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and (r)H/r)T, )r values. Measurement of the shift in
transition temperatures caused by external magnetic
6elds of di6erent orientations to the tetragonal c axis
has provided information on crystalline anisotropy of
the intermediate magnetic state in agreement with the
results from magnetization measurements.

Measurements of the Hall effect have shown that
the number of current carriers is the same in both the
ferrimagnetic and antiferromagnetic states, and this

information has yielded a value of 2.5 eV for the Fermi
energy at absolute zero.
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The spin-wave dispersion relation for a simple uniaxial antiferromagnet is calculated, with inclusion of
volume dipolar fields. The spin-wave spectrum is anisotropic and a degeneracy exists between the uniform
antiferromagnetic-resonance modes and manifolds of short-wavelength spin waves, similar to the situation
in a ferromagnet. The densities of states of these degenerate spin waves are calculated, and are then used
to estimate antiferromagnetic-resonance linewidths caused by paramagnetic impurities having a diferent

g value or exchange coupling to the host spins. Finally, the linewidth caused by surface pits in the sample
i.s estimated.

I. INTRODUCTION

HIS paper is concerned with the effects of the
classical dipole-dipole interaction between mag-

netic moments on the spin-wave spectrum of a simple
uniaxial antiferromagnet. In ferromagnets, it has been
known for some time' that the surface demagnetizing
fields have a profound inliuence on the ferromagnetic-
resonance frequency. Further, it has been shown by
Herring and KitteP that the volume dipolar fields cause
the ferromagnetic spin-wave spectrum to become aniso-
tropic. Anderson and SuhP were the first to recognize
that the surface demagnetizing fields give rise to a region
of the spin-wave spectrum which is degenerate in fre-

quency with the uniform ferromagnetic-resonance mode.
The reason for this degeneracy is that, for spin waves
with wavelengths short compared to sample dimensions

(kL))1), the signs of the magnetic poles on the surface
giving rise to the transverse demagnetizing field oscillate
rapidly in space. The transverse demagnetizing field is
proportional to the number of uncompensated poles and

is, therefore, small. On the other hand, the longitudinal
demagnetizing field is large and leads to a reduction of

*This work was supported in part by the U. S. National Science
Foundation.' C. Kittel, Phys. Rev. 71, 270 (1947); 73, 155 {1948).' C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).' P. W. Anderson and H. Suhl, Phys. Rev. 100, 1788 (1955).

the spin-wave frequencies so that some of the spin waves
become degenerate with the uniform mode. This de-

generacy allows crystalline imperfections4 to mix the
uniform mode (k =0) spin waves generated on resonance
with the plane-wave (kWO) spin waves in the degenerate
manifold and thus gives rise to an important source of
linewidth. Further, it has been shown by Suhl' that the
premature saturation of the ferromagnetic-resonance'
signal is due to coherent spin-wave scattering into the
degenerate modes via the dipolar-anisotropy fields.

It is interesting to speculate about the importance of

similar e6ects in antiferromagnets where there is no net
magnetization and thus no bulk demagnetizing field.

Keffer and Kittel' have indeed shown that the oscillat-

ing transverse moment generated in antiferromagnetic
resonance (AFR) does give rise to a demagnetization
shift in the antiferromagnetic-resonance frequency. This
shift is, however, quite small compared to the ferro-
magnetic case. In ferromagnets 4&/o&=KM, /H, which

may be of the order of unity, where X is some appropri-
ate demagnetization factor, M, the macroscopic mag-

A. M. Clogston, H. Suhl, L, R. Walker, and P. %. Anderson,
J. Phys. Chem. Solids 1, 129 (1957).

~ H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).' R. W. Damon, Rev. Mod. Phys. 25, 239 (1953); N. Bloem-
bergen and S. Wang, Phys. Rev. 93, "/2 (1954).' F. Keffer and C. Kittel, Phys. Rev. 85, 329 (1952).
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netization and H the sum of the external field and
internal-anisotropy field. The corresponding result in
antiferromagnets is bp&/a&=iViM, /H„where now M, is
the sublattice magnetization and B, is the eRective
exchange iield. For Xi3f,=10' Oe, He=10' Oe, 4&/a&

=3)&10 ', which is about one hundred times smaller
than the ferromagnetic resonance results. In Sec. II, we
show that, nevertheless, in antiferromagnets the dipolar
fields do produce an anisotropic spin-wave spectrum
with a degenerate manifold. Section III deals with some
order of magnitude calculations for AFR linewidths
arising from scattering from crystalline imperfections.
It is shown that, in contrast to the ferromagnetic
situation, paramegnetic impurities with a different ex-
change coupling to the host spins may give rise to
scattering from the uniform mode.

With the recent discovery of several antiferromagnets
with resonance frequencies in the microwave range (e.g. ,
RbMnFs, KMnFs, etc.) it is hoped that careful measure-
ments may allow the observation of such dipolar eRects.
Indeed, there is already evidence' of premature satura-
tion of the AFR signal.

II. SPIN-WAVE SPECTRUM

In this section, we treat the problem of determining
the frequency of the kth Fourier component of a small
fluctuation in the transverse magnetization of an anti-
ferromagnet. The dipolar fields are introduced by
requiring that Maxwell's equations be satisfied in the
limit of vanishingly small electric and displacement cur-
rents. ' Ziman' has formally solved the problem of the
dipolar effects on the (k/0) part of the spin-wave spec-
trum in terms of a canonical transformation on the spin-
wave creation and annihilation operators. In the Ap-
pendix, we give an entirely equivalent treatment by
solving for the eigenfrequencies of the coupled spin-wave
equations of motion in the presence of a classical dipole-
dipole interaction.

If Mi and Ms are the magnetizations of the two sub-
lattices, we may write their equations of motion in the
absence of dipolar interactions as

dM1/dt= &Mr XH.ii(1) )

dMs/dt=yMsX H.«(2),

where y is the gyromagnetic ratio and H,«(i) is the
eRective field at the ith sublattice, including the external
field Hp directed along the easy (s) axis, an internal
single-ion anisotropy field, Hz, arising, for example,
from the combined crystalline field and spin orbit inter-
action, and the exchange field experienced by a spin on
one sublattice arising from its nearest neighbor spins
on the other sublet, ttice. Then the equations of motion

H. Van Till and J. A. Cowman, Bull. Am. Phys. Soc. 7, 448
(1962); A. J. Heeger (to be published).

' J. Zunsn, Proc. Phys. Soc. (London) 65, 540 (1952).

(1/y)dpi+/dt
iIMi+—(Hp+Hg+H, )+H, (1+b'Vs)Ms+],

(1/y)dMs+/dt
i/Ms+—(H p Hg H—,) H—,(1+—b'V')Mi+)

(II.3)

where %+=M,+iM„. If we take M+ to vary as
e '"'+'~' and solve the resulting secular determinant, we
obtain the well-known" AF dispersion law:

pp/y=H p& (Hg'+2H Hg+2H 'b'k')" (II 4. )

In the absence of an external field, there exist two
degenerate, oppositely rotating modes for a given wave
vector. The degeneracy is removed by the external field.

We shall now include the eRects of the dipolar fields.
For the uniform (k=0) modes, there is a surface
demagnetizing field —NM, where N is the demag-
netization tensor, and M= M&+Ms. For simplicity, we
assume a spheroidal sample with the easy axis colinear
with the axis of revolution. Then N is diagonal, with
iV =lV„=iV,. For the other modes, (i.e., kL))1) the
transverse component of the magnetization varies
suff'ciently rapidly through the sample for the trans-
verse demagnetizing field to average to zero. The only
contribution is then —E,M, along the s axis. However,
to first order in small transverse fluctuations of the
magnetization M, =M~,—M2, which vanishes. Conse-
quently, in the k/0 part of the spin-wave spectrum,
there will be no surface demagnetization corrections. We
now investigate the volume dipolar interactions. Follow-
ing Kittel and Herring, ' neglecting any currents, we
have the Maxwell equations

V.B=0,
VXH.=0,

where B=H, +4nM and I, is the dipolar field caused
by the spins themselves. If we try plane-wave solutions
of the form

M, =M, (0)e*i~'—"'l (II.6)

where Mi=s(Mr*+3Is )+j(Mrs+Msp), (5) gives th'e

dipolar field as

H, ~ —(4'/k') (k M,)k (II.7)

' T. Nagamiya, K. Vosida, and R. Kubo, in Advances zn
Physics, edited by N. F. Mott (Taylor and Francis Ltd. , London,
1955), Vol. 4, p. 1.

become

dM, /dt yM,
XLHpyH& —(H,/M, ) (1yb'V )Msj,

(II.2)
dM, /dt=yM,

XLHp —Hg —(He/M ) (1+b V )Mij,
where b= as '"; a is the nearest neighbor separation and
z is the number of nearest neighbors. The linearized
equations for small transverse fluctuations in the mag-
netization become
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Now, for the uniform mode, including the surface
demagnitizing Gelds, the equations of motion become

(pi/y)Mi+ Mi+(Hp+H~+H. +X,M,)
+Mp+(H.+EiM,), (II.S)

(~/y) M p+ =M p+ (H p H~—H,—1iI,—M, )
Mi—+(H.+1ViM,) .

The eigenfrequencies of this secular equation have been
given by Keffer and Kittel7 and are

pi/y=Hp~fH~ +2H~(H~+X M )] ~P (II 9)

+HA(H„+2H +8mM, )

v HA (HA+2H )

co, /y

This is essentially the result given in the Introduction.
For the sufficiently short-wavelength spin waves, the
equations of motion, including the volume dipolar Gelds,
are

dMi/Ck=yMiX LHp+Hg —(H,/M, ) (1+b'P)M p

—(4r/0') (k Mi) k], (II.10)

dMp/dt=yMpX LHp —Hx —(H,/M, )(1+b'&')Mi
—(47r/k') (k M,)kj.

The linearized equation of motion resulting from (10)
cannot be expressed simply in terms of M+. The dipolar
terms cause mixing of M+ and M—,i.e., the normal
modes become elliptically polarized. The eigenfrequency
solutions of this 4&(4 secular equation are

(hi/y) =H p'+H/'+2H~/+2H 'b'ht'

+4irM, sin'ei(H~+H b'k')

&(4H pP $2H, 'b'k'+II''+ 2H,H~
+4rrM. sin'oi(Hg+H, b'k') )
+167r'M 'H sin'ei (H/+2Heb'k') )"' (II.11)

where 0~ is the angle between the s axis and the direction
of propagation of the spin wave k. In the absence of an
external field, the complicated result (11) can be con-
siderably simpliGed to give the two frequencies:

coi/y= (H~'+2H, H~+2H 'b'1't')'IP

p&2/y= fH~'+2(Hg+H, b'hp')

X (H.+41rM, sinP8i) $'I' (XI.12)

Notice the interesting result that one normal frequency
is completely independent of any dipolar interactions.
This result can be understood in the following manner.
In the absence of external and dipolar fields, there exist
two degenerate oppositely rotating modes. In the
presence of the dipolar interaction, these two modes (for
a given k) can mix in such a way that M, is always
perpendicular to k and thus the dipolar field vanishes.
All the dipolar energy is then taken up by the other
mode. In Fig. 1, we give schematically, the zero-Geld
spin-wave spectrum. Notice that, except for the patho-
logit. al situation of an in6nitely thin disk, there exist spin
waves degenerate with the uniform mode. An external
Geld, Ho, splits the degeneracy of the two oppositely
polarized modes for a given wave vector and then the

I'IG. 1. Schematic representation of the antiferromagnetic
spin-vrave spectrum in zero external 6eld.

two modes will share the dipolar energy. However, for
the special case of longitudinal spin waves, 01,=0, the
spectrum is just that given by (4) and there are no
dipolar eHects. In general, the transverse magnons,
8~= —,'x, have the largest dipolar energies because for
these magnons k M& is maximum. In Fig. 2 the spin-
wave spectrum is shown with a nonvanishing external
field Lassuming that it is smaller than the "flopping"
field " (2HgH/)"'g.

III. DENSITY OF DEGENERATE STATES AND LINE-
WIDTH ARISING FROM IMPERFECTIONS

Several authors'" " have studied the mixing by
crystal imperfections of the uniform ferromagnetic
resonance mode with the degenerate (or 5) modes. The
importance of aperiodic imperfections is that they give
rise to spin-wave scattering processes which do not con-
serve wave vector. Such scattering from the uniform
mode into the degenerate manifold has been recognized
as playing a central role in ferromagnetic relaxation in
insulators. Sparks, Ioudon, and Kittel" have shown
that the low-temperature linewidth in ultra-pure YIG
may be understood in terms of such mixing via the
dipolar Gelds associated with surface pits. Callen and
his co-workers"" have discovered several mechanisms
for the mixing of the uniform mode with S magnons
through point imperfections, concentrating mainly on
the effects of spatial fluctuations of the spin-orbit
coupling in the disordered ferrites. In this section, we
shall derive the expressions for the relevant densities of
degenerate states for scattering of spin waves out of the
uniform mode by imperfections in antiferromagnets. We
shall then use these results to estimate the AFR line-
width arising from some types of point imperfections
and pits.

The scattering process about an imperfection may be
thought of as a process in which a uniform-mode magnon
is destroyed and a degenerate magnon is created. The

"H. B. Callen and E. Pittelli, Phys. Rev. 119, 1523 (1960).
' C. W. Haas and H. B. Callen, Phys. Rev. 122, 59 (1961).
"M. Sparks, R. I.oudon, and C. Kittel, Phys. Rev. 122, 791

(1961).
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into the degenerate states is then

e=—
2

'=—(V/4v'5)
i
F (k) i

'pkdk, (III.5)

v H~ (HA+ 2He }™0
8.= o

~ H„(HA+ 2He }—Ho

FIG. 2. Antiferromagnetic spin-wave spectrum
for finite external 6eld.

scattering potential is written as

V(k) =F(k)(npnk++nknp+), (III„1)

where F(k) is the strength of the interaction, depending
on the type of imperfection. The 0|0 and no+ are destruc-
tion and creation operators for uniform mode magnons;
they obey boson commutation relations. The n&'s are
similar creation and destruction operators for the ap-
propriate degenerate excitations, The net rate at which
uniform-mode magnons are scattered into a degenerate
state of wave vector k is given by

IV= (2~/&) [[(uk+1, up —1
~

V(k) [uk, up)
~

'
—

( (u —1, u +1
( V(k) ) uk, up) ( jpk, (III.2)

or, using (III.1),

W= (2v/A) ( F(k) ['(up —uk) pk, (III.3)

where nkis the occupation . number of the state k, and pk
is the number of states per unit energy range with wave
vector k. The thermal equilibrium occupation of the
degenerate states is the same as for the uniform mode.
If the degenerate modes are assumed to be in thermal
equilibrium with the lattice, then

W= (2v./k)
~
F(k)

~
pk(up —Np), (III.4)

where no is the thermal-equilibrium value of no. The
relaxation time for scattering out of the uniform mode

where V is the sample volume. The linewidth is related
to the relaxation time by &H= (yr) '

The evaluation of the density of states for the spec-
trum (II.11) is fairly complicated. However, for point
imperfections, the strength of the scattering potential,
F(k), is very nearly independent of k. Then it is not a
bad approximation' to neglect the anisotropic nature of
the spectrum and to assume that all the degenerate 5
magnons lie at the upper limit of the degenerate spec-
trum in k space, i.e., at k, given by

2H, 'b'k '= 2S~IIgM„ (III.6)

where the external field is taken to be zero. The density
of states is

V(2v.)
—'pkdk= V(2v-)

—Ark'b(Ace —Ap~p)dk. (III.7)

Using (II.11) and (III.6) one finds

V(2v.) 'pkdk= (V/2v')(k /2hyH 'b')

X (2H.H~)"'8(k k)dk —(III 8)

This is smaller than the corresponding ferromagnetic
density of states by approximately Hz/H, =10 '—10—'.
This might appear to indicate that the linewidths
arising from impurity scattering are smaller in an anti-
ferromagnet than in a ferromagnet. This is, however,
not the case and in fact the amplitude of the spin motion
for a single antiferromagnetic excitation exceeds that of
a ferromagnet by just the appropriate factor to give the
same order of magnitude for the linewidth for similar
processes.

For extended imperfections, such as surface pits, the
potential strength F(k) may be a very sensitive function
of kR, where R is the characteristic dimension of the
imperfection. In the absence of an external field, (III.S)
remains the correct density of states for the lower
branch of the spectrum. For the upper branch, specializ-
ing now to the case of a spherical specimen where E= 3m-,

the density of states is

where

V(2H, H~) "' k' b(c os8 i—cosg)d(cos8k)dk
V(2v-) 'pkdk=

4v'yh( (2H,H~+2HP b'k') (47',/H, )[2H 'b'k'+ (16v HgM, /3)]}'~'

cospy = [2H pbpkp+ (16v HgM, /3) j/(47rM, /He) (2H.Hz+2H. pbpkp)

(III.9)

(III.10)

In order to write the scattering potential in the form
(III.1) we introduce the antiferromagnetic spin-wave
creation and annihilation operators for the two branches
of the spectrum, nk, nkt, Pk, and Pkt. These operators
obey Bose commutation rules and are defined by

nk=uknk+vt Pkt; bk= vpnkt+upPk, (III.11)
where

for the two sublattices, The aI, 's and bq's are Fourier
transforms of the u s and b s, and the canonical trans-
formation coe%cients (in the absence of dipolar fields)
u~ and e~ are given by

uk' ——-', (1+y(H,+H~)/~ pi(k)
~ }, (III.13)

vk'= '{—1+y(H,+Hg)/i -pr(k) i },
S.*=S—a.ta S'= S+b;tb;—(III.12) where pp(k) is given by (II.4) for zero external field.
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As a typical example of scattering from a point
imperfection with a wave-vector-independent perturba-
tion, we consider the case of a paramagnetic impurity
whose g value is different from that of the host spins.
Then the scattering potential is

K'= PH (gS;* g'S—',*), (III.14)

where the impurity spin has g'&g. Then, for S'=S, and
using (III.11), (III.12), and (III.13) together with the
density of states (III.8), we obtain

r—1 (16~$2~H )—1(g& g)RP2H2

X( 2X, M/H )'i'fs"' (III.15)

where f is the fractional number of imperfections and s
is the number of nearest neighbors. Notice that the
result is independent of the anisotropy field as was
previously indicated. For H, =10' Oe, M, =500 Oe,
II=1040e, g' —g=1, s=8, (III.15) gives a linewidth of
the order of 10 ' Oe per percent impurity. This result
(III.15) is essentially the same as for the corresponding
ferromagnetic scattering.

Another interesting point imperfection scattering
mechanism arises from a paramagnetic impurity which
is coupled to the host spins by a different exchange
integral J.Such an imperfection is ineffective in scatter-
ing uniform mode spin waves in a ferromagnet because
an isotropic exchange interaction commutes with the
total spin 5 [S'= (P,S;)']of the sample which is a good
quantum number. The total spin of the sample decreases

by one unit when a uniform mode magnon is destroyed
and thus exchange impurities cannot relax the uniform
mode. This argument is no longer valid for an anti-
ferromagnet because the crystalline field anisotropy does
not commute with S; thus the anisotropy allows an
exchange imperfection to relax the uniform mode. For
such a process the scattering potential may be written

K'=2J Qg(S,'Sg) —2J' Qg(S ~ Si), (III.16)

where the sum over 8 represents a sum over the nearest
neighbors of S, the impurity spin. For S =S, this gives
a relaxation rate

r—1 (s2/2H~2/7rPPpH &&) (Jl J)2

X (2X,M,/H, )'i'fs", (III.17)

where s is the number of nearest neighbor spins for a
given spin. Notice that the linewidth arising from this
process vanishes as the anisotropy field tends toward
zero. For a typical antiferromagnet such as MnF2,
where H~=104 Oe, He=10' Oe, M, =500 Oe, a=8 and
J'—J=10 "erg, this gives a linewidth of the order of
10 Oe per percent impurity.

Sparks, Loudon, and Kittel'3 have calculated the line-

width arising from spin-wave scattering via the dipolar
fields associated with surface pits in ferrimagnetic
yttrium iron garnet. For a spherical YIG sample,
assumed completely convered with hemispherical sur-

face pits, their result for the linewidth is AB

= 2M, (R/ro), where R is the mean pit radius and ro the
sample radius. For A=10 4 cm, r0=10 ' cm, this gives
a linewidth of several Oe. For an antiferromagnet, the
same mechanism may occur with some differences in
detail. For example, the scattering may mix the two
spin-wave branches. Also, there is only a transverse
moment (generated at resonance) to which the dipolar
fields associated with the pit may couple. This moment'
is of the order of (H~/H, )"'M, and we might expect this
to be substituted for M, in the above expression valid
for ferromagnets. We shall see that this is indeed true
for one type of scattering.

After rather lengthy calculation similar to that of
Appendix A of reference 13, the two scattering poten-
tials are found to be

Xi'= [8m'R'gPM, (No+i&p)/3V] Q (ui+i&&)
k&0

X[ji (kR)/kR] («t~&+a&t«), (III.18)

X2' = [8s'R'gPM » (uo+ i&0)/ V] P sin'Og (Nl&+ i&&&)

k&P

X[ji(kR)/kR] (a'otax+a i "no), (III.19)

where ji(kR) is a spherical Bessel function. Xi' repre-
sents scattering to the lower branch which isotropic in
the absence of external fields. The potential X2' is for
scattering to the anisotropic spin-wave branch. Using
the density of states (III.9), the linewidth arising from
BC&' is given by

DH = 2m.M, (a/r )(H0, ,/8~M, )'I'

Xcos'[(R/a) (87rHgM, /H, 2)]. (III.20)

Then for R= 10 ' cm, as in the experiments by Johnson
and Nethercot" on MnF2, r0=10 'cm, and M, =600 0e,
this gives a linewidth of about 0.1 Oe. This is a rather
small contribution to the linewidth because the de-
generate modes occur at ~k~ =10' cm ' and are not
spread over an appreciable region of k space. Then,
kE))1 and the scattering matrix element is small be-
cause we are in the asymptotic tail of the Bessel func-
tion. It is important to have degenerate states near
kE=1, where the matrix element is maximum. Such
states usually exist for the anisotropic spin-wave branch.
Then, using X2' with the appropriate density of states,
(III.8), we find the result

AH = (~M,/8) (R/ro) (2 H~ /H)' '.i(III.21)

For the above parameters, this contributes several Oe to
the linewidth.

Ke have seen that imperfections in antiferromagnets
may be about as effective in broadening the AFR as
they are in ferromagnets. However, for antiferromagnets
with reasonably large anisotropy fields (H&=10'—10'

'4 I'. M. Johnson and A. H, Neth':ot, Phys, Rcy, 114, 705
(1959).
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Oe) as in MnFs and FeFs, the experimental indica-
tions"" are that the linewidths are of the order of
several hundred to several thousand Oe, much greater
than any of the imperfection widths calculated here.
Elsewhere, " it has been shown that various magnon-
phonon processes may be important relaxation mecha-
nisms for such substances where the resonance frequency
is in the far infrared. However, several antiferromagnets
have recently been found"" (e.g. , KMnFs, RbMnFs)
with su%ciently low anisotropy fields to bring the
resonance to the microwave region. For these materials,
the linewidths may be suKciently small that imperfec-
tions can play a dominant role at low temperatures as
they do in yttrium iron garnet.

ACKNOWLEDGMENTS

This work was mainly done while the authors were at
the University of California, Berkeley. They would like
to thank Professor C. Kittel for his encouragement and
advice and Professor A. Portis and R. Orbach for
several interesting discussions.

APPENDIX

In this Appendix, we derive the dispersion law (II.11)
using the microscopic form for the dipole-dipole
interaction,

&o= 'gp' 2 L(-Si S-)

and substitute them into (A1) to give

( 3 Ri+Ri-)
Xt ~gPsS Q ~

1—— ~e'R'~(2u j'a +1)
2 Rsl

and

,'(R—( —/Rt)'agape' "+c.c. R(—', (A3)

30t s =gP'S Q ((&gby+astbst) (1 s sR—)
—R(+)e

——', (agbg+Ri 'e ' '"'+c.c.)jRg
—', (A4)

where "c.c." denotes complex conjugate, and in (A3)
the sum over / means summation over all sites on one
sublattice and in (A4) indicates summation over all
sites. If we replace the sums over lattice sites by integra-
tions and integrate by parts, we obtain

30t = 2~gPM. Z~(k k+/k')&~'o~+ s'(k /k)'o~~-~
+-', (k+/k)sag'a g',

30' =27rgpM, p&(k k+/k')b—„tb„+-'(k /k)'b, t—b ~t

+-,' (kt/k)'blab g, (A5)

Xt g
= 2s.gPM, QI, ,'k k+k '(a-gbg+agtbg~)

+(k /k)'ahab gt+(k+/k)'astb g.

The complete Hamiltonian including exchange, anisot-
ropy, external field, and dipolar terms may then be
written as

where R& is the vector joining the spins at sites l and
ns on a cubic lattice. We split this interaction into three
parts,

3('D =30t+3('~+30t s, (A2)

where Kg and Kg are the interactions among the spins
within a given sublattice and 8Cqq is the interaction
between the sublattices. We introduce the creation and
destruction operators uq", a~, bst, and bk by (III.12),

and

A(k)= J2Ss+gPH~+2 agPM, kk+k

8 (k) = D'Sag+ m.gPM, k—k+k—',
C(k) =mgPM, (k

—/k)', (A7)

—3(S,.R,~)(S .R,„)R,~—sjR,~—' (A1)
3C =p g{LA (k) —gpH)baths+ LA (k)+gpss jag'ag

+&(k) (agbg+ astbgt)+ C (k)asug

+C*(k)o&to &t+C(k)b&tb&t+C*(1 )b&b &

+2C(k)agb gt+2C*(k)agtb g), (A6)
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v.= (1/s)Z«'"',

the last sum being over all nearest neighbors to a given
spin. The Harniltonian (A6) is then easily diagonalized
to give the spectrum (II.11).


