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Two-Field Couplings with Especial Reference to Photon-Neutral
Meson Interactiont

G. FELDMAN* AND P. T. MATTHEWS

IrrIpericl College, Sogth Eensington, London

(Received 6 May 1963)

The coupling of two particles of identical quantum numbers, apart from their mass, is considered. It is
shown that the effects of direct transitions of one particle into another can be treated exactly in terms of six
parameters. These can be taken to be the true masses, the mixing parameters, and the partially renormalized
coupling constants. This is a generalization of conventional mass renormalization for a single Geld. The
special case of a photon and a neutral vector meson is discussed. Resonance effects may occur if the photon
is virtual. However, gauge invariance and the vanishing of the photon mass forbid such effects for real
photons, unless a dynamical accident relates the bare photon mass to the eRective photon-meson couplings
in a particular way.

1. INTRODUCTION particles. The propagators and modified currents which
treat the particle conversion and the diagonal self-mass
effects exactly, can be expressed in terms of six param-
eters. These may conveniently be taken to be the true
masses of the particles, the partially renormalized
coupling constants, and the mixing parameters, which
determine the residues of the poles in the propagators.
These six constants are the direct generalization of the
single true mass in the one-particle case. The true
particles are annihilated and created by linear combina-
tions of the fields, which make allowance for the
possibility of direct conversion of one particle into the
other in external lines.

If the effects of the residual interaction are calculated
using perturbation theory, the six parameters mentioned
above are related to the parameters of the original bare
Lagrangian through expressions which involve divergent
integrals. These relations are similar to those which
relate the true mass to the bare mass and bare coupling
constants in conventional theory. However, if the six
constants are treated as finite parameters, taken directly
from experiment (as in the conventional case with the
observed mass), a finite renormalized perturbation
theory can be developed in the usual way. This is shown
in the Appendix, in which we also develop a convenient
and perspicuous graphical representation.

In Sec. 4 the results of Sec. 3 are extended to cover
two particles of spin one. In Sec. 5 we consider the
implications of gauge invariance, and the vanishing of
the photon mass, on such particle mixing, when one of
the particles is a photon.

I
'HE discovery of p and co mesons, with the same

quantum numbers as the photon, has aroused
considerable interest in the general problem of the
theory of the interactions of any two particles which
are distinguished only by their differing masses. '

We discuss this problem here in the context of the
Lagrangian formulation. If each of the particles is
coupled to other fields, then there is the possibility of
their direct conversion into each other. ' This gives rise
to resonance effects, which may be very marked if the
masses of the particles are not too difIerent. This direct
conversion takes place through diagrams which have
the form of off-diagonal self-mass elements. The main
point of the first half of this paper is to show that the
correct treatment of these effects is a very direct
generalization of the standard (Dyson) procedure' for
the mass renormalization of a single field. This is to
extract from the interaction currents the one-particle
parts, which are treated exactly, and to base the
perturbation expansion only on the residual interaction.
In Sec. 2, the usual theory of a single particle is sum-
marized in a manner which generalizes most directly
to the two-particle case. In Sec. 3, this generalization is
carried out. Since the particles can convert into each
other, each propagator has poles at the masses of both
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We could, of course, have a direct interaction, bi]inear in the
two fields.' F. J. Dyson, Phys. Rev. 75, 1736 (1949);That this procedure
would have to be generalized in the two-field case was apparentl
first pointed out by Nambu and Gell-Mann. See M. Gell-Mann
Proceedings of the Tenth Anngul Conference on High Energ
Physics, Rochester, 1960 (Interscience Publishers, Inc. , New York),
p. 792.

2. A SINGLE FIELD

Before considering the interaction of two fields with
the same quantum numbers, we summarize the standard
procedure for a single field. Consider an unrenormalized
field p(x) with Lagrangian density. '

L= ',P(x)( —r)'—+m')Q—(x)+j (x)Q(x)+ (2.1)

where we have written explicitly only those terms which

y
4 The form p8~p in the Lagrangian is shorthand for —(8„@)'.

We use the space-like metrix, so that 8'= ~'—8P.
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(0[j(x) ~M)=A(o~y(x) [M), (2.4)

then combining (2.3) and (2.4)

[E (Ms) —A](0~$(x) ~M)=0. (2.5)

This is a homogeneous equation' for (0
~

&t (x)
~
M) which

can be satisfied only if

E (M') A=O. — (2.6)

depend on && (x). The equation of motion is then

E (&)')y(x)—= ( —)&'+ m')P(x)=j(x). (2.2)

If the mass of the true particle is M, the expectation
value for this equation for a one true-particle state is

(—M'+m')(old (*)IM) =(oI j(*)IM) (2 3)

The object of mass renormalization is to treat exactly
the one-particle parts of this current. Assuming that
p(x) is the only primary field which has a nonvanishing
matrix element from the vacuum to the single true-
particle state of mass M, we can write

3. COUPLED SPIN-ZERO FIELDS

Ke now consider the theory of two stable particles,
which apart from their masses, have the same quantum
numbers. Suppose that the unrenormalized fields are
&& t(x) and ps(x) and that the terms in the Lagrangian
which depend explicitly on p, (x) are

L= ',—yr-(x) ( c)—'+mr') yi(x) ,'—ys-(x) ( &)—'+ms')ys(x)
+j (*)~ (*)+j (*)~ ( )+ (3.1)

Then the equations of motion" are

( &)'—+m,s)y, (x) = j;(x), (i= 1,2) . (3.2)

(—M '+m, ')(0)$;(x) )M )=(0)j,(x) )M ).
i, k=1, 2. (3.3)

As in the single-particle case, we wish to extract, and
treat exactly the one-particle parts of the currents
j;(x).To this end we write

The one true-particle matrix elements of these equations
are

To de6ne a current which has no one-particle expecta-
tion value, one can take Define

(0) j;(x)~M&)=P,Ag&'&(O~P;(x) ~M&). (3.4)

1(x)= j(x)—Ay(x) . (2.7) then
E,"(Ms') = ( Ms'+m, s—)b,;, (3.5)

This corresponds to rewriting the Lagrangian as

L= 'p(K——(&)') A)&ti—+j&p pA—g+— . . (2.8)

The equation of motion is now

K~(~')4 (x)= (—~'+M')4 (x)= J(x) (2 9)

In the usual interaction representation, which is based
on the interaction, J(x), the propagator is 6, where

K~( p') ~(p') =1.— (2.10)

This propagator takes into account exactly the one-
particle part of the current j(x).

If a transition is made from an initial state
~ p,i) to

a final state (f~, which includes a particle of four-
momentum p, the amplitude is'

zf[E6(M")—A~/'"']«I42(x) IMs)=0 (3.6)

This is a homogeneous equation for the matrix elements,
which can only be satisfied' if

det[E (Ms') —A &"]=0 (3 7)

Explicitly the relation (3.7) between the bare and
true masses is

[Ms' —mi'+A ri(Ms')][Ms' —ms'+A ss(Ms')]
—A '(3IIss) =0. (3.8)

Since A&~' are symmetric matrices, ' the elements A;;&~&

are a set of six constants. In place of the six constants
3;,(~~, it is convenient to introduce six new constants
G,;, H,, such that A;;&"=G,,+MssHg. s

.„&(f) p, i);„= e" *&)&(f)y;„(x)ji)d'x (2.11)

For this reason we omit all Z factors associated with complete
6eld renormalization. For example, the right-hand side of (2.12}
should read

e'~*a,(f ~
y(x) ~

i)d'x

e'~* Es(r&))(j~y(x) ~

i)d4x

(2»)

' Note that E' (3P) -3P+m~~ -Qg'. The constant A
is II~(M'), where II*(—p') is the proper self-energy part, i.e.,
the mass operator.' In this paper we are only concerned with the mass renormaliza-
tion of a single Geld and its generalization to the two-field case.

Z '" e'~'d~(f ~Q(x) ~&)d'x

' For the sake of simplicity we assume that j, (x) does not
depend on p;(x).

s The complete propagator matrix 6'(ps) in momentum space
is given by

L&(-P)-II*(-p') 3~'(e) = I,
where we know from Dyson's analysis that graphically II*(—P')
is all proper self-energy parts (i.e., those which cannot be broken
into two parts connected by a single line). Since 6'(P) has poles at
ps+MIs=0, it follows that (i), detpE(Mr') II~(Ms')g —0 By.
comparison with Eq. (3.7), (ii), A&s& ~II*(Ms'). Thus, A;,&"'

are constants which can, in princi le, be calculated (to any order
in perturbation theory, for examp e) by calculating II~(-P') and
solving (i). It is evident from crossing symmetry that II&;s(—p')
=II;;*(—p') and the matrices A&~) are symmetric.

9 D the theory is symmetric for the exchange &&t» ~ P2, m& ~ m&,
and the coupling constants g1 ~ gg, then H;; =—0, and three con-
stants sufIIce.
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p'+Ms' 0. (k= 1, 2) (3.14)

To define a current which has no one-particle matrix at the two-point
elements, we can take

where

~*(&) i'(~)-A'/(~')4»(~),

A /(8') =G;;+8'H, /.

(3.9)

(3.10)

The propagator in the interaction representation
based on J;, which treats exactly the one-particle parts
of j;, is given by

LE(—P') —A (—P')]~(p') =1 (3 13)

This corresponds to rewriting the Lagrangian as

The equations of motion in terms of J are

[Ev (~') A'—/(~')]4 =~'

Thus, from (3.6), (3.7), and (3.8) it follows that

(3.12)

det[E( —p') —A (—p')] =0, (3.13)

L= —-'@ [E"(8')—A "(8')]@,
+[i@'—z4'Av(~')4 ]+ (3 11)

6(p') is a matrix propagator [the inverse of E(—p')
+A(—p')] each element of which, in general, " has
poles at both masses, M~2.

It is convenient for later purposes to introduce the
partially renormalized propagator" 6~(p'). This is to
be defined so that the residue of the 6;;R element at the
mass M2 is unity. Thus, we take

t '(p') =R; '/'~—,"(p-')R '/' -(3.16)

where R; is the residue of A, ,(p') at p'= —M,s. This
leads to

X2' X2

where"

B(P2)—,P2+~ '& P2+~ 2 P2+~ 2 P2+~ s

Xg2

P2+/III 2 p2+~ 2 P2+~ 2 p2+~ s

(3.17)

X;=
A is(M, ')

[~ 2 fis 2+A (~ 2)]1/2[ ~ 2+pe s A (~ 2)]1/2
(3.18)

In carrying out a perturbation expansion based on the
current J;, the quantity J;6;;J, can be regarded as the
effective interaction for those matrix elements which
involve the particles of mass M; internally. It is now
convenient to introduce the partially renormalized
currents" J;R defined such that

Thus,

J.Rg. .RJ.R J.g . .J.

J .R g .1/2J .

(3.19)

(3.20)

'0 We shall see later that when one of the particles is a photon,
due to the gauge invariance and the fact that the photon mass is
zero, the photon pole occurs only in one element of /t(p'), namely,
the photon-photon propagator. (Ref. 1.)"By partial renormalization we mean that part of field re-
normalization, which is due to the one-particle parts of the
interaction. This is the direct generalization of mass renormaliza-
tion for a single Geld. We do not discuss conventional coupling
constant and field renormalization induced by radiative correc-
tions, coming from the residual interactions J;.This accounts for
the absence of Z factors in (3.29). See Ref. 6.

"In the approximation in which A~~ can be neglected in (3.7),
which relates the true and bare masses, we have X;~A&s(MP) j
(MP-MP). That the propagator has the form (3.17) is clear, since

&OIIPIMi) =X„etc.,
A'-(7'(~'~')).

'3The partial renormalization, which has been done, has the
e8ect of replacing the unrenormalized coupling constants g;,
appearing in j;, by the partially renormalized constants g;
=R'12g;. (See Ref. 11.)

(3.21)

where I. is the matrix that diagonalizes the propagator

We dehne the diagonal matrix

[Esr(fl')],,= (—8'+M ')3" (3.22)

Thus, I. is given by'4

K(cjs)—A (rf') =LrKsr (rf') L (3.23)

' Explicitly, the matrix L is
L= ~~P—mP~-11~

X (—MQ +mP —An(MP))'"( —MP+mP —Ass(MR' ))'"—(MP —mP+A n(MP))'/s(MP —mP+Asu(MP))"s

Accordingly, the interaction picture, which takes into
account exactly the sects of the two single particles
on each other, can be expressed in terms of six param-
eters; either the 2;,'~', or, the physically more perspic-
uous parameters, the observed. masses M&', M2', the
mixing parameters X~, X2, and the coupling constants
in the partially renormalized currents J&R, J2R.

To complete the presentation we must give the
technique for handling external lines. We do this by
making use of the asymptotic condition. In order to
use this, we must introduce fields P,, which have discrete
frequencies corresponding to only the ith single-
particle state. In other words, we must introduce the
"normal coordinates, "
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~(P') =L '&~ '( P—')(L') '.
The currents g;, associated with f, are

g=JL ' (3.24)

4. COUPLED SPIN-ONE FIELDS

We now consider the case of two particles of spin
one. We use the formalism developed by the authors. "
If the fields are p„&@ (i=1, 2), the equations of motion
are

Equating the residues at the poles in the relation

J'~vJ~= J"~v'JR= 8'&~v '4
we have immediately, using (3.17),

$1 J1 +X1A

$2= J2~ X2Jis.—

The diagonalized equations of motion are thus

(3.25)

(3.26)

(3.27)

ol

w~ere

~p~v
(86 88)+~ (5 0r& —jr) (41j

42

= r"(~)i '"'+4 (~)i.'"', (4 2)

The asymptotic condition can now be defined in terms
of these fields.

A scattering matrix element involving a type-i.
particle, with four-momentum Pq, can be written, as
in (2.11). (See also Ref. 6.)

Tpy(B) = Spy BNBp/cl

X„,(8)= B„B./cP

(4.3)

(4.4)

are the projection operators for the "covariant trans-
verse"—space-like and "covariant longitudinal" —time-
like—components of the fields. Thus, my are the bare
masses of the physical spin-one particles; XI, are the
masses of the time-like (spin-zero) mesons. If the
current j'~' is conserved,

»e*a,(fIf~(*) I
)d~'x X„„(8)j,'"&=0, (4 3)

e'»'( 8'+M—P)(f I P, (x) I
s)d4x

e""'*(fl8~(x)l~:)~'x

and the particles of mass X' have no interaction, but
serve merely to specify a gauge. "

The formalism of Sec. 2 can be taken over and applied
directly and independently to r„„P.&'& and X„„p„&".Thus,
for example, we can write the A matrix as

-4 (—P')=r"(P)~" (—P')+&.(P)~'"'(—P') ( 6)

e'""'f
I
JP (x)+X,J,"(x)I

i)d4x (3.29). The propagator is

~ (P')=r ~"(P')+~ ~'"'(P') (4.7)

This last expression is just what one would expect
from "graphology. " We see from Eq. (3.18), and Ref.
12, that X& is essentially the effective Q&P& vertex,
divided by the propagator of a particle of mass M2
evaluated at the mass M~ (see Appendix).

If the mass difference is small and the coupling of
J2 is much stronger than J~, the appearance of the
second term depending on X& may introduce a consider-
able enhancement of the effective coupling of type-1
particles to the other fields. "

Note that the whole calculation could be carried out
using the diagonalized fields P without changing any of
the physical results. In this ca e the propagator matrix
is diagonal, each element having only one pole. How-
ever, the particles are now coupled to the g; which are
linear combinations of the original currents, which
depend on the mixing parameters, X;.

"Effects such as these were reported by S. Herman and S.
Drell at the MIT-Harvard Conference, 1963 (unpublished).
However, see Sec. 5.

where

alld

Here

[It"'(—P') —~"'(—P')3~" (P') =1 (4 8)

I It""(—P') —~""'(—P') j~'"'(P') =1 (4 9)

and
E &'&(8')= (—8'+mP)5, ,

nz'2

It,, "&(8') = (—8'+X,2)6,;.

(4.10)

(4.11)

"G. Feldman and P. T. Matthews, Phys. Rev. 130, 1633
(1963)."A vector meson coupled to a nonconserved current is given by
taking ) ~ ~o, whereas for a photon 'A is arbitrary. This expresses
the gauge invariance of photon interactions. (See Ref. 16.)

As in Sec. 3, the one-particle part of the general interac-
tion can be treated in terms of twelve phenomenological
constants (six each for the space-like and time-like
parts) which can be chosen in a manner analogous to
that in Sec. 3.
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S. THE PHOTO&-VECTOR MESO' imTERAnioN and hence

y (&) —A (5.1)

We are particularly interested in the case in which
one of the particles involved is the photon,

det$~ &2& (—p2) —A (2& (—ps)j
=Lp2+2&2A2 AAA r ( p2)$

P +2&svs Avv 2 (—P')$ —LAAv 2'(—P')] (5 5)

Ke replace the particle labels, 1, 2 by 3, V, respec-
tively. "For the moment we allow the photon to have
a mass, but the gauge invariance requires that

has a zero at p'=0. Putting

A (r) ( p2) G(~} p2II(|.)

this requires that

(5.6)

From (3.4) and (5.2) it follows that'

The "longitudinal" part of the propagator, as defined
in (4.9), is

g(X) (ps)

2&2A2 (p2+)&A2)

Xv'

2&2v2 (p2+) 2) )& 2A (&,) ( p2)

(5 4)

showing that the time-like photons are not coupled to
the rest of the system. " The time-like mesons are
coupled through the nonconserved part of j„v to the
other 6elds in the system, and thereby undergo a mass
renormalization. "

The "transverse" part of the propagator is defined

by (4.8). This is completely gauge invariant, since the
presence of the factor r„„in (4.7) automatically excludes
the possibility of any dependence on a particular
gauge. Thus, the interaction is described in terms of six
phenomenological constants which can be chosen, as in
Sec. 3, to be the observed masses M~', Mv' of the
photons and meson, and the mixing parameters Xg,
Xv and the partially renormalized coupling constants.

However, the photon mass is observed to be zero, and
this experimental fact must be included in the formalism
in addition to the requirements of gauge invariance.
This means that 6&'&(ps) must have a pole at p'=0,

'8 The Geld @„(2)can be taken to represent either a p or co meson.
However, in what follows we restrict ourselves to the approxima-
tion in which the V particle can be treated as stable.

' Alternatively,
2AA ( p2) —r fr2AA ( p2)

2AV ( P2) —r Q2AV ( P2)

I We are assuming throughout this section that the theory is
invariant under gauge transformations of the Geld A„. As a
consequence, 6&"&(p') is diagonal. The same is true for the Geld A„'
for which, by deGnition& 6&'&(p2) is also diagonal. This is to be
contrasted with the approach of BarofF and Fulton (Ref. 1) who
start with a nondiagonal A&~& (p') and transform to gauge-invariant
variables.

"As pointed out in Ref. 17, we are interested in the limit
gy —+ OC.

. Xv
(r) &2 (p2)

p2+M v'
(5.12)

(2) R(p2)
p2+M v'

so that only the photon-photon propagator has a pole
at the photon mass. "The mixing parameter Xv is of
order e, so the coupling of a ~irma/ photon to any

' J. Schwinger, Phys. Rev. 125, 397 (1962).
2' We remind the reader that (5.8) states that II„„*(—P')

= (p2B„, p„p,)f(p2), for the AA—and A V elements, where f(p2) is
regular at P'=0. The regularity of f(p') is noi! a consequence of
gauge invariance, but is a plausible inference from the observed
vanishing of the photon mass.

Alternatively, the above inference implies that of the two
counter terms in the Lagrangian involving direct A —V coupling,
GAv V„r„„A„2HAv(B„V„B„V„)(B„A„B„A„), onl—y —the second
sul vlves.

(222A GAA&'&)(2&2v' —Gvv&') —LGAv('&$'=0. (5.7)

It is conceivable that the constants G and the bare
masses m& and rnv are precisely such that this equation
is satisfied as a dynamical accident. This would mean
that the mass-generating effects of the interaction, of
the type proposed by Schwinger" are operating, but
are exactly cancelled by the nonvanishing bare mass.
This could hardly happen as a dynamical Quke and, if
it is indeed the case, strongly suggests the operation of
some as yet undiscovered general principle of which this
is a particular consequence. This general principle is noI,

gauge invariance. It seems to us much more probable
that the correct solution is the one given by conven-
tional perturbation theory, "' namely,

~„2=p Qgg(') =Ggv2(') =0
This imples that

AAA ( p)= p+AA (5.9)

AAv&'( —p') = —p'VAv('} (5.10)

and hence, by (3.18), the mixing parameter XA vanishes,

(5.11)

The partially renormalized propagator matrix is then

1 Xp'
~AA'"(P') =—+

p2 p2+~ 2
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strong-interaction complex is enhanced through the
propagator h~y&'&~. This represents the eGects of the
direct transformation of the photon into a V meson,
which then interacts strongly with the complex. The
best-known example of this is in electron-proton scatter-
ing. (See Appendix. )

For the interaction of a real photon we can take over
directly the formalism of Sec. 3, and in particular (3.29).
Owing to the vanishing of X~, there is eo emhmcemeet
for external photons, due to direct conversion. The
contribution from all such graphs vanishes identically
as a consequency of the observed vanishing of the
photon mass. '4

CONCLUSIONS

We have shown how to generalize the conventional
procedure of mass renormalization to the case of two
interacting particles with the same quantum numbers,
but different mass. As in the single-particle case, the
procedure is to extract from the interaction currents
the one-particle parts and treat them exactly. A
perturbation expansion may then be carried out in
terms of the residual interaction. Instead of the true
mass, which appears in the single-field case, the two
Gelds require six parameters, which may conveniently
be taken to be the two true masses, the mixing param-
eters, and the partially renormalized coupling constants.

In general, the fact that the particles can convert
directly into each other gives rise to resonance-type
enhancements for both, virtual and external particles.
However, if one of the particles is a photon, the vanish-
ing of the photon mass causes the contributions from
graphs in which a real photon converts directly to a
spin-one meson, to vanish identically. On the other
hand, for t/irtla/ photons (as for example in the proton
electromagnetic form factors) the resonance effects
persist.

The above conclusions can alternatively be expressed
in terms of the effective direct 2 —V interaction. Terms
of the form V„A„have sometimes been assumed in the
past. ' The objection that this interaction term is not
gauge invariant can easily be overcome by modifying
it to U„r„„A,. However, such a term, barring the
dynamical accident discussed after (5.7), gives rise to a
nonvanishing photon mass.

It should perhaps be stressed that we have reached
these conclusions on the basis of renormalized field
theory. Within this framework our results are quite
general. Although the validity of Geld theory is doubted
by some for purely strong interactions, it is our belief
that the problems of electrodynamics discussed here

certainly fall within this framework, and that our
result is therefore quite general.

The interaction is then

BjR. rp, J/R 1/2+ .. .($2)R.1/2$R, ,

Here P,n are the partially renormalized fields,

R 1/2y 8

(A2)

The graphical technique is completely conventional
except for the factors corresponding to the two particles
associated with the fields P. For these there are three
types of propagator which may be represented as
illustrated in Table I. We use solid and dotted lines to
denote particles of types 1 and 2, respectively. It will
be observed that these must join to J&~ and J2~,
respectively.

If an external particle of type 1, four-momentum pi,
occurs in a process the procedure is to draw all graphs
in which this particle is represented by a 1—1 line
coupled to J&~, and by a 1—2 line coupled to J2~.

Tmr. E I. A graphical representation of internal and external
particle lines giving the corresponding factors in the matrix
element including the interaction currents. The relation between
the external line graphs and the corresponding factor is discussed
in the text.

Internal lines

X22
X— —X J R +

P2+~12 P2+~22
JR

Q ~ ~ ~ ~ ~ ~ ~ ~ Q
X12~ J2R + J R

P2+~12 P2+~22

X2
~ ~ ~ ~ ~ o 0 ~ J1R +

P'+~12 P2+~22

External lines
{particle 1)

J R

JIR ~ ~ ~

APPENDIX

We develop here a graphical formalism, which
clarifies the physical significance of the algebraic
manipulations carried out above, and also simplifies
the setting up of specific calculations.

We set up a 'one-particle' interaction representation,
in which the part of the Lagrangian to be treated
exactly is

I. = —-'@ nR'/sLE "(8')—2 (a') j"R i/'y n (.Al. )

'4Thus, subject to the qualifications expressed just above
Kq. (5.8) there seems to be no justification for the model of IIO-
decay proposed by M. Gell-Mann, D. Sharp, and W. G. Wagner,
Phys. Rev. Letters S, 261 (1962). The fallacy in their argument
lies explicitly in the form of renormalized field equations assumed
by M. Gell-Mann and F. Zachariasen, LPhys. Rev. 124, 953
(1961), Eq. (4.2)j which are only valid when the two 6elds A„
and @„arenot coupled via the mass operator,

~ ~ ~ ~ ~ ~ Q

(particle 2)

~ ~ ~ ~ ~ ~ o o Q ~ J2R ~ ~

+ X2J2R ~ ~ ~

+ X2JI&o ~ ~



TWO —F I EL D COU P L I N GS

These graphs are to be evaluated by including the
corresponding propagators, 611 (p') and 612 (p'),
coupled appropriately to J&~ and J2~, respectively,
multiplying by p'+ Ml', and then evaluating at
p2+M12=0. (This procedure is correct, but trivial in
the one-field case.) This gives rise to graphs with a
factor Jl" arising from 611"(p')Jl, and graphs with a
factor X1J2 arising from 612 (p') J2 .

As remarked in the text, the two types of terms are
just those to be expected on 'physical' grounds. In the
first one, particle 1 enters the graphs directly through
its current J&~. In the second type, particle 1 converts
directly to particle 2, and then enters the graph through
J2~. The approximate expression for X;, given in Ref.
12, is just the factor to be expected, since A)2(M12)
is the effective direct-conversion interaction, and
(Ml' —M2') —' is the propagator for particle type 2

evaluated at p2+M12=0.
The operative parts of the currents, J;~, are the j,R

which arise directly from the original interaction. These
currents induce various physical processes, among them
being proper self-energy effects, through which one of
the particles converts either back to itself, or to the
other particle (with no single-particle intermediate
state). Corresponding to each graph containing such a
part is another graph, which is identical except that the
self-energy part is replaced by a direct transition of one
particle into another, arising from the counter term
A;, . The definition of A;;, (3.4), is such that the two
graphs precisely cancel, when

In practice, even in a renormalizable theory, the
constants C&'~ are infinite, but "physical" quantities
can be expressed in terms of the parameters 3f;, X;,
and partially renormalized coupling constants. Self-
mass effects may be estimated, through (A3) with the
use of a cutoff, by solution of (3.13).

A simple example of the above formalism is the
electromagnetic form factors of the proton, as deduced
from electron-proton scattering. In this case, particle 1
is the photon, and particle 2 a I/' particle (p or co meson).
The appropriate diagrams are shown in Fig. 1. The
coupling of the photon and meson to the electron and
proton can be expressed in terms of four currents. In
an obvious notation the orders of magnitude of these
currents are

JA„-e, j,„-g,(=1),
jg„' e, jy„' e'.

X&2 X
M= jAp' —+ JAp +JAy, Jvp

p2 p2+M 2 p2+M 2

The mixing parameter X~ is of order e. Thus,

Xy
+j v„' jA„—~+jvt, ' j v„~. (A6)

p'+Mv' P'+Mv'

We have already replaced r„„by 8„„since the electro-
magnetic current is conserved. To order e' we have,
by (AS),

P'+M12 ——0,

where p is the four-momentum of the line in which the
self-energy part occurs. (See Ref. 8.) This is a direct
generalization of the cancelling of the leading term in
conventional single-field self-energy graphs by the 8m'

counter term. (See Ref. S.)
The only irreducible proper self-energy part generated

from j;is the lowest order self-energy bubble, II;;"'(—P').
Since this is bilinear in j; and j,, the corresponding
graph generated from I.; t, is

g 1/211 Pk( p2)g. l/2

= + .1/2L(P2+M 2)Q . .(1)+(p2+M 2)Q ..(2)

+ (P2+M 2) (p2+M 2) Ilc, .( p2)]g, l/2 (A3)

The counter term from I.; t, is

1 Xp 1
M=i Ap' —jAr+ jvp' =i Ap' I'p(P'), (A—7)

-P' P'+Mv' — P'

where Ii„(p2) is the required form factor. Thus,

P'Xv
~, (p') =jA,~+ j v,p

p'+MV2

—E'/2A "(—p2)E'/2 (A4)

This has been defined to cancel the term in II* depend-
ing on C "~ and C&'&.

Note that for external lines, J;~ can be replaced by
j;~, where j;~ couples to the main body of the graph,
and does not recombine to form a self-energy part. In
view of (A3) and (A4) the contributions from self-

energy parts in external lines cancel exactly with the
counter terms.

FIG. 1. Graphs of electron-proton scattering. Single lines with
arrows denote electrons and double lines with arrows are protons.
The exchanged four-momentum is p.
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J4
P (A9)

and taking

JVp gV+p p (A10)

p'Xvgv
J'.(p') =e+

p'+Mv'
(A11)

The 'Dirac' form factor F1 is the coefficient of y„. Since which is just the Clementel-Villi form obtained from
subtracted dispersion relations. "

In this two-field theory, perturbation calculations
could alternatively have been developed in terms of the
diagonalized fields |P;, defined in Eq. (3.21). This has
the advantage that the propagator matrix is diagonal.
However, all the complication is transferred to the
interaction. The mixing parameters X, now appear in
the currents g, and the extraction of the finite parts of
the mass operator is considerably less transparent.

ss E. Clementel and C. Villi, Nuovo Cimento 4, 1207 (1956).
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Photoproduc&ion of ~+ Mesons from Hydrogen*

M. J. BAZINt AND J. PrNEf,

High Energy Physics Labora&ory, Stanford Unioersi&y, S&aeford, California
(Received 22 May 1963)

The differential cross section for 7i.+ photoproduction has been determined at 19 points, at center-of-mass
angles from 30 to 150 deg, and at photon energies from 162 to 225 MeV. The data are concentrated near
180 MeV, where a full angular distribution has been determined. The relative values of the cross sections
are accurate to 5% or better, and the absolute normalization is accurate to 4oro. The experiment provides
data of improved accuracy which are in general consistent with previous results. The extrapolation to
threshold gives a value for (h*/p*) (da/dQ)" at threshold of 16.1~0.7 ab/sr, where he, p", and (do/dfl)~ are
the photon energy, pion momentum, and differential cross section, all in the center-of-mass system.

INTRODUCTION

'HE process y+p —& sr+1 sz has been studied for
a long time, and the reaction provides, particu-

larly at low energy, one of the simplest testing grounds
for our knowledge of pion physics. The advent of
dispersion theory has resulted in new theoretical calcu-
lations, ' ' with the most recent ones including the effect
of the m-m interaction. '' The measurements reported
here were undertaken to determine differential cross
sections with improved accuracy, in the region moder-
ately close to threshold.

The pions were detected with a magnet spectrometer
and counter telescope, and the arrangement was ap-
propriate to pions with laboratory momenta from about
55 to 102 MeV/c, at laboratory angles between about
30' and 130'. A complete angular distribution could
be measured for a laboratory gamma-ray energy of
180 MeV, while at other energies cross sections were

*Supported by the U. S. Atomic Energy Commission, Ofhce
of Naval Research, and Air Force OKce of ScientifJc Research.

$ Present address: Laboratoire de 1'Ecole Polytechnique, Paris,
France.

$ Present address: Physics Dept. , California Institute of
Technology.' G. Chew, M. Goldberger, F. Low, and Y. Nambu, Phys. Rev.
106, 1345 (1957); hereafter referred to as CGLN.

C. Robinson, University of Illinois, Technical Report No. 8,
1959 (unpublished).' J. Ball, Phys. Rev. 124, 2014 (1961).

4 J. M. McKinley, Technical Report No. 38, Physics Depart-
ment, University of Illinois, Urbana, 1962, (unpublished).

determined for angles where the pion momentum lay
within the experimental range.

%hen these measurements were begun, the work of
Beneventano et al. ' ' constituted the most accurate and
comprehensive study in this energy interval. More
recently, Adamovich ef ul. have performed an experi-
ment using emulsion techniques, with accuracy com-
parable to this one.

APPARATUS

The intensity of the electron beam of the Stanford
Mark III linear accelerator was measured with a
secondary emission monitor (SEM)' consisting of three
foils of 0.0003-in. aluminum, enclosed in a separate
vacuum chamber with 0.003-in. dural windows. The
SEM was automatically oscillated both horizontally
and vertically in order to average over a foil area
about 1.5-in. square. This monitor was calibrated at
regular intervals against a Faraday cup of efFiciency

' M. Beneventano, C. Bernardini, D. Carlson-Lee, G. Stoppini,
and L. Tau, Nuovo Cimento 4, 323 (1956).

E. L. Goldwasser, in Proceedings of the 1960 International
Conference on High-Energy Physics at Rochester (Interscience
Publishers, Inc. , New York, 1960), p. 26.

7M. I. Adamovich, E. G. Gorzhevskaya, V. G. Larionova,
X. M. Panova, S. P. Kharlamov, and F. R. Yagudina, in Pro-
ceedings of the 196Z International Conference on High-L&'nergy

Physics, CERN, (CERN, Geneva, 1962).
G. W. Tautfest and H. R. Fechter, Rev. Sci. Instr. 26, 229

(1955).


