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Interaction of Waves of Current and Polarization*f
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(Received 3 June 1963)

The system considered here is a polarizable semiconductor through which a current is fiowing in response
to an externally applied electric 6eld. Phenomenological equations relating the charge density, polarization,
electric and magnetic Acids, and atomic displacements in such a system are described. It is shown that a
traveling wave of small amplitude oscillations of these quantities satisfies the equations when the frequency
co and propagation vector q satisfy a certain dispersion relation which is derived. For some choices of system
parameters the dispersion relation admits solutions in which co is real and q is complex with real and imaginary
parts of opposite sign, suggesting the possibility that the system might support amplifying waves. Examples
are given in which the parameters are as nearly as possible those appropriate to a crystal of indium an-
timonide. Some of the parameters which must be assigned depend on the drift velocity of the electrons, and it
is difBcult to determine appropriate values or ranges of values for them in the interesting region of large drift
velocities.

I. INTRODUCTION They should have interesting and useful interactions
with other crystal excitations and with electromagnetic
radiation.

'HE investigation described here was stimulated
by the work of Hutson, McFee, and White, ' who

amplified ultrasonic waves in a piezoelectric semicon-
ductor by applying a steady electric field in the direc-
tion of sound-wave propagation and increasing its
magnitude until the drift velocity of the carriers ex-
ceeded the velocity of sound. Hutson and White, '
White, ' and Quate' have shown that the ampli6cation
depends on the transfer of energy from space-charge
waves traveling on the drifting carriers to the sound
waves. The work cited suggests the question: Is it
possible to transfer energy from the space-charge waves
on carriers drifting in a compound semiconductor to
the polarization waves associated with the optical
branches of the vibrational spectrum of such a crystal)
In an attempt to answer that question we consider the
phenomenological equations governing the behavior of
a system consisting of carriers drifting in a polarizable
medium under the inhuence of a steady electric field.
Solutions of these equations in the form of decaying
or possibly growing traveling waves a e sought. The
values of the various input parameters associated with
these two types of solutions of the phenomenological
equations are investigated. Finally, there is a prelimi-
nary discussion of the necessity for distinguishing be-
tween "amplifying" and "evanescent" growing waves. '

Coupled traveling waves of the type considered here,
if they can be excited, might prove of considerable
interest. The analysis given below indicates that they
would have frequencies in the range around 10" cps.

II. PHENOMENOLOGICAL EQUATIONS

Of the equations appearing in White's analysis, ' the
following four, involving the electric displacement D,
the carrier-current-density J, and the electric field in-
tensity 8 are retained in the present work:

V' 9=—kree. ,

V J=eitrt, /r)t, (2)

(3)J=ettrt, 8+ed Vrt„

'+c rtp+ frts ~

In these equations r4 is the density of carriers (here
assumed to be electrons in the conduction band, in
order to make the analysis more specific), np is the
undisturbed equilibrium value of rt, (which produces
electrical neutrality when there is no wave present),
e, is the space-charge density expressed in units of
electronic charge (a function of position and time),
and. f is the fraction of the space charge which is pro-
duced by mobile electrons (the remaining fraction of
the space charge is produced by trapped electrons).
The magnitude of the electronic charge is denoted by
e, p, is the electron mobility, and X) is the electron
diffusion constant. The Grst two equations should be
valid in all cases. Equation (3) is expected to hold only
if the frequency (r ') of electron collisions is large
compared to the frequency (co/2sr) of the wave motion,
i.e., &or(1, and if the wavelength (2tr/q) of the wave
motion is large compared to the mean free path l, of the
electrons, i.e., ql, &i.

The description of the polarizable lattice is that
developed by Born and Huang' for a diatomic crystal
with optical isotropy. They introduce the vector w,
which is the displacement of the positive relative to

~ Supported by Lockheed Research Laboratories, Palo Alto,
California.
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the negative ion multiplied by the square root of the
reduced mass of the two ions per unit volume. Their
equations involving w are

8'w/BP= biiw+bio8,

bolw+b22 g
&

(5)

(6)

where P is the dielectric polarization. The coeKcients
b;; are real scalars which Born and Huang relate to
cop, the infrared dispersion frequency, 6p the static
dielectric constant, and e, the high-frequency dielectric
constant as follows:

~11 &p
'2 (7)

D=a+4 P,
VX c=—e-'(aH/at),

(10)

V')& H =c '(4m J+4rrctP/Bt+ 8 8/ctt) (12)

here H is the magnetic field and c is the velocity of light.

III. TRAVELING-WAVE SOLUTIONS OF
THE EQUATIONS

What is sought are solutions of Eqs. (1)—(12) in
which the components of the vectors w, 8, P, J, D,
and 8 and the scalar e, are of the form

A=Ho+Hi exp/i(q r—cdt)g,

with A,((A p.

When the variables have this form, taking the curl
of Eq. (11) and substituting Eq. (12) in the result in
the usual way leads to the relations

Bi"——(4'/ico) (Ii"—icoPi"), (13)

8,i = (4&ri/co)(co/cq)'$1 (cd/cq)'$ '(JP— ioo—PP), —(14)

where Ai" means the component of Ai parallel to q
and Ai& stands for a component of Ai perpendicular to q.

bio= boi=((oo —o )/4 $'"~o
& (g)

boo= (o„—1)/4ir .
For small carrier densities, the relations (7)—(9) are

suSciently well satisfied for purposes of the following
argument. Equations (5) and (6) are valid "whenever
conditions are everywhere practically uniform over
regions containing many lattice cells, "7 i.e., the analysis
which follows is not valid for wavelengths much less
than 100 A.

The last three relations needed come from electro-
magnetic theory:

One such solution is obtained by reducing Eq. (5) to
the form ct'wi"/ctt'= —co'wi" with

co'= —b„{1+%'$1+ico,(co- fogq+ifX) q') 'j '}, (l5)
lil wlllcll Z = 47rblob21/o»obli= (oo o&)0/ goo& coq=4ll0/otN

(here cr=eoep), and vq ———p8o". LThis reduction can
be performed by operating with (8/ctt)&7 on Eq.
(3), and substituting in the result the relation V J
= —(47r) '(8/Bt) (V' D) which follows from Eqs. (1) and
(2). The small second-order terms (V D)i(V 8)i and
Si &(7 D)i are neglected. The resulting relation be-
tween Di" and 8i» combined with Eq. (10) yields a
relation between 8~" and PJ" which is substituted in
Eq. (6) to obtain 8i" in terms of wi". The elimination
of hi" between this last expression and Eq. (5) gives
the indicated result. ) Equation (15), the dispersion
relation, is quadratic in q with the solutions

q= (coii/2i fi'd) {iaLi+4(cd, /coD)

(co coo )/(co Icdoo) 4i(co/coD) /to} (16)

in which coD= fed'/X). , I.=1+X', a—nd we have replaced
bi i by its value —coo' LEq. (7)j.The principal features
of these two solutions of the dispersion relation are
discussed in the next section. The remainder of this
section is devoted to obtaining another solution of
Eqs. (1)—(12) associated with transverse waves.

A differential equation involving w~& and w~" can be
obtained by the following operations:

The expression for I, in terms of no and V' D coming
from Eqs. (1) and (4) is substituted in Eq. (3). Neglect-
ing second-order terms, the transverse component of
the resulting equation is

Jii=itoepai~ (4&r) 'iq—Di"pfco~ (17)

In this equation we substitute the relation between
Di" and h&» referred to after Eq. (15), and then insert
the resulting expression for Ji& in Eq. (14), which
becomes

P, = (4 )-'&(eq/~)' —1—4 i(~/~) ja,
+i(~/~) (q/~) @i"Li+ (q/~) pf &o"

+ico(q/cd)'f X)„] 'pf8oi (18).
Pi& from this equation is substituted in the transverse
component of Eq. (6), which is then solved for SP in
terms of wi& and So~. (The coefficient of the term in
So~ involves bi".) This expression for 8i& is inserted in
the transverse component of Eq. (5), and Si" is re-
placed by a complicated coefficient times wJ", using
the relation between BJ" and wJ" referred to after Eq.
(15).The final result is

4~bioboi/o„bii
8 wic/ctt = bii 1+

o„—'(cq/co)' —1—c co co

7 Reference 6, p. 83.

(./)
4&ri(bi, boi/o„) (co./co) (q/co) p fwi

S c. (19)
(o„—' (cq/co)' —1—i (co./co) )Li+ (q/co) pf8o ~ ~+io& (q/oo)

ofX)„+i(o&„/o&)g,
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Fzc. 1.Real and imaginary parts
of the propa gation constant, q,
versus frequen cy, co, for the indi-
cated values of t he parameters.
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For Sp~=0, this equation describes the transverse
vibrations of the lattice coupled to the electromagnetic
6eld in the presence of carriers. When the carrier.
density vanishes (pp, =o), it reduces to the dispersion
relation for the "optical-waves" in a polar insulator.
The term in Sp& shows that it is possible to transfer
energy to the carrier-damped "optical-wave" mode
from the longitudinal mode previously discussed

I Eq.
(16)J if this latter mode can be excited in the presence
of a component of steady electric 6eld normal to its
direction of propagation.

g=
2'LfVd

(20)
Equation (20) leads to the following resolution of q into
real and imaginary parts:

q= (pili/2 fwq) (&G Z(1&F)j, — (21)
with

IV. DISCUSSION OF THE DISPERSION RELATION

The most interesting feature of the (complex) solu-
tions (16) of the dispersion relation between q and c& is
the presence of the "resonant" term 4(pp, /ciii) (pip —pppp)/

(ci'—LIP) which becomes infinite as ci' approaches
I.cop'. It will now be shown that for appropriate values
of the parameters this term causes the real and imagi-
nary parts of q to be of opposite sign, implying a
growing wave solution. It is desirable to modify the
resonant term in Eq. (16) to take account of the fact
that the lattice waves in any real crystal are damped.
Born and Huang' have shown that the effects of damp-
ing are included well enough for many purposes by
replacing orp by o)p —i&co, where p is a damping coeffi-
cient. With this replacement, Eq. (16) becomes

PP, PPP cips+f7—ci
1a 1+4— —4i

pi i& pp —L ( p
—cizppp) Mii
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&
=4(~ /~D) I

(~'—~p') (~'—L~p')+L(v~)'j
—:I:(~'—L~p')'+ (Lv~)'3 (23)

q=4(~/~D)+4(~, / n)z'y '
—: L(ci'—Lcip')'+ (Loci)'j. (26)

To go any further in exploring the form and signifi-
cance of the relation between co and q, we must now
assign values to the parameters involved in it. Available
results of theory and experiment appear insufficient
to determine reasonable values or possible ranges of
values for X) . For the purpose of obtaining a prelimi-
nary orientation as to the possible forms the solutions
(21) of the dispersion relation might take, we make the
unrealistic assumptions that X)„will have the same
value for electrons drift. ing at the high velocity vq as
for electrons drifting at very low velocities, and that
frequencies which enter here are still sufficiently small
and the wavelengths sufficiently large that Eq. (3) is
always valid. Then relations valid for low drift veloci-
ties, low frequencies, and long wavelengths, such as
the Einstein relation between diffusion and mobility )

can be made to provide estimates of possible values for

F=
I (1+&)'+il'j'IP cos(9/2),

G =
I (]+$)P+ gs]its sin (g/2),

6= tan-'L —&/(1+~)$, (—~& 8 &0)
' Reference 6, p. 94, Eq. (8.23).
9 Reference 6, pp. 120—121.

(22)

(23)

(24)
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FIG. 2. Real part of the propagation constant, q versus fre-
quency, co, for three different carrier concentrations and the indi-
cated values of the remaining parameters. Both abscissa and
ordinate scales are linear.
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FIG. 3. Imaginary part of the propagation constant, q, versus
frequency, cu, for three different carrier concentrations (the same
as in I'ig. 2) and the indicated values of the remaining parameters
(also as in Fig. 2l. Here the ordinate scale is logarithmic. Note
also that negative values of Im(q) are plotted upward.

these parameters. The Einstein relation is

pE~T„=eX)„, (27)

p= er/m (28)

Eg is Boltzmann's constant, and T„is the temperature
of the electron distribution, which, for low drift ve-
locities, equals that of the lattice. These expressions
imply

an fm*ngs/rKn——T = fPr t

p =m*ns'/KgT„—.

(29)

(3o)

Now the dispersion relation (21) depends on the
following parameters:

(up, e„, K', n —= /mm, vd, p, r, np, and y.

In Figs. 1—3 we have plotted curves of the real and
imaginary parts of q versus co, as given by the branch
of Eq. (21) associated with the lower signs, for a few
choices of values of these parameters. Because the
largest values of v~ reported" are for electrons in InSb,
and since large values of vg appear to favor the existence
of growing wave solutions, we have chosen parameter
values appropriate to electrons in InSb, wherever
possible. Since reasonable values for 7- at high vq and
for y at low temperatures are unknown, the form of the
dispersion curves for several widely varying choices
of these parameters was investigated and it was found
that the qualitative features of the curves given in
Figs. 1—3 are unaltered by variations of 7 and y over
one or more decades around the values assigned them
in these figures.

"M. Glicksman and W. A, Hicinhothem, Jr., Phys, Rev. 129,
j572 (1963).

The 6gures show that for values of ~ in a range
around top (which range may be broad or narrow,
depending on the values of the other parameters), the
real and imaginary parts of q may differ in sign. With
this sign difference, the approximate solution of the
system of equations discussed here, in which all quan-
tities vary as exp! i(q r &dt—)], corresponds to a wave
growing in amplitude as it propagates. A demonstra-
tion such as the preceding one that a particular system
supports growing monochromatic waves is not su%-
cient to prove that it can support useful amplifying
wave packets. ' Sturrock' has described a method for
determining from the dispersion relation for the system
whether its "growing" waves can be superposed to
form "amplifying" wave packets or whether they are
merely "evanescent" waves. This type of investigation
of the dispersion relation for the system considered in
this paper has not yet been completed. However, the
fact that the growing waves discussed by White' could
be shown experimentally' to be amplifying encourages
the hope that the growing waves in the somewhat
similar system treated here may also be amplifying
rather than evanescent.

It should be noted that the interesting and experi-
mentally realizable ranges of parameters appear to be
seriously limited by the allowable power dissipation.
Relations valid for small drift velocities lead to this
expression for the average rate of power loss per unit
volume from a steady stream of electrons:

Pp Npm*nd, '/r=——f 'npKgT (on. (31)
Inspection of Eqs. (21)-(26) suggests that in order for
growing wave solutions to exist, orD must be larger than
a threshold value of about 4L'"coo. Then to keep the
power dissipation within tolerable limits, even for
microsecond pulses, it is necessary to have 10—'e~D
&10" (=number of atoms/cm'), or Np(10"con ' or
no&10". To obtain growing waves with this limit on
ep, it may be necessary to make p)&1 (so that r and,
hence, cp, can be made large) and/or p((Mp.

It is clear that we need more knowledge of the
diffusive behavior of electrons drifting at high veloci-
ties, as well as of the collision processes which limit
drift velocities and of the damping of optical-mode
vibrations at low temperatures, in order to determine
whether or not the parameter ranges associated with
growing waves are accessible to experiment.
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