
PHYSICAL REVIEW VOLUME 132, NUM 8 ER 2 15 OCTO B ER 1963

Z Expansion of Hartree-Fock Wave Functions

DAVID LAYZER

Harvard College Observatory, Cambridge, 3/massachusetts

(Received 15 March 1963)

Let a many-electron Hartree-Fock radial function

N

C (el r) OP (e'l' r)

and the corresponding nonseparable variational function C (el; r) be expanded in hydrogenic product func-
tions Cn(et; r) Th.e expansion coefficients (He'i~el) of I are O(Z ') for e'vze; they vanish when the sets
rf,e' differ by more than two one-electron quantum numbers. It is shown that the expansion coeKcients
(He'l(HFe) are O(Z i) when

N

v (e,e') =X—Z b(e'e") =2,

i.e., when e and e' differ in two places, and are O(Z ') when v(e, e') =1. In the second case (He'l ~HFel)
= (He'l let)+O(Z '); the Hartree-Fock and the nonseparable expansion coefficients coincide to first order.
This result holds only if the one-electron Hartree-Fock functions PHF are not restricted by auxiliary condi-
tions other than normalization. It does not hold, for example, if one requires the P F to satisfy the ortho-
gonality condition (Pn (el; r)Pnx(e'1; r))=S(e,e'). From the result just stated, it follows that many-
electron Hartree-Fock functions characterized by distinct sets of principal quantum numbers but the same
set of azimuthal quantum numbers are orthogonal to first order in Z ' (but not to higher orders). It also
follows from the stated result that the coeKcient TVp in the Z expansion 8'H~=R'2Z'+S'1Z+Wp+O(Z ')
of a Hartree-Fock energy is given (in atomic units) by the formula

f(He] V [He') f' e 18 p
——S, ' F2———Z

v(n, n')=1 i=1

where V is the mutual electrostatic interaction of the electrons.

I. INTRODUCTION Z-dependent first-order calculations often compensates
for the (usually small) loss of accuracy.

The Z expansions of many-electron state vectors
and energies have another use: They provide the key
to a useful classi6cation of con6guration mixing. ' In
a nonrelativistic approximation the energy of a many-
electron atom may be expanded in the form

HE Z expansions of Hartree-Fock wave functions
and atomic parameters evaluated from them

have been studied by Hartree, ' Froese, ' Dalgarno and
his co-workers, ' and others. 4 The 6rst term in the ex-
pansion of a Hartree-Fock wave function is a hydro-
genic wave function; the second term satisfies an
inhomogeneous second-order diGerential equation whose
solution can be obtained in closed form. ' The two
leading terms contain enough information about the
wave function for many practical purposes. For ex-
ample, they enable one to calculate the four leading
coefFicients in a Z expansion of the Hartree-Fock energy
)see Eq. (1) below); this is usually sufhcient. Moreover,
the 6rst-order calculations yield explicitly Z-dependent
results; exact Hartree-Fock calculations can be carried
out only for specific values of Z. This advantage of the

N 1
W= WsZ' +WiZ+ Wo+O(Z ), Ws= —Q . (1)

i=1 2+72

In order to evaluate the coeAicient S'~ one must use
a correct first-order description of the mixing of con-
figurations belonging to the same complex (i.e., the
same principal quantum numbers and the same parity).
The correct zero-order state vector is a linear combina-
tion with constant coeKcients of hydrogenic-state vec-
tors pertaining to configurations in the same complex.
A 6nite calculation employing hydrogenic wave func-
tions suKces for the evaluation of these coeKcients
and of the coeKcient Wi in the Z expansion LEq. (1)j
of the energy. ~

' D. R. Hartree, Proc. Cambridge Phil. Soc. 51, 684 (1955);
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Sharma, ibid 80, 839 (1962.).

E. Constantinides, Thesis, Harvard University, 1963 (unpub-
lished); see also M. Cohen and A. Dalgarno, Proc. Phys. Soc.
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The Z-independent energy contribution 8'0, as well
as subsequent terms in the energy expansion, may be
split up into three parts, representing the efIects of:
(a) screening in its broadest sense (departures of the
one-electron radial functions from the hydrogenic form);
(b) radial correlation; and (c) configuration mixing in
its narrowest sense (mixing of configurations labeled
by distinct sets of azimuthal quantum numbers). The
Hartree-Fock approximation accounts for the entire
screening contribution but for none of the remaining
contributions.

Successive terms in. the energy expansion. [Eq. (1)$
correspond to successive orders of a perturbation ex-
pansion based on hydrogenic-state vectors. The pur-
pose of the present note is to point out that the Hartree-
Fock contribution to 8'0 corresponds exactly to the
part of the second-order perturbation energy involving
energy matrix elements that connect configurations
which dier through a single principal quantum num-
ber: Similarly, in the Z expansion of a Hartree-Fock
function the expansion functions whose coefficients are
of order Z ' differ from the zero-order function through
one-electron substitutions.

This way of characterizing the Hartree-Fock ap-
proximation is advantageous for certain problems. For
example, it enables one to give a short and simple
proof of an orthogonality property of many-electron
Hartree-Fock functions, a special case of which was
recently established by Sharma and Coulson. 4

II. DERIVATION

where I'H is a hydrogenic radial function and the
generalized sum in (4) extends over all conlg-
urations —including those for which the principal
quantum numbers take on continuous, pure imaginary
values —that have the same azimuthal quantum num-
bers as the initial configuration ml. The coeKcients in
the expansion (4) satisfy the condition

(n i
Hn') =b(n, n')+0(Z —'),

where
(6)

5 (n,n') =g 8 (n' n")

In the Hartree-Fock approximation 4 is given by

N
c=c

where

C HF(nl; r) = S(HFn
~
Hn')C (n'l; r),

nr

The one-electron Hartree-Fock functions I' ~ may be
expanded in hydrogenic functions

I" (n'l' «)= S (n'~Hn")r"(n*l'. «)
nil

where
(n'~ Hn") =8(n', n")+0(Z ') (10)

The many-electron Hartree-Fock function can now be
written in. a form analogous to Eq. (4):

An antisynimetric X-electron ket characterized by
E pairs of one-electron quantum numbers e'li and by
additional quantum numbers F can be written in the
foDI1

~

nili. . .nNlNr)
ge(nili. . .nNP; r, rN)) ~li Pr), ...N, (2)

(HFn
~
Hn )=g (n'

~

Hn'') =0 (Z- )

the integer v being given by
N

v= 1 (n, n') =lV Pb(n"' n"—)

(12)

C(n; r) = S(n~ Hn')C "(n'l; r),
n'

(4)

C"(n'l; r)=II P"(n"l* r ) (5)

where the antisynimetrizing operator 6 acts on the
subscripts that distinguish the electron coordinates and
spins. The radial function 4 need not be separable in
the radial coordinates r;. The best radial function C in
the sense of the variation principle satis6es a linear,
second-order, partial differential equation. In the follow-

ing discussion C represents this optimum radial function.
For the sake of brevity we shall represent the set

(li P) by the single letter l, the set (r'. rN) by the
single letter r, and so on. The short form of Eq. (2) is
then

~n/r)=~i, C(nl; r))~lr).

We may expand C in terms of hydrogenic radial
functions:

(HFn~Hn') vanishes unless p=O, 1, or 2.
We are now in a position to prove the following two

statements:

(HFn~n')=(n~Hn')+0(Z ') (1 =1)
=0(Z '), (~=2)

(14)

(HFn ~Hn")
= (n' n' nN

~

n' n"' nN)+0(Z '). (15)

Equation (14) states that the first-order contributions
to the Hartree-Fock expansion coefficients coincide
with those of the corresponding expansion coefIicients
of the exact many-electron radial function when v=1,
and vanish when 1=2. Equation (15) relates the ex-
pansion of the one-electron Hartree-Fock functions to
the expansion of the exact many-electron radial function.

To prove Eqs. (14) and (15) we first show that the
many-electron Hartree-Fock functions lie asymptotic-
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ally (i.e., in the limit Z-+~) in the product-function
space spanned by the functions CH(n'3; r) with v(n, n')
= 1. This function space, of course, is a subspace of
the function space spanned by the complete set of
functions C". Now, the trial-function space associated
with the variational function C is the space spanned

by the functions C, while the trial-function space as-
sociated with CHF coincides asymptotically with the
subspace spanned by functions C H with v= 1. It follows
that CHF coincides asymptotically with the projection
of C in the subspace spanned by the C with v=1.
This establishes Kq. (14); Eq. (15) then follows from
Kqs. (10) and (12).

The preceding proof breaks down if one imposes the
usual orthogonality restrictions on the one-electron
Hartree-Fock functions. ' The space of separable trial
functions then no longer coincides asymptotically with
the space spanned by the functions Cub(v, 1), but with
a proper subspace of it.

III. APPLICATIONS

Orthogonality

The functions C are eigenfunctions of the same linear
operator. They accordingly satisfy the orthogonality
relations

(C (n'; r)C (n; r) )= S (n ~

Hn")(Hn"
~
n') =5 (n, n') . (16)

That is, many-electron Hartree-Fock functions labeled
by the same set of azimuthal quantum numbers are
orthogonal to first order in Z '. Sharma and Coulson'
gave a direct proof of a particular instance of this
theorem (orthogonality of the Hartree-Fock functions
for the two lowest '5 states of helium-like ions). They
pointed out that imposing the usual orthogonality re-
quirement on the one-electron Hartree-Fock functions
would spoil the first-order orthogonality of the many-
electron functions.

The preceding derivation makes it apparent that
many-electron Hartree-Fock functions are orthogonal
only to erst order. This, of course, is to be expected on
general grounds: distinct Hartree-Fock functions are
eigenfunctions of distinct nonlinear operators.

~o"F an& ~o

The Hartree-Fock energy has the Z expansion

(g)EiFH@HF)= WHF W HFZ2

+W, HFZ+ Won F+0(Z—i) (19)

From Eq. (14) and the complete expression. for Wo
given by ordinary second-order perturbation theory,
we obtain the following formula for Wo in the Hartree-
Fock approximation:

Equating to zero the contributions to the sum of order
Z ' we have where

W HF
v (n, n') =1 W2 —W2'

(20)

8Lv (n,n'), 1jL(n ) Hn)(Hn (
n')

+(n~Hn')(Hn'~n')j=0, (17)

1
V=Q —, N

W2 ——W2 "r———Q (21)

whence, using Eqs. (12) and (14) and the fact that
(n

~
Hn) =0 (1), we obtain

(Cn~(n'; r)CnF(n; r))=5(n,n')+0(Z '). (18)

If one does not impose the usual orthogonality conditions,
the Hartree-Fock energy will contain an extra term which is
O(i) and is usually very small.

I am indebted to Professor A. Dalgarno, whose
comments on the orthogonality problem led me to
search for the general statement and proof of the ortho-
gonality property of Hartree-Fock functions presented
above. This research has been supported in part by the
National Science Foundation.


