i.e., o;=1,
for which the only possible tz is 2. For these values of n; and t&
the bound-state condition does, indeed, fail. The point is that the
bound-state integrals B&(rj') are highly singular as functions of
a; at o;=1. Iu particular it is clear from (49) that for t=nq+nm
the B&(ij) are Gnite if o.I =o,&

= 1 but logarithmically divergent for
all other values of o.;.

+125(SS—1)n 'a ')'" +0( n4) . (69)

which reduces to (67) in the appropriate limit.
Finally, when ns ——0, it follows that Ds(t) =Drs(t) =0

and Dss(t)= —,'Ds(f), so the bound-state condition (48)
factors:

L25—a, (11)]L25——',D, (f)&=0. (71)

The 6rst factor gives a bound state of precisely the
one-dimensional form, (61); the second leads to

fs(n, ,0)=+f(45)-'+n'Q"'.

'~ H. B. Dwight, Ref. 14, Eqs. 773.3 and 774.3.

(72)

The ansatz t= (at+as) (1+e), 0&e«1, makes the
argument k of the various elliptic integrals appearing
in the D's near one. Then the standard expansions""
in k"= 1—k' allow derivation of a self-consistent
equation for e similar to (66) but with a rather com-
plicated argument for the exponential. This equation
has a solution for n; arbitrarily close to 1. The analog
to (67) for atkins is rather messy; however, for n;=1
it assumes the simple form

& (2-)(25)i-
ts (nr, ns)—(at+as) 1+8 expl — I, (70)

2—nr —ns~—
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1

4S

1+ (4S)

Fzo. 3. Sketch of
tg(o, 1,0) for the two-
dimensional lattice.
There are two bound
states for each value
Of 0!I.

Pl Qj
~S——+—(~i+~s—~P)+vs—(1—~s)

Qy Qy

r V2 Q2

+ rrS + (crt+—n—s n—s')+pi —(1 ni) =—0—, (73)
Q2 Q2

Figure 3 depicts these results. There are no bound
states for t&0. The situation is, of course, entirely
similar when Q~= 0/Q2.

When Q~ and Q2 are near zero, there are two bound
states; when Q& and Q2 are near unity, there is one.
Without examining the bound-state condition (48) for
arbitrary Q~ and Q2, it is impossible to conclude with
complete rigor that there are always either one or two
bound states; however, on the basis of the special cases
which can be simply solved, it seems reasonable to
conjecture that this is so. It then becomes of interest
to plot in the Q~, Q2 plane the threshold for the appear-
ance of the second bound state. The assumption Lcf.,
the derivation of (68)) that the second bound state
merges with the continuum at threshold associates the
argument &=1 with the integrals (64) at threshold.
As k —+ 1, the functions E(k) and 1I(P,s,k) are singular"
as ln(1 —k'). When (48) is multiplied out, the terms
quadratic in the singularity cancel. The condition for
a bound state at the edge of the continuum is, therefore,
that the coeKcient of the remaining logarithmic singu-
larity should vanish. This leads to the equation

do not exist; however, a more careful discussion of (48)
for arbitrary Q; would be necessary to decide this point
with certainty.

C. The Bound States in Three Dimensions

The integrals D appropriate to the three-dimensional
lattice are not to the author's knowledge available in
analytic form for arbitrary values of the parameters t
and Q;. Evaluations have, however, been carried out
for certain special values of the parameters, '7 and these
will suffice for us to form a good qualitative picture of
the number and behavior of the bound states.

When cr, =n, the integrals D of (53) all have the
simple property

D(~ )=(1/ )D(~/, 1). (75)

Equations (52), (54), and (55) then give the bound-
state conditions,

S~= (t/3n)Di(t/n, 1)—Dis(t/~, 1),
-'sSu= (1/3n —n)Di(t/n, 1) .

(76a)

(76b)

The condition (76a) appears as a quadratic factor in
(52), so its solutions are related to doubly degenerate
bound states. Condition (76b) is nondegenerate. It is
easy to show that for t~3n, Di(t/n, 1))0. Dyson'r
uses an ingenious electric circuit analog to demonstrate
further that 0(Di(t/n, l) —Dis(t/ir, 1)(—is. These in-
equalities and use of (56) prove that bound states do
not exist for t~ —3Q. According to the discussion after
(51), bound states with t)0 must lie in 3~t~3n. In
particular, as Q —& 1, only t —+ 3 is possible. The con-
dition (76b) is obviously not satisfied for n = 1.Dyson's
inequality shows that (76a) also fails. Therefore, there
do not exist bound states of two spin waves with K=0
in three dimensions. The integrals D defined by (53)
are in three dimensions perfectly continuous functions
of their variables, t and n;, for t~ pi ni. It follows that
there exists a finite region around K=O (rr, =1) for

where

r = (~i/~s)"'+ (~s/~i)"'

7;=sin—'(n;/ (n,+as) )"'.
The solutions of (73) include the threshold points
already shown in Figs. 2 and 3. Near Q&

——I, Q2=0 the
curve (73) has the form

1———12S -~

——-12S.a
=a,

1

FIG. 4. Sketch of
threshold for the ap-
pearance of the sec-
ond bound state for
each K for the two-
dimensional lattice
o,;=cos2E;.1

ns = (4/3rrS)'(1 ni)'— (74)

Figure 4 shows the threshold curve for the two-dimen-
sional bound states.

In the special cases treated exactly there have been
no bound states with t(0. Probably such bound states

» G. N. Watson, Quart. J. Math. 10, 266 (1939), computes Ds
for o.; =1=-';t. F. J. Dyson, Ref. 15, Eq. (89) and after Eq. (100),
obtains useful inequalities for a; = 1, t 3. J. G. Hanus, in Quarterly
I'rogress Report, Solid State and Molecular Theory Group {MIT),
43, 96 (1962), tabulates the equal o; case for selected values of t
and gives further references. He works from the Laplace transform
representation (see Appen, dix C).
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which there are no bound states. ' Dyson recognized
this but went on to conjecture incorrectly that there
were no bound states for arbitrary K. Equation (58)
and footnote 8 already show that such bound states do
exist for small n;. The threshold for their appearance is
easy to compute when n;=n. As in tv o dimensions the
bound states are expected to merge with the continuum
at threshold, so we look for solutions of (76) with t= 3tr:

sStr =Dr(3, 1)—Dts(3, 1)=0.0618, (77a)

—ssSn(1 —ct) =D, (3,1)=0.1721, (77b)

where Hanus"~ values have been used for the integrals.
It is direct to compute threshold values of 0. from Eqs.
(77). For S=st the thresholds correspond to E,=159'
(doubly degenerate) and Z;= 140' (nondegenerate).
These values agreed with those obtained by Hanus"
in an analysis somewhat less direct than ours and

Fro. 5. Sketch of
tg(cx) for the three-
dimensional lattice
and n;=e. The lower
curve is doubly de-
generate. Threshold
values of n are given
by (77).

Fto. 6. Three-di-
mensional bound-
state behavior for
ai=n~=n and n3=0.

1———125-7r

It is easy to verify that this condition leads always to a
unique bound state with i)nt+ns. In particular for
nt ——ns ——1, the corresponding t~ solves 4Ss = (2/t)E (2/i),
so t~&2. In Fig. 6 the situation is pictured for
og=n2=n) n3=0.

Complete solution of the three-dimensional bound-
state problem depends on evaluation of the integrals D
for arbitrary n;. The special cases considered above do,
however, provide a solid basis for speculation con-
cerning the qualitative features of the full solution.
There appear to be no bound states with t&0.20 The
~ cube, O~n;~1, seems to be divided into four regions,
according as there are 0, 1, 2, or 3 bound states with
]&0 for each corresponding value of the total mo-

(0,1,1)
: (1,1,1)

(0,0,1):

restricted to S=—,', d=3. Figure 5 shows the bound-
state behavior for n;=n.

The three-dimensional analog of (69) for small rr;

follows from (57). The resulting cubic equation has
three solutions of the form (58). There are no solutions
with t&0.

Finally, when one of the n s vanishes (i.e., on one
of the faces of the K cube), the bound-state condition
(48) factors in analogy to (71) into a two-dimensional
and a one-dimensional part. If, for example, 0.3=0, the
two-dimensional part gives just the bound states of
Sec. 38. In addition to these there are bound states at
the solutions of 4S=De(t), with Ds(t) given by (64).

' Note that the singularity of the integrals D in two dimensions
as t ~ ai+a2 makes this argument inapplicable. See footnote 15."J.G. Hanus, in Quarterly Progress Report, Solid State and
Molecular Theory Group (MIT), 43, 96 (1962); 44, 38 (1962);
and 46, 137 (1962). Hanus works from a Schrodinger equation
and introduces a Green's function similar to our G2 only as an
auxiliary. The first paper treats the spin-wave interaction in-
correctly. This error is rectified in the second.

(0,0,0)

Qg (1,0,0)

FIG. 7. Threshold surfaces in three dimensions, as they intersect
the faces of the n cube. Numerals on the cube faces indicate the
number of bound states for each set of (ni,n2, n3) in the corre-
sponding regions.

20 Hanus (Ref. 19) in his first paper claims to find bound states
symmetrically above and below the continuum. He bases his
argument on the "invariance of the trace of the interaction. " It
is hard to see how such an argument can (as his seems to) be
independent of the phase shifts in the continuum. The. present
author believes that he has simply misrepresented the reBection
properties (56) of the integrals D. In any case our calculations do
not corroborate his conclusion.
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mentum of the bound pair. Figure 7 shows a sketch of
the intersections of the threshold surfaces de6ning
these regions with the faces of the o; cube and is the
three-dimensional analog of Fig. 4. The analysis leading
to Fig. 5 suggests that the two surfaces closest to
o ~=~2=&3=0 are tangent at the diagonal point
ni=ns=ns= (1/25) (0.1854).

S. CONCLUSIONS

For a large, isotropic, d-dimensional, cubic Heisen-
berg model there may exist 0, 1, . . . , d bound states
of two spin waves, where the precise number depends
in a complicated way on the total momentum of the
bound pair. When J and p, are positive, so the states
with small numbers of spin waves may be expected to
be thermodynamica]ly important at low temperatures,
the bound states have energies below the two-particle
continuum. Larger values of the total momentum favor
larger numbers of bound states and larger binding
energies relative to the continuum. " In particular for
d=3, there are no bound states for total momenta that
are sufficiently small. Even in two dimensions, where
there are bound states for arbitrarily small K, the
corresponding binding energies go to zero exponentially
with K Lsee Eq. (67)]. The qualitative features of the
bound-state behavior are independent of the magnitude,
5, of the individual spins.

Experimental observation of the bound states of two
spin waves in materials well described by an isotropic
Heisenberg model does not appear easy. Let us confine
our remarks to the three-dimensional case with J, p, &0,
although experiments on thin films and chains are also
conceivable. The present calculations have treated two
spin waves in an otherwise aligned lattice. It is plausible
to hope that at suKciently low spin-wave densities,
i.e., at sufficiently low temperatures, the spin waves
will continue to exhibit predominantly single-particle
and pair characteristics, so our treatment will remajn
accurate. "Dynamical experiments such as spin-wave
resonance" and inelastic ferromagnetic neutron scat-
tering'4 typically couple to single spin waves. Thus,
such a process as creation of a bound pair either is of
second order, and therefore, weak or must proceed via
a spin wave already in the continuum, which makes

Q(k)=2SJ g (1—o cosk;), (79)

is used as the single-particle spectrum. Similarly, the
integral equation (34) for Gs remains valid, if the
definition (35) is changed to

Es(12 i 12)=I's(12; 12)
—-', Lr, (12; 11)+r,(12; 22)] (80)

and the correct Gi is used in the evaluation (33) of I' s.
The net effect is that Kq. (44) still gives Gs(r; r'; K,co),
if the terms cos(—,'K r') and cos (-,'E,) appearing in the
definitions (39)—(41) are multiplied by o. The whole
discussion of the bound states in Sec. 4 can then be
carried over by simply changing the definition of n,
from (50) to

n;=o cos(-',E,), O~n, ~rr.

analysis dificult. Alternatively, direct measurement of
the low-temperature thermodynamics is quite feasible;
however, the absence of bound states with small K
means that there are continuum states lower by a
6nite energy gap, 8, than the lowest bound state. The
effect of the bound states on the thermodynamics is,
therefore, exponentially small with e t".

These difhculties may not be insurmountable, but
the situation is much simpler if one studies materials
with a highly anisotropic exchange coupling. Consider,
instead of the isotropic Hamiltonian (6),

&=u E ~'(1)—s Z ~(12)l:5'*(1)5'*(2)
1,2

+~~'(1)5' (2)] (78)

The Hamiltonian (78) incorporates an anisotropy
parameter, 0.~0. Isotropy corresponds to 0.=1. The
following discussion may be motivated by the obser-
vation that when 0.=0, the Heisenberg model reduces
to the Ising model, for which the bound states are
always below the (degenerate) continuum. Notice that
for 1~o-&0 and J, p, &0 the fully aligned state is still
the ground state. All the machinations of Secs. 2 and 3
go through just as before, only with factors of 0- inserted
at appropriate places. In particular, it is direct to verify
that Gi(1; 1') is still given by (29), if in place of (30)

Each of Figs. 1—7 is still correct; however, physical
values of n; are no longer O~n, ~1 but are given by
(81). In the Ising limit, o.=O, Eqs. (58) and (51) show
that there are always d-bound states degenerate at
the energy Es+2p+ J(4Sd 1), which is—a trivial direct
consequence of the Ising Hamiltonian.

Notice from Fig. 1 that for 0~0.(1 the one-dimen-
sional bound-state curve never touches the continuum.
For 8= sr, (51) and (61) give the bound-state energies
as

(82)E=Es+2@+25Jk1 o' cos'(-,'E)], '—

"The dependence of the number and binding energy of the
bound states on the total momentum is a result of the discrete
nature of the lattice and the consequent lack of invariance of the
problem under continuous translations.

'2 Note that even at low densities the possibility of important
corrections due to bound triplets, etc. , cannot be rigorously
excluded without examination of the three-particle problem, and
so on. At temperatures near or above the Curie point, where
roughly half the spins in the system are flipped, it seems likely
that many particle eGects will predominate and that the present
discussion is entirely inapplicable.

~3 See, for example, P. E. Tannenwald, J. Phys. Soc. Japan 17,
Suppl. B-I, 592 (1962) and R. Kiruura and H, Nose, ibsd , 604.
(1962). These authors give further references.

'4 See, for example, R. N. Sinclair and B.N. Brockhouse, Phys.
Rev. 120, 1688 (1960).



which has been obtained by Orbach. '5 Figure 4 shows
that in two dimensions when 0~0&(1/2S)(4/z. —1)
there are two bound states for each value of the total
momentum.

In three dimensions for the phsyically interesting
case J, p)0 Eq. (77b) shows that for

0~0 (0.5163/ (2S+0.5163) (S3)

there will be a bound state of K=O with energy lower
than any continuum energy. For such an anisotropy
the bound states will play a predominant role in deter-
mining the low-temperature thermodynamics, while
'~~e eQect of the continuum states will be exponentially
small as T —+0. Under the pairing assumption" the
characteristics of the two-particle bound-state spectrum
should then be readily observable experimentally.

perturbed energy, so ra =co "'. If (A1)-(A3) are
substituted in the right-hand side of (44), the second
term appears to give a second-order pole in Gs(r; r'; z)
at z=co +', which contradicts (A3). The condition that
this contradiction should not occur is

Z'k (r j)g (2'r)=0. (A4)

Since (A4) must hold for arbitrary r, it follows that
either g (j;r') = 0 or every d Xd submatrix of k (r; j)
is singular. Assume for the moment that k (r; j) has
at least one nonsingular d Xd submatrix, so g (j;r') =0.
Then the value of g„(r; r') can be constructed entirely
from k (r; j) and p (r; r'). To do this, notice that the
part of (44) singular at z=o& 's' reads,

g (r'r')=7 (r r')ks(r')
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APPENDIX A: THE POLES OF G2

Because Eq. (44) does not mix different total mo-
menta, it will be convenient to suppress explicit
reference to K in what follows. Formulas (39) and (40)
show that I's(r;r';z) and Es(r;r', z) regarded as
functions of s are analytic everywhere except for a
Gnite set of simple poles located on the real axis at the
distinct values assumed by (2p+S(k,K)) as lr runs
over the N modified reciprocal lattice points (42) with
K fixed. Denote these poles by ca„&+. If y„(r; r') and
k„(r;r') are the residues of I' s(z) and Es(z), respec-
tively, at a=co„"', then

+ Zk (»)G(j' '
(2S)' i

When r=i, the left-hand side vanishes and (A5) can
be inverted to give Gs(j; r';~ &'&). The resulting ex-
pression reinserted in (A5) evaluates,

g„(r;r')=[y (r;r')
—g;, k (r;i)k„'(i;j)y (j;r')]ks(r'), (A6)

where k '(i; j) is the matrix inverse of the dXd
matrix k (i; j).We are now in a position to draw two
conclusions: (i) If k (r,j) has a nonsingular dXd
submatrix and the right-hand side of (A6) vanishes,
then Gs(r; r'; z) certainly does not have a pole at ~
and (ii) if k (r; j) has a nonsingular dXd submatrix
and the right-hand side of (A6) does not vanish or if
k (r; j) is entirely singular, then Gs(r; r'; z) may have
a pole at ~ {').Examples will be given in what follows.

Consider the one-dimensional case. Here (41) shows
that except for the special case E=m. there is a unique
unperturbed energy, co~(", for each value of the mag-
nitude of k. Thus,

(A1)

(A2) and

(—2)(2S)'
ys(r; r') = m coskr coskr' (A7)

Equation (20) guarantees that a similar representation
exists for the function Gs(z)

g„(r; r')
Gs (r; r', z) =Q (A3)

" R. Orbach, Phys. Rev. 112, 309 (1958).

where ~„are the true two-particle energy eigenvalues,
which do not, in general, coincide with the co„{",and
g„(r;r') are the corresponding residues. Assume that
one of the true two-particle energies falls at an un-

(—2) (2S)'
kj, (r; r') =- — m coskr(coskr' —cossEr'), (AS)

where the multiplicity, m, is two or one depending on
whether the particular k in question does or does not
have a reflection in the modified zone (42). So long as
2k/E, it is easy to verify that the hypotheses of
conclusion (i) are satisfied and Gs(z) has no poles at
[2@+ S(k,E)). When 2k =E, every component of
ks(r, i) vanishes, and (44) shows that Gs(z) does indeed
have a pole at [2p+S(sE,E)$. In the special case~ i.
even, E=z, I' s(z) and Es(z)'each has a single pole at
(2p+4SJ). Fxpressions (A7) and (AS) no longer hold.
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Use the form (53) and assume t~n&+a&. It is always
easy to integrate over one component of it, say k&, by
use of the formula,

cosÃkp (x—(x'—1)"')"

(x' —1)"'S—Cosk2
(D 1)

Those of the resulting iotegrals which are not trivial
may be transformed by the substitutions,

kg= m —28,

(1—rtpe) sin'8
sn'u=

1—e2' sin'8
(D4)

into expressions of the type,
n/2 (sin8)'"

d8
sr J p L(1—rtP sin'8) (1 rtP—sin'8) j't'

o integral, (D3)

times certain factors involving the n~. These integrals
in turn yield to the elliptic substitution, "

2cE1 2+]
giving the results (64).

0~ e2'—= =—ei'& 1
t+csz+csp t+cez

'7 P. F. Byrd and M. D. Friedman, Ref. 12, Eqs. 284, 336, and
337.
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Magnetic-Field Dependence of Free-Carrier Absorption in Semiconductors
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A plane-wave semiclassical analysis of the amplitude of an electromagnetic wave transmitted through a
semiconductor in the presence of a magnetic field is discussed and some theoretical predictions are compared
with experimental measurements. The Faraday and the Voigt configurations, longitudinal and transverse,
respectively, are specifically considered. The theoretical results, obtained formally in terms of the high-
frequency conductivity tensor, are applied to the isotropic, one-carrier semiconductor model. The general
expression, covering all ranges of frequency and magnetic field within the extent of validity of the model,
is derived and reduced to simple forms applicable to speci6c experimental situations. The problem is then
generalized to ellipsoidal surfaces of constant energy, and to systems involving more than one type of carrier.
Results of room temperature microwave experiments carried out in the Faraday con6guration on silicon
and germanium show, in general, good agreement with the theoretical analysis. Effects of magnetodichroism,
observed in n-type silicon in this con6guration, are reported. It is 6nally noted that the theoretical analysis
of the Voigt configuration predicts the major features of the line shapes observed in far infrared experiments
by other workers.

INTRODUCTION
'
AGNETO —OPTICAL phenomena involving

changes in the state of polarization of a wave,
such as the Faraday or the Voigt effects, have recently
received much attention as experimenta1 tools for in-
vestigating transport properties of semiconductors. In
this article, we analyze the magnetic-field dependence of
the total absorption associated with the above phe-
nomena, in the attempt to see what further information
can be obtained by measuring transmitted amplitude as
a function of the field. It will be shown that the effect
provides a means of investigating the magnetic-held

*Initial work supported by the Advanced Research Projects
Agency through the Northwestern University Materials Research
Center.

f Supported by the U. S.Air Force Once of Scientific Research.

dependence of the diagonal component of the con-
ductivity tensor, and represents in fact a modified high-
frequency version of magnetoresistance. The changes in
the amplitude of the transmitted wave can be quite
pronounced in the free-carrier region and, in general,
involve simple measuring techniques. It is thus worth-
while to consider the effect as a useful high-frequency
method for the study of galvanomagnetic properties.

We will first outline a plane-wave semiclassical analy-
sis of the case when an initially linearly polarized wave
travels along the direction of an applied magnetic field.
This situation gives rise to the Faraday effect, and will
be referred to as the Faraday configuration. We wilt
then consider the case of propagation transverse to the
applied field, i.e., the Voigt configuration. Results of
some microwave and infrared experiments carried out


