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as to the reliability of the theory, and cannot be justified
in detail. The evaluation of A has been done from
McKinley's calculation, which uses the "bipion" am-
plitude of De Tollis and Verganelakis. '4 The result is
consistent with previous estimates of A, which have
been summarized in a separate paper describing meas-
urements we have made of the sr /sr+ ratio for photo-
production from deuterium. "

Summarizing the discussion, the measurements re-
ported here provide data of improved accuracy, con-
sistent with other experiments, and at present the
interpretation is limited at least as much by theoretical
uncertainty as by the experimental errors.

APPENDIX: LIQUID TARGET DATA

During the course of this experiment, measurements
of the sr /sr+ ratio from deuterium were made" utilizing

'4B. de Tollis and A. Verganelakis, Nuovo Cimento 22, 406
(1961)."J.Pine and M. Bazin (to be published).

a liquid target and a beam swept free of electrons. By
filling the target with hydrogen, the relative cross sec-
tions shown in Fig. 5 were obtained at a Axed labora-
tory angle of 47 deg. Over the energy range studied,
this angle is always within 2' of that defined by Baldin's
kinematical condition.

The same spectrometer and counters were used as
for the solid target data. However, there was no carbon
subtraction, no electroproduction, and a much lower
Aux of positrons into the spectrometer. In exchange for
these advantages, the beam spot at the target was
larger and the target itself constituted a rather ex-
tended source of pions. As a result, the arrangement
lent itself best to the measurement of relative cross
sections at a 6xed laboratory angle, so that the spec-
trometer acceptance could safely be assumed to remain
constant. The electron energy was also held fixed at
239 MeV, to maintain a constant beam size.

The errors in these data are mainly statistical, and
the consistency with the solid target data is seen to be
good.
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It is shown that the width of a ditiraction peak divided by )o(s,t=0) cannot decrease faster at high
energies than a constant times (lns) '. This follows from unitarity and analyticity in the largest Lehmann
ellipse consistent with perturbation theory.

HERE has been considerable interest lately in the
behavior of diffraction peaks at high energies. In

Fig. 1, we show a typical angular distribution o(s,t)

o(s,t)
to (s,o)

~cr(s,o)

FIG. 1. A typical an-
gular distribution cr(s, t)
is shown. The width of
the diffraction peak m is
defined by the equation
m=o(s, 0)/L2do(s, 0)/dtj.
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plotted versus t the invariant four-momentum transfer.
s is the square of the total center-of-mass energy. t is
related to the center-of-mass three-momentum q and
the scattering angle 0 by the re1ation t =—2q'(1 —cos8).
The physical scattering region is t&0. We set A=c=1
and measure all energies in units of the mass of the
lightest particle involved in the scattering process. The
width of a diffraction peak m is defined by

o (s,0)

2do (s,0)/dt

We will prove that do(s, t)/dt (the slope of the angular
distribution) is bounded from above by C(lns)', where
C is a constant independent of s and t. From this it
follows that the width divided by —,'o(s,0) cannot de-
crease faster than a constant times (lns) '.

In proving this result we will follow the method used
by Greenberg and Low2 to set bounds on high-energy
cross sections from analyticity in Lehmann ellipses.

' 0. %. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961).
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Precisely, we will now prove the theorem that if (a)
unitarity is satisfied by requiring that Iai(s) I

&1 for
all l and s; (b) the scattering amplitude T(s,s) is analytic
in an ellipse in the complex s=coso plane with semi-
major axis a—:coshn= 1+Pt'/2q'), where q is the center-
of-mass three-momentum and X a constant; and (c)
IT(s,s)

I
&Ri(s) for s on any ellipse in the assumed

region of analyticity where Ri(s) is a fixed polynomial
in s, then

da (s,t)/dt &CLlns]', (1)

where C" is a constant independent of s and t.
Condition (b) follows from assuming analyticity in

the largest ellipse in the complex s plane consistent with
known singularities appearing in perturbation theory.
This ellipse is larger than the region of analyticity
proven rigorously by Lehmann. ' For the case of pion-
nucleon scattering ) equals twice the pion mass. Con-
dition (c) follows from the assumption that the T matrix
is a tempered distribution and is analytic in the ellipse
defined in (b).

To prove the theorem we expand the T matrix in
partial waves neglecting spin:

S&/2 Z1 1 s'"
I
T(s,s)

I

& P (2l+1)+ R(s) P (2l+1)e ', (Sa)
q Z=O q Z=Z1

dT(s, s) s'" ii—i

P —,'l (l+1)(2l+ 1)
d] 2q~ l=o

s'"
+ R(s) P —,'l(l+1) (2l+1)e ' (Sb)

Z= ZI

Greenberg and I ow2 and Froissart4 have shown that
(a), (b), and (c) are sufficient to prove that

I
ai(s)

I
&R(s)expL —n(g)l], (6)

where R(s) is a fixed polynomial in s and cosh n=1
+ (&'/2q'). For large g, n X/tl. In addition it is known
that

IPi(s) I
&1 and

I dPi(s)/dsl & sl(l+1). (7)

Following Froissart, we choose Lo so that for /+l p,

I
ai(s)

I
& 1 is satisfied automatically because of Eq. (6);

for l&lp we use the unitarity bound
I at(s)

I
&1. Then,

using Eqs. (6) and (7), we find

SI, 2

T(s,s) = P (2l+1)ai(s)Pi(s) .
q l

(2)
where l~ is the smallest integer larger than lo and

lp=n 'lnR(s).

With this normalization of T we have

o(s, t) = (s./q's)
I T(s,s) I'. (3)

s
I T(s,s)

I
& 2 (2l+1)

I
«(s) I I

Pi(s) I,
q l

dT(s, s) s'~' ds dPi(s)
g (2l+1) lai(s) I

q Z df ds

(5a)

(5b)

We have used the analyticity of T in the ellipse to
interchange the order of di6erentiation and summation
in Eq. (5b).

' H. Lehmann, Nuovo Cimento 10, 579 (1958).

Furthermore, differentiating Eq. (3) with respect to
t gives

do(s, t) ~ dT* dT 2m dT
T+T* &—ITI —.

dt q's dt dt q's df

Using the Legendre expansion given in Eq. (2) we have

The sums in Eq. (8) can be evaluated in a straight-
forward manner. We find for large s

I T(s,s)
I
&Cits&I lnR(s)]', (10a)

I
dT(s, s)/dtI &Csqs&LlnR(s)]4. (10b)

Inserting these bounds into Eq. (4) we obtain the result

da(s, t)/dt & 2vrC. tCsLlnR(s)]"
&C(lns)'

This completes the proof of the theorem.
We have thus shown that the width divided by

-', o.(s,O) must be greater than C ' (lns) ' for large s. We
note in concluding that the Regge pole hypothesis leads
to an asymptotic behavior for large s of the form do (s,O)
/dt=Clns. We, thus, see that the Regge shrinking is
consistent with the theorem proven above.

I would like to thank Dr. R. J. Oakes and Professor
J. D. Walecka for several stimulating discussions.
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