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are used. The Zil'herman result for oscillation in the
conductivity 0.11 matches the experimental values for
conditions somewhat intermediate between the two
and three band models, but the Zil'berman result for
oscillation in the thermoelectric coeKcient ~11" favors
the two-band model. The right order of magnitude for
oscillation in the Nernst-Ettinghausen effect &12" is
obtained from the oscillations in the density of states.
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The equation of state of NaCl is given using the Kellermann model of NaCl as well as a modi6ed model
making use of a repulsive potential energy of the Born-Mayer form Ae ". The Gruneisen parameter
y, = —dlnv„/d InV, where v; is the normal mode frequency and V is the volume, is derived by the development
of a perturbation method in the volume. This is then used where needed to calculate all thermodynamic
quantities of interest using an IBM 7090. A spectrum of 11 454 frequencies and p; s are used in 6nding these
quantities rather than the approximations made previously of utilizing the elastic constants and the moment
expansion p(S) =Z; p,:v /Z; v,'= —(1/S)d ln(v )/d lnV, where (v ) is the Sth moment of the frequency
distribution. To check previous work by Barron and Blackman p (0), p(2), 7 (1), and y( —3) were calculated
where y(0) =y„, the high-temperature y, and y( —3) =go, the low temperature y. Fair agreement is found
for y(—3), whereas the deviation in ~(2) is high.

p, = —d lnv;/d lnV (2)
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I. INTRODUCTION

'HE equation of state of a real crystal such as
NaCl has been considered by several investi-

gators. Barron'' and Blackman' using a Kellermann
model' of NaCl and assuming equal masses for sim-

plicity have recently obtained values for the low-

temperature (T-+ 0) Gruneisen"" parameter ys. Barron
was able to 6nd a high-temperature (T&O, where 8
is the Debye temperature) Gruneisen parameter y„by
defining a weighted y in terms of the moments of the
frequency spectrum with (v ) the Sth moment

t1
y (S)=P; y,v,'/P, v,'= —

~

—d ln(v )/d lnV, (1)
&s

where

and v, is a normal vibration frequency, V is the volume,
and the sum over i here and in all such expressions is
to be taken over all normal modes of vibration. He
found expressions for y(2) which he maintained should
be approximately equal to y(0)=y„and by making
use of the elastic constants found a ps ——y(—3). It was
found that deviations from Griineisen's relation should
occur at 0.30. Barron then compared his work to
Born's' and Slater's. Slater's formula, which is derived
from a consideration of the elastic constants, is

y.=-', d ln. (xV "')/d lnV, (3)

6M. Born, Atomtheorie des Festen Zustundes (B.G. Teubner,
Leipzig, 1923).

7 J. C. Slater, Introduction to Chemical I'hysics (McGraw-Hill
Book Company, Inc. , New York, 1939), Chap. XIV.

where g is the compressibility and V is the volume.
This formula was derived under two assumptions, one
being that Poisson's ratio is constant and the other
that there is a characteristic temperature given by
Debye's expression for an isotropic continuum,
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TmLE I. Gruneisen p s for NaC1 found by various investigators. n is the exponent in the repulsive potential energy.

n
+0

7.6

1.60

Barron

8.3 7
1.15
1.50

Blackman

8.55
1.46
1.76

Born

8
1.47

Arenstein et al.

7.6 8.3
1.002 1.071
1.379 1.498
1.480 1.595

Vates and
Panter

Experimental

1.59

where E is the total number of particles and C~ and C~

are the longitudinal and transverse elastic wave
velocities, respectively. Slater's formula gives us
directly y, =xe(v+6), where e is the exponent in the
repulsive potential energy. The p's found by these
various investigators are given in Table I.

In our study of NaCl we use both the Kellermann
model of NaC1 and a modified Kellermann model. The
Kellermann model is modified by assuming that the
repulsive term is the Born-Mayer potential Ae ~",
where A and 8 are constants. It is summed over nearest
neighbors and put into the form used by Kellermann.
This potential was picked because of its use in various
problems using interatomic potentials. However, since
we do not have as yet good values for A and 8 we
consider them independent of r and vary them so as to
give comparisons with experimental results. Using
perturbation theory' we are able to derive a formula
for the y s. Thus, we calculated with an IBM 7090 all
physical quantities of interest using the following
formulas, substituting the derived y; where needed.
For pressure as a function of volume and temperature
tfrom p= —(c)P/BV)T, where P is the free energyj

Uo
+—Z, v,E„

dV

ol

For thermal expansion we have

x 2'—v'~E'/»
V

and we compare this to the Griineisen relation

xv"
P= P; BE,/BT.

V

Since the specific heat at constant volume Cy was
needed for the thermal expansion it has been evaluated
at diferent temperatures and volumes. We have

Cv=g 636gX10"Q'8E/BT (10)

II. KELLERMANN AND MODIFIED KELLERMANN
MODEL OF NaC1

(where the factor before the summation sign gives us
the units cal/g-mole-'C).

Comparisons with experimental results are made
where possible. Since many of the thermodynamic
quantities are derived from indirect measurements (for
example, the relationships used to relate the actual
measurements to compressibility or to specific heat at
constant volume make use of the thermal expansion
and Griineisen's relation), they cannot be exactly
correct for low temperature (T&0.30).

dUp'
+—Z; v,E,',

dV U
(6) Kellermann assumed in his model that the energy

per cell Q could be written in the form

d'Up 8'—Z, ~,E,+—Z, (.,E.).
dV' V V 8V

(7)

K. M. Arase and R. D. Batcher, J. Chem. Phys. 33, 1704
(1960).

where Uo is the static lattice energy me%+—6Ae e";-
0. is Madelung's constant; Up' is the static lattice energy
plus the zero-point energy P; (-', hv, );

E,= (hv, /2+hv;/t exp(hv, /hT) —1j)

E,'= hv, /)exp(hv, /hT) —1j.
We can express Eqs. (5) and (6) in the Mie-Gruneisen
form if we dedne two temperature- and volurne-
dependent y's, 7(V,T)=g, y,E,/P, E; and y'(V, T)
=g; y;E /P; E,'. For compressibility we have

-hh'- ' e' ( 0

xy V. kxy)
(12)

where 0' 1s the wave vector; x and y= (g,y,e); h js the
basis index and is 1 and 2 for the NaCl crystal; G is a
dimensionless quantity; e is the charge of the electron;
V,=2ro', is the volume of a unit cell, where rp is the
nearest neighbor equilibrium distance. For the repulsive

y = —ne'/r+c/r"

where r is the interionic separation and c and n are
some constants which are eliminated in the coupling
coeKcients by applying the equilibrium and com-
pressibility conditions. The coupling coefficients are
split into Coulomb and repulsive terms. For the
Coulomb terms we have



terms we have

g2

= ——(R+2S)8 „,
xy V

kk' " e2
=—LR cos2m p.,rp+S(cos2~o „rp

xy V
+cos21l 0'grp)]b~p,

where E and 5 are given by

R= 12rp'/Xpe'+-'pn,

and

b . .P (V' /g2)g, .P (19a)

(19b)

Rewriting Eq. (18), we have

the coupling coefficients u;,' are the unperturbed
quantities.

To eliminate the volume from the Coulomb terms
and thus to have only the repulsive terms depending
on the volume, we write (where Vp is the volume of a

(13) basic cell)

5= —~n,3 (14) X 'U; '—Q; bgPU; '=0. (20)

and Xo is the isothermal compressibility.
It can be seen from Eq. (14) that the only quantities

in the coupling coeKcients varying with a change in
volume are ro and the isothermal compressibility Xo.

For our purposes in investigating the equation of
state and then finding the compressibility from it we
do not eliminate the parameters in the repulsive term.
For the Born-Mayer potential energy form we have

To And the eigenfrequencies at a new volume we
must express the new eigenfrequencies in terms of the
unperturbed frequencies and eigenvectors at the initial
volume. This is possible since the eigenfrequencies
belonging to the same wave vector change but little
with small changes in volume. In addition, this method
may be extended to include second neighbor repulsive
forces as a perturbation. Thus, we have

ne'/r+ —A e s", — (15) X'U, '—Q, b, U;'=0, (21)
where 2 and 8 are adjustable parameters. Putting the
repulsive term in the Kellermann bracket form, we have

=P, (yi.p'),„exp(2~ieri p') .

%hen k'/k the sum extends over 6 nearest neighbors
given by vectors rp(&1, 0, 0), rp(0, &1,0) and
rp(0, 0, &1).Thus, we find

-1 2-" U. 4M ro2e-~"0

x x e' 8

&(LBrp cos~q. —(cosvrq„+cosn-q, )), (17)

1 1 ~ Ua 4gj~y02~ —Bra

X X 8
L2 —Brpf.

It may be seen from Eq. (17) that the only quantity
varying with volume is ro.

where X '= V'(p& ')'/eP; V' is the new volume and pp
'

is the new frequency.
Since the perturbed quantities vary but little from

the unperturbed ones, we may expand the perturbed
eigenvalues, eigenvectors, and coupling coe%cients in
a series

U '= U '+ pU '+ p'U '+ ~ ~ ~,

X '=X p+pX '4p9. '+ ~

b p'= b,P+ pb;,'+
(22)

In the case where X ' is nondegenerate, even though
some other eigenvalues belonging to the complete set
of eigenvectors may be degenerate, we may expand the
perturbed eigenvectors in terms of the unperturbed
set such that

The zero-order terms result in Eq. (20) while the
6rst-order equation is

X 'U, '+X 'U, '—Q; (bgPU; '+b, ,'U; ')=0. (23)

Letting'
III. PERTURBED FREQUE1VCIES U, '=+ p gl,~U,pP,

C~. .0—
'v 7

(mpesp)'' x y

we write the equation for the ionic displacements for
NaCl as

where the eigenfrequency ~', the eigenvector U', and

'We introduce for convenience new notation i=i, 2, - ~ ~, 6
standing for (Ex}= ix, 2x, 1y, 2y, 1z, 2s.

where gp is a constant, and substituting Eq. (24) into
Eq. (23) we obtain

Pp'A 'gI,"U,a'+& 'U; '=Q; b; Zp gp"Up'

+E~ 4'U~ ' (25)

In the term P; b, rP Qp gi, U; pP the summations may
be interchanged and since from Eq. (20) P; b,PU; '
=X 'U, ' we obtain after substituting in Eq. (25)

Qp & 'gp"U;i'+& 'U, P=Zp gp &p'U;p'

+Z~ 4'U~-' (26)
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Multiplying Eq. (26) by U„P) since the vectors U„P
are real, and summing over i, making use of the ortho-
normality of the unperturbed eigenvectors U o we
obtain

&m'&mp+(&mo —&~P)g~m=Z), ) Un)ob) U)mo=Bpm'. (2&)

If m= e we obtain

X„'=Q;,; U Pb )'U;„o=B„„' . (28)

Thus, we may write for. the perturbed circular
frequencies,

bi, ' ——— [(R(r)—R(rp)) cosirq,
(mim, )'~'

+ (S(r)—5(rp)) (cosa.q„+cosirq, )], (35)

with similar terms for 534 and. 556',

IV. THE Y 8

For the Kellermann model we obtain

Vp e2

&o + Bmm ~

V V
(29)

ros&o2 e2 12f4 12ro

r3 2r3 e2X esX
(36)

+—
I

(Up-')'+ (U4-')'+ (Up-')']

+ (Ui oUp ocos7rq +Up oU4 ocosirq„
(ns, nip)'~p

+Up, 'Up ' cosirq, ). (37)1
B..=~R —[(U -')'+ (U -')'+(U. ')']

We have then from Eq. (2)

Equations (28) and (29) are valid for degenerate
eigenvalues only if B, '=0. In this event the perturbed I [(U, o)p+(U, o)p+(U, o)p]
eigenvalues are again degenerate. For the NaCl crystal
the degeneracy is due to the symmetry of the crystal
itself. The degeneracy would not be removed by going
to higher order terms in the perturbation series. Hence,
the above equations may also be used to find the per-
turbed frequencies for the degenerate case.

For the Kellermann model of NaCl we have

1
+—[(Up ')'+(« ")'+(Up ')'] —V dr de,.2

Vs=
2o),' dV dr

(38)

+ (Ui pUp o cosirq, +Up oU4 p cos7rq„
(mimo)"'

+Up oUp ' cosn.q.), (30)

vt)here DR is the change in R as defined in Eq. (1.4):

dM; —3rpQ)p 3e 12f 12rp
r

r4 2f4 e2X e2X

e' 48r' 12r' Bx
39

hR = 12r4/e'x —12rp4/epxo ) Thus, we write for y, at r=ro(313

where r and X are the new lattice constant and com-
pressibility, respectively.

For the modified Kellermann model of XaCl we have

2 4ro ro2 BX
1Vs& r

2 Q)p —Xo Xo f T-
(40)

B„„'=bii' (Ui„')'+(Up„')'+(Up ')'

bll —[R(r)+2)5 (r) —R(ro) —25(rp)],
SSl

R(rp) =4B'Arp'e

S(ro) = 4BArooe ~"P/e')—

(33)

(34)

ml
+—[(Up-')'+ (U4-')'+ (Up-')']

SZ2

+2[bio'UimPUom'+ bp4'Upm'U4m'

+bM'Up 'Up„'], (32)
1 etlnyV '" 1 yp 4rp rp' By

js
2 d lnV 2 3fp Xo Xp Qr

. (41)

If we assume that p, equals 7; at some particular
frequencies, the condition for equality is

2r/~o'= Xo/3ro. (42)

This formula for p;& can be used in an equation of
state and a self-consistent technique developed to get
the compressibility, the thermal expansion, and the
other quantities of physical interest at different
temperatures.

It is of interest to compare this y;I, to Slater's y, .
Thus, y, can be written as
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2.6 ——
To see that this assumption is approximately correct
we pick a particular direction in the crystal such that
q, =q„=q.= and for simplicity we assume equal
masses taking the average mass in the equation for F.
This gives I'=1/m and. r0ss=6rs/(@AX, ). Using re ——2.8
X10 s cm, Xo=4.0X10 "cm'/dyn, and m, =4.8X10 '4

g, we have s&o=3.0X10" cycles/sec which is close to
the resonance frequency. Thus, y, & at the same reso-
nance frequency 3.0X10" cycles/sec should be equal
to y, .

The y, 's for the modified Kellermann model (y, )
have been found for a total of 11454 frequencies
obtained for the first-Brillouin zone and it is to be
expected that the y; should be approximately equal
to the y;I, for the Kellermann model so that the y;
for 3X10" cycles/sec should be approximately equal
to y, . We find for 2 =1.474X10 ' erg, 8=3.048X10'
cm, and R= 2.814X10 cm that p; equals 2.44 and
this is suKciently close to p, which equals 2.33 for
m=8 to justify our assumption that p;A, =p, at the
resonance frequency.

For the modified Kellermann model we obtain

2.5-FIG. 1. Gruneisen
parameter y; versus
P, p, p for a lattice
separation of 2.814
&(10 8 cm and with
A =1.474)&10 9 erg;
8=3.048X10 cm '.
Four curves corre-
sponding to the six
branches of the crys-
tal with the trans-
verse modes being
double. Dashed lines
indicate extrapola-
tion to the (0,0,0)
values.

T.0.

L, A2.4 =

205

gj, 2.2

I.O- L.O.

0.5-

0-

-0.5
0,0,0

I

8,0,04,0,0
Px,0,0

l2,0,0

with
R'= (4B'A/e') (3res —Bra') e e",
5'= —(4BA/e') (2r e—Brs') e—e"0

ro3+o2 e
o~'= + B—

r3 2r3

(where B ' is defined in Sec. C). We find for y;

e' dB1
7'"=

6ro2o2

where

dB =&' —[(U -')'+ (U -')'+ (U -')'j
r tS]

1
+—L(U -')'+ («-')'+ (U -')'j

nZ2

(mrms)'I'
cosrrq, U,„"Us e+cos7rq Us 'Um y 3m 4m

+cosm. q, Us„'Us~')

+» —[(U..')'+(U.-")'+(U -')'j
VI. VALUES OF THE Y'S

V. CHOICE OF PARAMETERS

The calculations depend on the choice for parameters

(43) an B in the repulsive term, and it is found that

the resonance frequency. |A'e chose, therefore, several
sets of A and 8 and compared results. For one set we
took the values found in Born and Huang" with a
nearest neighbor distance of 2.814X10 ' cm and
2=1.474X10 ' erg, 8=3.048X10' cm ' which give
good results for the cohesive energy andan compressi' i ity.
For another set we took 3=2.550X10 ' er
8=3 291X10,=cm which were chosen to give a better
value of the resonance frequency as well as the com-
pressibility. Other sets of 2 and 8 are chosen, for
example, 8=3.198X10 cm ' while 3=2.247X10~,
2.147X10—', and 2.100X10 ' to see how much the y's
vary when 8 is held fixed and A changes. If we assume

e equilibrium condition holds, then we can relate our

by Kellermann. For example, 8=3 048X10—' cm—'
gives v=7.6 and 8=3.291X10' cm ' gives &=83
w ere, in general, e=Bro—1.

In our calculations we use the frequencies and the
p's for 73 choices of the wave vector e totalling 11.454
frequencies and p s when weighted by their multi-
plicities. This was done for different 1 tt'a ice separations
and parameters 3 and B. Since the program used did
not give the correct values for the ~0 0 0 position we
have found them by extrapolation as in Fig. 1 where
we plotted 7; against a particular direction i

+—((Us ')'+(U4 ')'+(Us ')'j
rfI2

L(coss-q„+cosvrq, ) Ur„'Us '
(mr riess)"'

+ (cosa.q,+cosrrq, )Us 'U4 '
n the

+(cossq, +cossq„)Us eUs ej, (4&) "M. 3 dM. Born and K. Huang, Dynamical Theor o Cr s
(Clarendon Press, Oxford 1954~ Cha I~ ~
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where e is the charge of the electron, a is the nearest
neighbor distance at equilibrium, r& is the new distance,
and m is the exponent of the repulsive potential energy,

TABLE II. Resonance frequency and y;.

A =1.474X 10 erg;
8 =3.048X10' cm '

fp
(10 scm) (10"cps)

A =2.550X10~ erg;
3.291X108

(10"cps)

2.7886
2.7893
2.7944
2.8000
2.8036
2.8088
2.8100
2.8140
2.8200

2.9656
2.9604
2.9229
2.8819
2.856
2.8177
2.8090
2.780
2.7367

2.3112
2.3146
2.3395
2.368
2.386
2.414
2.4206
2.4427
2.4768

3.1094
3.1036
3.0617
3.0160
2.9867
2.9445
2.9348
2.9025
2.8542

2.4606
2.4643
2.4917
2.5228
2.5433
2.5738
2.5810
2.6054
2.6432

"M. BlackmaIl, Ref. 3
'~ T. H. K. Barron, Refs. 1 and 2.
' K. Griineisen, Ref. 5.
'4 T. H. K. Barron, Refs. 1 and 2.
'5 M. Blackman, Ref. 3.
'sB. Yat~ and C, H, Panter, Proc. Phys. Soc. (London) 80,

373 (1962).

crystal; namely, the LPx007 direction, where Px varies
from 12 to 0. We see that the y, 's vary aver a wide
range and, as Blackman" and Barron" have found,
from about ——,

' to about 3.- Thus, GrQneisen's" con-
tention that they are constant is far from true.

Using the variation of the resonance frequency with
nearest neighbor distance (see Table II) we have
calculated';= —(r/3~)(Aa&/Ar), whereha&is the change
of frequency for two diferent nearest neighbor distances
and Ar is the change in the nearest neighbor distance.

This was done for the values rp= 2.8100, 2.8140, a,nd
2.8200 giving two values for Au&/Dr which we averaged
to find (~co) /~r= —7.21 and thus y, =2.44 which
agrees exactly with the value found using the equation
for p, at the peak frequency. Since we also calculated
8&/Br for each frequency this value was checked the
same way. The avera, ge value of Dy/hr was 0.560&&10'
cm ' while the equation gives 0.5581)&10' crn ', a
deviation of less than 0.4%.

The values for the various temperature dependent
p's can be found in Table I and in Tables III—VI. It is
of interest to compare these values with those obtained
theoretically by Barron" and Blackman" and with the
experimental y" values found by Vates and Panter. "
We notice a difference of up to 7% between y(2) and
y(0)—=y„for the various sets of 2 and 8 in the above
tables. Using Eq. (1) given the second moment for
NaC1, (assuming equal mass M for the ions)

( gs ) /g'. +
(.')=»4i l(~—1)i-

(12m'a'3I) Eri

T-LE III. y(S) for different lattice separations rs., ' for
diferent lattice separations rp and for different temperatures T.
A =2.550X10~ erg, 8=3.291X10 cm '.

T ('K)
320
280
200
120
80
60
40
30
20
15
11
10

1.5106
1.5086
1..5006
1.4714
1.4131
1.3376
1.1737
1.0382
0.89283
0.84503
0.83122

1.5129 1.5615
1.5110 1.5606
1.5031 1.5562
1.4738 1.5359
1.4156 1.4892
1.3400 1.4242
1.1748 1.2749

1.1454
1.0025
0.95803
0.95342
0.95881

1.5800 1.5990 1.6215
1.5795 1.5990 1.6218
1.5763 1.5970 1.6214
1.5587 1.5830 1.6111
1.5154 1.5442 1.5770
1.4534 1.4866 1.5237
1.3072 1.3480 1.3914

1.2232 1.2696
1.0819 1.1293
1.0396 1.0870
1.0394 1.0898
1.0472

Harron'r found thaty(2) =sr(m+2). A high-temperature
experimental value quoted by Born" and Yates and
Panter" which is 1.59 is in extremely good agreement
with our 7„ for the n=8.3 case. Apparently the cor-
rection for the volume dependence of p, and co; was not
taken into account in the calculations of &p by Barron
and Blackman. In Table I we listed our values of 7p
taking the lattice separation to be 2.7886)&10 ' cm at
O'K. At a room temperature lattice separation of
2.8140)&10 cm we have for 3=2.550)&10 ' erg,
B=3.291)&10' cm ' that vp=1.253; and for 2=1.474
&&10 ' erg) 8 3048&&10 cm ' that 7p=1.166, giving
better a,greement with Blackman's results. The experi-
mental values of Yates and Panter" are given from 30
to 270'K. Their results are uncertain below 60' and
at 60'K they differ from our values by about 19%. In
computing their values from other thermal data such
as specific heat and compressibility no correction was
made considering the new expansion da, ta, and they
expect an accuracy for their data at low temperatures
to within 15%%uo. The deviations in the low-temperature
values may be partially due to the above lack of cor-
rections as well as the experimental uncertainties near
and below 60'K. Slightly better comparisons can be
expected by varying our A and 8 values. Vates and
Panter's contention that the predicted numerical
values of low-temperature y be revised does not seem
to be justified since their accuracy below 60'K is not
high. As seen in Tables III and IV y' and y" approach
a minimum at about 11'K and then rise to the
ps=—y(—3) value. This wasnot predicted fromprevious

'7 T. H. K. Barron, Refs. 1 and 2.' M. Born, Ref. 6.
» B. Yates and C. H. Panter, Ref. 16.

~o
(10scm) 2.7886 2.7893 2.8036 2.8088 2.8140 2.8200

p(0)—=y„ 1.5188 1.5207 1.5628 1.5789 1.5954 1.6151
y(2) 1.4831 1.4838 1.4916 1.4949 1.4976 1.5010
p(1) 1.5305 1.5319 1.5566 1.5664 1.5759 1.5874
y( —3) 1.0712 1.1776 1.2534 1.2981
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TAsxE IV. y" for different lattice separations r() and for different temperatures T; p" calculated from thermal data by
Yates and Panter at 293'K volume. A =2.550)&10~ erg, 8=3.291X10' cm '.

r, (10 ' cm)
T ('K)

750
500
400
280
270
240
200
160
120
100
80
60
50
40
30
20
15
11
10

2.'7886

1..5203

1.5206
1.5209
1.5206
1.5171
1.5106
1.4934
1.4451
1.3923
1.3005
1.1485
0.94846
0.86683
0.83150

2.7893

1.5224

1.5227
1.5230
1.5228
1.5194
1.5130
1.4960
1.4481

1.3037

2.8036

1.5673
1.5686
1.5703
1.5709
1.5681
1.5572
1.5200
1.4755
1.3942
1.2526
1.0566
0.97559
0 9A.A.A6

2.8088

1.5830

1.5842
1.5860
1.5883
1.5902
1.5887
1.5799
1.5462

1.4264

2.8140

1.5962
1.5971
1.5979
1.6002

1.601/
1.6038
1.6069
1.6102
1.6101
1.6036
1.5740
1.5354
1.4616
1.3280
1.1353
1.0544
1.0252
1.0258

2.8200

1.6206

1.6223
1.6249
1.6287
1.6338
1.6352
1.6312
1.6060
1.5709
1.5016
1.3729
1.1824
1.1014
1.0731

1.59
1.57
1.54
1.53
1.51
1.49
1.42
1.22
1.06
0.82

TmLE V. y for different lattice separations ro and for different
temperatures T. A =2.550&(10 ergs; 8=3.291X10 crn '.

ro (10 'cm)
7' ('K)

280
200
120
80
60
50
40
30
20
15
11
10
0

2.7886 2.8036 2.8100 2.8140 2.8200

1.5139
1.5148
1.5180
1.5208
1.5242
1.5276
1.5298
1.5303
1.5304

1.5305

1.5506
1.5471
1.5474
1.5489
1.5513
1.5540
1.5560
1.5564
1.5566
1.5566
1.5566

1.5793
1.5759
1.5682
1.5627
1.5617

1.5906
1.5868
1.5780
1.5712
1.5694
1.5698
1,5713
1.5735
1.5753
1.5757
1.5758

1.5644

1.5684 1.5/59

1.5946
1.5859
1.5826
1.5824
1.5833
1.5852
1.5869
1.5873
1.5874
1.5874
1.5874

analyses" although their experimental values of y" for
I.iF seem to indicate a minimum at 120'K. That it
occurs at a high temperature for this crystal is probably
due to the high value of the Debye temperature in this
case. From our data we see verification of Barron's
result that y'(V, T) and. y"(V,T) should decrease
signi6cantly below 0.36=80'K. In table V we have

7(V,T) data tabulated and we (md that a minimum
occurs at about 50'K. It is about here that the zero-
point energy contribution to the thermal expansion
becomes significant and the values smoothly tend to
the limit y(1) at O'K. In I'ig. 2 we have y" versus ro

at a constant temperature of 280'K where we see that
y" varies fairly linearly with ro. Several y's were calcu-
lated for very high temperatures and we And that y
reaches a maximum at about 300'K and then decreases
slightly tend. ing to its y„—=y(0) value. It must be
remembered, however, that the change in volume and
anharmonic terms at higher temperatures may make a
considerable difference here.

VII. COMPRESSIBILITY AND THERMAL
EXPANSION

In Table VII the compressibility for various volumes
and temperatures is compared to experimental values, "
the maximum deviation being about 4%%uq at low tem-
peratures. As noted before, approximate calculations
were used in relating the experimental information to

TABLE VI. &(S) for different A's and B's (ro=2.814X10 cm).
I.SO

II (10' cm ')
A (10 9 erg)

y(1)
v(2)
v(0)
v( —3)

3.048 3.198
1.474 2.100
1.457 1.5214
1.379 1.4522
1.480 1.5327
1.166 1.1699

3.198
2.147
1.5096
1.4523
1.5090
1.1050

3.198
2.247
1.4876
1.4522
1.4642
0.97425

I.40 .
g- VS-ro"'
TQMP~ETURIE= 28 &

~ A=2.550 X IO 9 ERGS; B=5.29I X IO CM"II

@=I.474X l09 ERGS; B=X048X l08 GM

l I I t I I I

2.7850 2.7950 2.8050 2.8I50 2.8250
ro X I08 CM

~Recent experimental and theoretical work on MnO at low
temperatures by S. Ganesan, Phil. Mag. 7, 197 (1962), indicates
a rise in the values of the Gruneisen parameter. He shows that
v(2)(y( —3) and it is certainly possible as our work indicates
that 7(0)&~(—3) pq(2).

Fro. 2. Griineisen parameter y" versus ro at a constant tem-
perature of 280 K for taro sets of parameters A and B.

I' W. C. Overtun and R. T. Swim, Phys. Rev. 84, 733 (19&1).



TAnLz VII. Compressibility (in units of 10 's cms/dyn) for different temperatures keeping lattice separation rs constant and
compressibility for diferent lattice separations keeping temperature constant at 280'K.

r() ——2.800)&10 8 cm
A =2.550&(10 9 erg
8=3.291&(10 cm '

('K) x ro (10 8 cm')

A =2.550&10~ erg
8=3.291X10' cm '

XT

A =1.474X10~ erg
8=3.048X10s cm '

XT

Experimental
Constant
entropy

xs

compressibility
Constant

temperature
XT

320
280
240
200
160
120
100
80
60
40

3.9630
3.9625
3.9619
3.9613
3.9606
3.9601
3.9598
3.9595
3.9593
3.9591

2.7886
2.7893
2.7944
2.8000
2.8036
2.8088
2.8100
2.8140
2.8200

3.74
3.76
3.85
3.96
4.04
4.15
4.17
4.26
4.39

3.80
3.81
3.90
4.00
4.07
4.18
4.20
4.28
4.40

3.89
3.90
3.95
3.97
4.01
4.05

4.07

3.89
3.91
4.01
4.06
4.13
4.20

4.27

0.8
~ o.v-
~ 0.6-
tsj~ 05-
& oe-
o 03-
x 02-
g Ol-
cn 0-
CO+-O.l-K~-0.2 I

2.790 2.800 2.810 2.820
fp X lo CM

Pro. 3. Pressure
versus lattice sepa-
ration ro at two con-
stant temperatures.

the compressibility values so that little more error would
be introduced in using our theoretical values of the
compressibility to And the thermal expansion. In Table
VIII the thermal expansion at various temperatures
and lattice separations is given using Eq. (8). Since

0.40--
OzS-

A036- B
O.N-
032-
030-

o 0.28
~ 026-
LLI
& 0.24-
o 0.22-

r'o 0.20
x O. IS-
~ O. I6

~~O. I4
O. I 2

f. O. IO

0.08 .
0.06-
0.04-
0.02-- -=-

FxG. 4. Pressure
versus temperature
at various constant
lattice separations.

experimental values of P are found at atmospheric
pressure the values of the thermal expansion in our
table must be read at the correct lattice separation
for a particular temperature in order to compare
results.

1

0 50
t C t

IOO l50 200 250
T'K

Approximate calculations of the lattice separation
for a particular temperature using an empirical formula

TABIE VIII. Thermal coefficient of expansion P (10 ' deg '). A =2.550&&10 ' erg, 8=3.291X10' cm

ro (10 cm)
T ('K)

320
280
270
240
200
160
120
100
80
60
50
40
30
20
15
11
10

2.7886

8.0928
7.2022
5.8973
4.0238
2.8816
1.71209
0.72889
0.17116
0.059067
0.019796

2.7893

10.430
10.291

10.084
9.7553
9.1925
8.1331
7.2406
5.9323
4.0518

1.7274

2.8036

11.377
11.235

11.023
10.685
10.106
9.0086
8.0757
6.6922
4.6627
3.3933
2.0590
0.89817
0.21482
0.074419
0.025058

2.8088

11.749
11.606

11.391
11.051
10.465
9.3535
8.4056
6.9940
4.9081

2.1961

2.8140

12.138
11.993

11.776
11.432
10.840
9.7137
8.7504
7.3100
5.1664
3.8021
2.3415
1.0393
0.25176
0.08734
0.02944
0.021285

2.8200

12.607
12.460

12.241
11.893
11.293
10.1498
9.1686
7.6946
5.4828
4.0610
2.5226
1.1313
0.27613
0.095848
0.032310

I~ 1 dv

(Vs9s dT

11.75
11.39
10,77
9.96
8.69
7.64
6.03
3.73
2.40
1.17
0.32



EQUATION OF STATE OF ALKALI HAr r DFS (Nac&)

TABLE IX. Specific heat at constant volume C„=8.6368&&10'sZ; BE;/eT A.=2.550&&10~ erg, 8=3.291)&10s cm

Qro (10 'cm)
T ('K)Q

280
200
120
100
80
60
50
40
30
20
15
11
10
5

2.7886

8.9045
7.9593
6.5926
4.6486
3.4553
2.1980
1.0596
0.30130
0.11377
0.039750

2.8036

11.2768
10.7127
9.0218
8.1024
6.7618
4.8270
3.6188
2.3240
1.1283
0.31992
0.12004
0.04175
0.03017

2.8140

11.2970
10.7494
9.1016
8.2004
6.8792
4.9537
3.7372
2.4177
1.1811
0.33467
0.12503
0.043342
0.031318

2.8200

9.1469
8.2565
6.9469
5.0279
3.8073
2.4742
1.2137
0.34395
0.12818
0.044345

Experimental values

8.180
6.820
4.848
3.609
2.297
1.109
0.3124

0.03024
0.003561

such as p=pst1 —(1.12&&10 'T)—S&&10 'T'7 g/cm',
where po is the density, gives at zero deg r0=2.7886
&10 ' cm while at room temperatures the lattice
separation is 2.8140)&10 ' cm. Thus, using the approxi-
mate values of 2.7893)&10—' cm for the lattice sepa-
ration at 60'K our results for P compared to Yates and
Panter diRer by less than 9%%u~ while at 240'K and a
lattice separation of 2.8088)(10 ' cm they differ by
about 0/~. In Table IX the values of C, are given for
various lattice separations along with some experimental
values. "

IX. EQUATION OF STATE CURVES

In Figs. 3 and 4 we have plotted pressure against
lattice separation and temperature. In the pressure,
lattice separation curve we note that the pressure goes
to zero at certain lattice separations indicating the
equilibrium position. In the pressure, temperature
curve we note that the slope of the curves approach
zero and this is as it should be since (BP/BT)„=P/x
where P, the thermal expansion, goes to zero at O'K.

"Private communication to E. Arase from J. A. Morrison,
National Research Council, Canada.

X. CONCLUSIONS

It is seen that perturbation theory leads to a formula
for &; which is found to be very accurate and of wide
applicability. Fairly good results for the physical
properties of NaCl are found with A =2.550X10 ' erg
and 8=3.291&10' cm ' corresponding to an +=8.3
for the Kellermann model. Better results could have
been achieved with a better model, one in which next-
nearest neighbor interactions were used in calculating
the repulsive terms and polarization effects were taken
into account. Experimental information below 60'K
may indicate the predicted minimum and subsequent
increase of values to the y(—3) value as calculated. The
connection found between p; and Slater's y also seems
to indicate the validity and usefulness of the per-
turbation method. It is not clear what effects will occur
by introducing anharmonic terms in the potential
energy. However, for low temperatures (T(e) we
should not expect these terms to be very significant.

The contention that y (2) =y (0) is not a good approxi-
mation makes it necessary to calculate y(0) directly
from the spectrum of the 7 s unless a good interpolation
method using y(s) presents itself. In fact, for NaCl
y (0))y (2))y (4) while 7 (2))y (—3) so that in this
case we do not have a good interpolation method if
y(0) is unknown.


