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about 400 in the melt. The electrical conductivity of
the solid" at the melting point is 3)(i0 ' 0 ' cm ' and
the liquid" is 8.4 0 ' cm ' an increase of about 3000.
Our observed increase in Tt(Li) is also large, but not
as large as might be expected. Ke cannot say much else
about molten LiF.

V. CONCLUSIONS

We have obtained jump frequencies of lithium and
fluorine ions in a I.iF single crystal over a wide tempera-
ture range with an accuracy comparable to conductivity
and diffusion methods. As an added advantage, both
quantities could be obtained for the same crystal by the

same set of measurements. It should be possible to ex-
tend this work to doped LiF crystals, or to other
crystals containing nuclei with small quadrupolar in-
teractions and reasonable magnetic moments.
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Expressions for T1 and T2 have been derived for dipolar relaxation via atomic diffusion using the general
theory of nuclear spin relaxation. General methods of evaluating the autocorrelation functions of various
terms in the dipole-dipole Hamiltonian are discussed, and cubic symmetry requirements are given. A
random walk model is used for the calculation, but rough estimates are made of the effects of correlation in
direction and time of successive jumps of atoms for the vacancy mechanism of diffusion; if account were
taken of these correlations, the derived relaxation times might change by a factor of nearly 2. Detailed
computations are made only in the limits of high and low Geld. The random walk model yields an expression
for T1 in the high-Geld limit identical to that given by Torrey. Zero-frequency spectral densities needed for
computation of T2, and also T1 at low Geld, are expressed as lattice sums involving only the dipolar inter-
action and the sum of the probabilities of rt-step random walks between lattice points (an extension of the
Polya problem). Detailed computations of T& and Ts have been made for two or more species of spins
diGusing on an NaC1 or fcc lattice. The angular dependence of T& and T2 may be large for the NaC1 lattice
in the high-Geld limit. The agreement with Torrey's theory for T1 in the fcc lattice is good.

Tt (coP )Te(i+coo t )

Ts—'= (co,s)r, &&-,'L1+ (1+&ossa.') 'j. (2)

Here Mo is the resonance angular frequency, v., is of the
order of the jump time for diffusion, and co; is the
strength of the interaction of the nucleus with the per-
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s C. P. Slichter, PrAzciples of Magrtetzc Resortamce (Harper and
Row, Inc. , New York, 1963).

I. INTRODUCTION

'HE possibility that nuclear magnetic resonance
would be a useful technique for the study of

atomic diffusion was suggested in the early paper of
Bloembergen, Purcell, and Pound' and such studies
have been made on a number of solids. The simplest
theory of relaxation due to diffusion can be expressed
by the formulas'

turbation responsible for relaxation, in frequency units.
These expressions are based on the assumption of an
autocorrelation function for the interaction of the
simple form (co,s) exp( —t/r. ), as discussed in Sec. 5.7
of Ref. 2. They are applicable only to the "motionally
narrowed" region of temperature; that is, where

. This is the only region we will consider in this
paper. For nuclei having spin ~ or a small electric
quadrupole moment, relaxation occurs via the magnetic
dipolar interaction between spins, and ~; is of the order
of the rigid lattice linewidth, typically a few kc/sec.
If relaxation occurs because of electric quadrupolar in-
teractions, co; may be many Mc/sec. For systems in
which to; is reasonably well known, Eqs. (1) and (2)
can predict ~, from T» and T2 measurements to within
an order of magnitude. For more precise results, it is
necessary to use a more complicated correlation function
based on a detailed model of the microscopic diffusion
process. Ke will develop such a formulation in this
paper. Ke restrict ourselves to the case of relaxation
via magnetic dipolar interactions, because the form and
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magnitude of these interactions are well known, at
least for light nuclei, where electron-coupled spin inter-
actions are negligible. In principle, this formulation
couM readily be extended to the case of quadrupolar
relaxation due to vacancy motion, but this refinement of
the simple theory did not seem warranted for that case,
in view of the relatively poor knowledge of the quadru-
polar interaction strength.

Torrey3 has developed a detailed theory of dipolar
relaxation via translational diffusion, based on the
BPP theory of relaxation' and applicable to a single spin
species in a bcc or fcc lattice. Since then, the theories
of BPP and Kangsness and Bloch4 have been genera-
lized and applied to complex systems. Ke will use the
generalized theory, " applied to two or more spin
species diffusing in a NaCl lattice and also in a fcc
lattice. Our starting point is similar to that of Torrey,
but our method of calculation is diBerent, being re-
stricted to solids and designed to predict the large
angular variations of 1', and T2 which have been
observed. v

it will return once or more to the same spin (or to the
other spinif theyarebothon thesamesublattice) before
wandering away to infinity. The time for these inter-
changes is small compared to the time the two spins
must wait before another vacancy comes by, and all that
matters is their relative positions after the vacancy has
wandered away; the precise trajectory of the vacancy
is irrelevant. Probabilities for various relative displace-
ments of two spins resulting from the visit of a passing
vacancy might be calculated by considering all possible
trajectories of the vacancy, but to use these probabilities
to compute a relaxation time would be a formidable
task.

Instead, we use a simplified model of the solid in
which nuclei are assumed to diffuse about independently
on their appropriate lattice, with a jump probability
or jump frequency v which is constant in time and
independent of their previous history. ' Estimates of the
e8ect of correlations will be given in Sec. IV. Torrey's
theory also neglects correlations, and his diffusion model
is similar to ours.

II. GENERAL METHOD

A. Model for Diffusion

A solid typically contains a fraction of vacant sites
which is so small that the number of vacancies close to
each other is negligible. Thus, the probability that a
vacancy will jump in a given direction is independent of
its previous history. This is not true for the atoms which

disuse as a result of vacancy motion; for example, an
atom which has just jumped from one site to a neighbor-

ing vacant site has a probability C ', where C is the
like-neighbor coordination number of jumping im-

niediately back to where it came from. This correlation
between successive jumps reduces the diffusion coeKci-
ent relative to that expected for a purely random walk

process by a factor of the order of 1-C '. The effect of
correlations on the diffusion coefhcient has been cal-
culated precisely by a method due to Bardeen and
Herring and Lidiard. '

The calculation of these correlation effects on spin
relaxation is a more dificult problem because we are
concerned with the relative motion of pairs of nuclei.
To make a precise theory, explicit account must be
taken of the vacancy mechanism. A relative displace-
ment of two nearby spins occurs when a passing vacancy
interchanges with one of them. The vacancy jumps on
very rapidly, but there is a significant probability that

sH. C. Torrey, Phys. Rev. 92, 962 (1953); 96& 690 (1954);
henceforth referred to as Yorrey.

'R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953).
'A. Abragam, The Principles of Nuclear Magnetism (Yhe

Clarendon Press, Oxford, England, 1961).
'A. G. Red6eld, I.B.M. J. Res. Develop. 1, 19 (1957).
r M. Eisenstadt, preceding paper, Phys. Rev. 132, 630 (1963).
J. Bardeen and C. Herring, in Imperfections in Eeurly Perfect

Crystals (John Wiley 8z Sons, Inc. , New York, 1952).
A. B. Lidiard, in Handbuch der Physik, edited by S. Fliigge

(Springer-Verlag, Berlin, 1957), Vol. 20, p. 327.

B. Theory of Relaxation

Abragam' has given a concise treatment of the gen-
eral theory of relaxation via the dipolar interaction and
we will use his results as our starting point. Ke will
restrict our treatment to cubic crystals and assume
there is no static quadrupolar interaction or quadru-
polar relaxation. Ke suppose that there are two nuclear
species present on the XaC1 lattice which we label I
and 5, each on its own fcc sublattice. The case of a
single species on a fcc lattice can be immediately ob-
tained from the NaCl results. YVe neglect the possibility
that measurements of T~ for one species will produce
transient nuclear polarization of the other species. A
calculation by us of these cross relaxation effects in-
dicate that for typical static magnetic fields used in
relaxation experiments they are likely to be negligible.

The Hamiltonian of the spin system consists of the
usual Zeeman interaction plus the sum over pairs of
spins of the classical dipolar interaction. The dipolar
interaction between two spins i and j can be most
conveniently written as the sum

/gal, =g P, .(s)g, .(e)

The sum over q is from —2 to+2, and A&'l is a spin
operator given in Abragam, "which connects spin states
of the spins i and j differing by kg in total angular
momentum (nz, +m, ). The F«& are given by

P;,"l=r;;—'(1—3cos'8;;),

F;Pt'=r;, 'sin8, , cosg, , exp( iq, ,), —

'0In this paper v denotes a jump frequency in sec ', and co

denotes a resonance frequency in rad-sec '.
» See Ref. 5, p. 289.
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F"&"=r" ' sin'0 exp( —2iy")

P . .(—&I) —P . .(e)+ij = ij

(6)

I . .(a) (o))= G,,«) (r)e '"'dr (9)

Before @cwriting expressions for the relaxation times,
it is convenient to use the fact that identical spins will
move in an identical way in a statistical sense. This
means that 6,,«) and J, (&) will be the same for all
equivalent pairs of spins i and j. Thus, to calculate
relaxation times for the I species we need know only
the spectral density functions

y(a) —P7J . .«)

~(c)—PTJ.
&

«)

(10)

where spins i and j are any two I-species spins, k is an
S-species spin, and for convenience we multiply by E,
where X is the total number of I sites (or S sites). Then
the relaxation times of the I species are given by

2;=-;~"~I(I+1)f.(~ (-.)+~ (2-.))
+yz'ys 0,'$(S+1)fs I &

sX( )(o)z o)s)

+ X"s'(~r)+ ~X"'(o&r+o)s) } ) (12)

Ts '=yr4I&'I(I+1) fr

XI-:g&)(0)+.:-g&)(.,)+-,g& )(2,) }

+yr2ys')rz'S(S+1) fsI —',X('&(0)+~'sx&')(o)z —o)s)

+-,'X&')(o)z)+-', X&')(o)s)+-s,X&'&(o)z+o)s) } . (13)

Here I, q z, o)z, and fz are the spin, gyromagnetic ratio,
resonance frequency, and fractional isotopic abundance
of the I species; similarly for the S species. In comput-
ing sum and difference frequencies orz~coq it is impor-
tant to assign opposite signs to ~z and ~8 if yz and Vq are
of opposite sign. Expressions for the relaxation times of

Here r;;, 0„-, and cp;; are polar coordinates of the vector
r;, connecting positions of spins i and j; the polar axis
is the magnetic field direction and the azimuthal plane
is arbitrary. Strictly speaking, F«) is a lattice operator
and we should solve the lattice Hamiltonian to deter-
mine its properties. Since this is impossible in practice,
we treat F«) as a classical quantity which varies
randomly as the spins i and j move about the lattice.

The relaxation times are obtained in terms of correla-
tion function of the Ii(~), defined by the equation

G,,(a) (r) —(P,,(a) (t)P,,((()*(t+r))

Here F,,«&(t) is the value of F,;«' at time t, and the
average is carried over all time t, or equivalently over
an ensemble. The nuclear spin relaxation times are
given by certain sums of the Fourier transforms (spec-
tral densities) of the G'", defined by

the S species are obtained by reversing I and S. Equa-
tions (12) and (13) are obvious generalizations of Eqs.
(77), (88a), (79), and (89) in Abragam. "The formidable
appearance of (12) and (13) is somewhat misleading;
to the approximation we shall use, the calculations of
the various terms are all quite similar, and many can
be neglected.

The central objective of this work is to calculate the
correlation functions G(r) or, more precisely, their
Fourier transforms. We note 6rst that lattice vibrations
can be ignored. It is well known that lattice vibra-
tions produce negligible relaxation in themselves;
thus the dipolar interaction between jumps can be re-
placed by its value averaged over many lattice vibra-
tions, since the jump frequency is always slow compared
to the lattice frequency. This average interaction is
equal to the interaction the spins would have if they
were sitting stationary on their equilibrium lattice
points. '3 Thus, we assume that the spins are stationary
between jumps.

We will work in a coordinate system in which spin i
of the I species is 6xed at the origin (we will call this
the refererrce spin) and the other spin jor t'r moves about,
one lattice spacing at a time. If we wish to calculate
g«)(o)), we consider the other spin (which we will call
the rzzoz)ilg spil) to be jumping about on the I lattice,
one of whose points is the origin. In this relative coordi-
nate system the probability p, that the moving spin will
jump is p, =2~z, where vz is the jump probability or jump
frequency for a single I spin in the usual fixed coordinate
system.

To calculate X«) (o)), the moving spin k is con6ned to
the S lattice, which is displaced from the origin or
reference spin. The jump probability in the relative
coordinate system is t(=rz+) s. In what follows, we
will not explicitly discuss calculations of the X«) since
they are similar to those of the 8«).

If we denote points on the I lattice by / and m we can
express the correlation functions as

G«)(r) =P P((t)p, «)P(t, t; rl, t+r)P„«)' (14).
Here Fi'" is equal to F,;«&(r,;) for r;;= ri, Pi(t) is the
probability that the moving spin occupies the point 3

at time t, and F(t,t; rzt, t+r) is the conditional pro-
bability of 6nding it on nz at t+ r if it was on / at time t.

The general expression (14) simplifies considerably in
in our model which ignores correlations. The probability
of occupancy of all points is the same, so

F((t) =I&r '.
Since the direction of successive jumps is random, and

'~ See Ref. 5, Chap. VIII.
'3 This true to second order in the rms lattice vibration ampli-

tude only for cubic crystals, provided correlations in the motion
of neighboring atoms are ignored. This follows quite generally
from the fact that the dipoiar interaction Xs(r;,) obeys the
equation V,rx;;(r;;) =0.



M. EISENSTADT AND A. G. REDFIELD

the jump probability is time-independent, we can re-
write the conditional probability as the sum

P(l,1; m, 1+r)=p p„(r)P„(ri„).

Here r~, 8~, yE are polar coordinates o$ the vector r~

connecting the reference spin with the point I; the polar
axis is the field direction. The method of evaluating (19)
is discussed in Sec. III.

Here p„(r) is the probability that the moving spin will
make exactly n jumps in a time r, and P„(ri ) is the
probability that a random walk of exactly n steps will
end on ni if it started on l. P„(ri ) is a function only of
the distance r~ between l and ns, and is equal to the
number of e-step paths connecting l and m, divided by
C", the total number of e-step paths starting from /.

In calculating P„(ri ) for the like-neighbor case, we do
not exclude paths through the origin, even though
these are physically impossible. This greatly simplifies
the calculation, and probably does not affect the final
results significantly. Of course, the sum over l and m
in Eq. (14) excludes the origin. The probability p„can
be shown to be the eth term of the Poisson distribution"

p„(r)= (r&(()"exp (—p r)/n!

The Fourier cosine transform of p„ is"

00 »+1

5 ((p,u)—=2 p„(r) cos(prdr= —
~

0 &((E1+G& /p,

where the usual binomial coefficient notation is used.
The F„can be reduced" to the analytic expression

P„=2u-'cos$(n+1)&P]cos"+Q, (18a)

where &P
= tan-'(cp/p).

Combining (9) and (10) with (14)—(18) and assum-
ing G«'(r) is an even function of r as required by the
principle of microscopic reversibility, we obtain

8("(~)=Z ~-(~,~) Z P-(ri-)Fi-"', (19)

where F~ «) is an abbreviation for the real part of
F~(&'F (&)*. Only the real part of F~(')F «'* enters into
the sum (14) since its complex conjugate F «&F((p&*

occurs with the same coeKcient. This latter term cor-
responds to the inverse (or time reversed) path and
both paths will have equal probabilities at equilibrium.
The F~ «) are given by

Fi~(Pi = (1—3cos'Oi) (1—3cos'8 )//riPr„P
& (2O)

Fi~"' ——sin0icos8(sintI( cose cos(ppi —
(/& )/ri'r ', (21)

Fi (@=sin'Oisin'8 cos(2@i—2y )/riPr~'. (22)

'4%. I'eller, An Introduction to I'robability Theory and its
Applications (John Wiley R Sons, Inc. , New York, 1958}.

'~ A. Qrdelyi, Tables of Integral Transforms (McGraw-Hill Book
Company, Inc. , New York, 1954},Vol. 1, p. 14.

"Equation (18a) can be obtained if the sum is replaced by
', / {1+&'&0/v)"+'+{1 -&~/&'l"+'5—

C. Symmetry

It is useful to state cubic symmetry requirements on
T» and T2 before proceeding. Any relaxation rate will
have the form

3

Ti—', Tp
—' ——Ci+Cp P cos'f;, (23)

where cos $; is the ith direction cosine of the magnetic
field with respect to the crystal axes. This form follows
from the fact that the angular part of the F& ") can
be represented as a vector function of r~, r and Ho.
For example,

Fi "i= (ri'Hp)(1' Hp)(ri&&Hp)
' (r XHp)/ripr„'Hp4 (24)

If we rewrite (24) in Cartesian coordinates coinciding
with the cubic axes, only direction cosines of Hp appear,
and only up to the fourth power. Any cubically sym-
metric sum of the F~ '" such as 8«) can contain only
even powers of the direction cosines of Hp because of
reQection symmetry, and all such sets of direction
cosines reduce to the form (23).

Turning to the limit of high temperature, it is well
known that in this limit T»= T2. It does not seem to
have been stated in the literature that in this case T»
and T~ are independent of angle if there is cubic sym-
metry. (For noncubic symmetry neither statement is
true. ) The relaxation times approach constant values
independent of Ho when the resonance frequency is
small compared to the jump frequency. Thus we first
study how the magnetization behaves in zero external
field, and then carry the result for zero Geld over to
finite field. Suppose that at t=0 the Geld is turned off.
Then the magnetization is expected to obey a linear
equation:

dM/dh= —WM. (25)

III. METHOD OF CALCULATION

Ke now come to the heart of the problem, which is
the calculation of the spectral densities 8' and X. Ke
achieve relative ease of calculation by restricting our
calculation to solids, and by avoiding the domain where
cp/&((=1. We use two different methods of calculation,
one for the high frequency region -((p/p))1) and another

Here lV is, in general, a tensor; it is a scalar T» ' for a
cubic crystal. Thus, in zero field T» is isotropic. In
finite field the usual terms yM&(Hp+WMp are added,
but Ti will not change (and thus will remain isotropic)
as long as yHp is much less than the inverse of the cor-
relation or jump time. In the same limit this argument
shows T»= T~.
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for the low fr@-quezscy region (o&/fz((1). The &p occurring
in the previous sentence refers to those frequencies
which appear as arguments of the spectral densities in
Kqs. (12) and (13), and may be multiples, sums, or
differences of ~z and co8, or zero.

In the low tem-perature limit, where &uz+pps/zz))1, the
high-frequency approximation is used to calculate Tj
while the low-frequency approximation is used to cal-
culate Ts. The latter statement follows because g«& (0)
))8"&(p&) if o&))p. Of course, the present theory is only
valid for T2 in the "motionally narrowed" limit, in
which T2 is considerably greater than its rigid lattice
value. At high temperature, defined by the condition
cpz+o~s/zz((1, the low-frequency approximation is used
for both T~ and T2. At intermediate temperatures the
spectral densities might be interpolated with some
function similar to (1). We will not discuss the inter-
polation procedure further, but we remind the reader
that any interpolation must be consistent with sum
rules such as Eqs. (71) and (73) of Torrey. The inter-
mediate temperature region can also be treated syste-
matically using (18a), but the labor involved seems
unjustified in view of the uncertainties introduced by
correlation eGects, as discussed in Sec. IV.

2p
g(P)(oi) — P P&&(Pl C'—i Q O)P& (Pl

QP lm
(26)

To get (26) we used the fact that for &p))zz, Pi(a&)
= —Fs(o~) =2@/co'. The superscript on the second sum
is to indicate that the sum is only over points l and nz

which are nearest neighbors to each other. Equation
(26) is identical to Torrey's Eq. (76).

The sum in (26) has been evaluated for two field
orientations and the results are given in Table I. The
first summation was carried over points / which are
erst through third neighbors of the origin, while the

TABLE I. Lattice sums needed to evaluate spectral densities in
the limit of high frequency. The numbers given in this table corre-
spond to app times the sums in the curly bracket of Eq. (16).Here
ap is the nearest neighbor (Na to Cl) distance.

Sum given

&o'( '/2p)8"'( )
(like neighbor)
ap (aP/2p) X«) (ar)
(unlike neighbor)

Qrientation q =0

[100] 0.98
LI10) 1.36
$100$ 13.7
$110] 3.82

0.248
0.206
0.087
1.19

0.86
0.86
4.75
3.64

A. High-Frequency Approximation

It will be seen from (18a) that in the limit &p/zi))1,
&p(rp) and Fi(&p) are much greater (by a factor cp'/p'

or more) than 5 (cp) for rz) 1. The sum of P„(ri )Fi & pl

can be shown to decrease with increasing e, thus, only
the terms with rz=O, 1 in (19) need be retained. Since
Pp(r&~)=5i~, and Pi(r&~) =C ', if and only if I and m
are nearest neighbors, we have

double sum was carried over all pairs l and ns for which
either l or m is a nearest neighbor to the origin. The
values in Table I are probably a few percent larger than
the sum over all lattice points. The value of the sum
for any orientation can be found using (23) if its values
for two orientations are known.

where
Z(ri„)=P P(ri„).

(27)

(28)

It is interesting to discuss the physical meaning of
the quantity Z(ri ). With the aid of (16) and (18a)
we find

Z(ri„)=zz P(l,O; m, r)dr. (29)

Thus, Z(r&„,) is the jump frequency multiplied by the
average time a randomly walking particle spends on
point m after initially being placed on point l. In other
words, Z(ri ) is the average number of times a particle
will visit m, if it randomly walks from l.

Z(r) has been evaluated'r directly (see Appendix A)
for r =0, %2up, and 2ap (where ap is the Na to nearest Cl
distance) and it is found that Z(0)=1.347; Z(v2ap)
=0.347; and Z(2ap)=0. 231. For r&2ap we used the
asymptotic form Z(r) =3ap/2rrr which is obtained from
the fact that for large ri, P(l,0; m, r) must be a solution
of the diffusion equation:

P(l,0; m, r)=2aps(4wDr) '"exp( —r'/4Dr) . (30)

Setting the diffusion coeKcient equal to D= —3ao'IJ, , and
using (29), we get the asymptotic result. This approxi-
mation differs from our directly calculated result by
only 3/o for r=2ap.

Using these values of Z(r), the sum (27) was obtained
for q=0 only and for two field orientations. The sum
was evaluated point by point for the 6rst three sets of
like and unlike neighbors of the reference spin; the
important ( 30%) contribution of more distant points
was obtained by averaging over field orientation and by
converting lattice sums to volume integrals. Negligible
error is probably introduced by these approximations;

"Calculation of Z(0) was discussed by G. Polya, Math. Ann.
84, 149 (1921).Montroll has shown analytically that Z(0) is given
by an integral which has been evaluated by G. N. Watson and is
equal to 9LI'($)g'(2'+'s') '=1.3446610732. See E. W. Montroll,
in A pplied Combinatorial Mathematics, edited by E.F. Beckenbach
LJohn Wiley 8r Sons, Inc. , New York, (to be published)g. Montroll
also gives Z(0) for the bcc and sc lattices, and gives an analytic
integral form for Z(r). Evaluation of Z(r) to the accuracy required
here is probably more easily accomplished with the approximations
described in present article than with these integral forms.

B. Zero-Frequency Approximation

In the limit of zero frequency all the F„(&u,zz) approach
the same value 2/zz. Then (19) can be rewritten as
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most of the orientation dependence comes from the
contribution of points nearest the origin.

These approximations are detailed in Appendix A;
the results of this calculation are (ao'p/2)d"& (0)=2.71
and 3.27 for Ho in the L100] and L110] directions,
respectively, and (ao'p/2) X"& (0)= 12.76 and 4.44 in the
$100] and L110] directions.

and
2 r =yr4b'I (I+1)fr, (33a)

A s yr'ya'AS (S+——1)fs. (33b)

The 0«' and X«' must have angular variations of the
form (23), so that their angle average is 0.8 times their
value for HI& in the L110]direction plus 0.2 times their
$100] direction value. This fact with Eq. (31) can be
used to check sums such as those of Table I.

IV. EFFECT OF CORRELATIONS

So far we have calculated T» and T2 for a simple but
slightly unrealistic model characterized by jump pro-
babilities vz and vz. It has been implied that the theory
developed would be reasonably accurate if the true
jump probabilities were used for v& and v8. By true
jump probability, we mean the average number of
jumps per second which an atom makes. This is the
quantity inferred directly from ionic conductivity meas-
urements, and is equal to the vacancy jump probability
multiplied by vacancy concentration. We now discuss
qualitatively the validity of this assumption for va-
cancy-induced diffusion (similar remarks apply to inter-
stitial diffusion), and estimate the corrections which
must be made in order to take account of the correla-
tions in the probabilities of successive atomic jumps.

Correlations in the directions of successive jumps are
known' to reduce the diffusion coeKcient for the fcc
lattice by a factor of 0,78 relat;ive to the random walk

C. Low- and High-Temperature
Approximations

The low-temperature limits for T» and T2 are readily
obtained by substituting the above results and Table I
into Eqs. (12) and (13).

The high-temperature limit requires more discussion.
Since T» and T2 are isotropic, field angular averages of
the 8'~' and X") can be used. In Appendix A we show
that the values of J"g «', averaged over field orientation
(but keeping r& and r constant) are given by

5(p, &»)="(p, o&)= ~~(p, &»)

= (-', cos'n&„——,')r&—'r„—', (31)

where n& is the angle between r& and r„. Since (8"),
(0&'&), and (0"&)are in the ratio 6:1:4,we obtain from
(12) and (13),

T,—'= T2
—' ———'Ar(d"&(0))+-,'A8(x"'(0)), (32)

where

value. These correlations arise because once a vacancy
has interchanged with an atom there is a significant
probability it will interchange with the same atom
again, and if so it is likely to return the atom toward
the general direction from which it came.

These directional correlations are also important for
nuclear relaxation, but there is another, possibly more
important, correlation which is irrelevant for diffusion.
Atomic jumps have a greater than random tendency to
be bunched into groups of two or more, each group
being produced by a single vacancy. In nuclear relaxa-
tion we are interested in the time scale for successive
jumps since we deal with temporal correlation func-
tions, and this bunching effect must be taken into
account.

First, consider the motion of a single spin j caused by
a single vacancy. Suppose the vacancy has walked
randomly from some distance and has jumped to the
site occupied by spin j displacing it. The probability
per unit time of the initial displacement is very small,
being of the order of v,/X, where & „is the vacancy jump
rate; but subsequently there is a high probability (of
the order of 4) that the spin j will be displaced one or
more times by the same vacancy before the vacancy
diffuses away to infinity. We call the individual spin
displacements "jumps, " and a series of such displace-
ments produced by a single vacancy an "encounter. "

It is of interest to know the average number of jumps
per encounter. Despite the differences between this
situation and that considered above in connection with
the zero-frequency approximation, it can be shown that
the average number of jumps per encounter is just the
quantity Z(0)=1.347 mentioned there and calculated
in Appendix A. This means that a spin j, once displaced
by a vacancy, will be displaced an average of 0.347
times again by the same vacancy.

These subsequent jumps are likely to occur close in
time after the initial jump (the probability that the
vacancy will return to spin j after the vacancy makes
100 jumps is only about 0.02). In most cases, only the
total displacement per encounter will enter into the
result; the position which a spin may occupy between
jumps during a single encounter has negligible inhuence
on G;;«& because the spin spends so little time (of
order 10/v, ) at such an intermediate position, compared
to the time ()10'/&.) it spends between encounters.

During an encounter a spin may be displaced by one
like-neighbor distance %2ao ', or it may be displaced more
than this distance or jump back to its original position.
Probabi]ities for these various displacements might be
computed along the lines outlined by Bardeen and
Herring, but instead we may guess that the probability
of zero displacement is about 0.1, that of unit (%2ao)
displacement is about 0.8, and the probability of more
than unit displacement is about 0.1. A spin having a
jump frequency of &r experiences &r/1. 347 encounters
per second; of these only about 0,9 vz/1. 347 result in a
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net displacement of the spin, and most of these dis-
placements are unit displacements.

Turning now to the effect that these correlations in
jump probabilities have on the spectral densities 8(~)

and X«&, we consider 6rst the X«), which result from
unlike neighbor interactions. Since the two spins under
consideration diffuse on different sublattices, the jumps
of one spin are completely uncorrelated with those of
the other (at the usual low-vacancy concentrations),
hence, the two spins can be considered separately.

Consider first the high-frequency limit. The quantity
r4=vz+vs multiplying the first sum in (26) is just the
probability per unit time of a relative displacement (of
arry magnitude) of one spin relative to another. This
probability is reduced by the factor 0.9/1.347=0.7
deduced above. The second term in (26) should pre-
sumably be multiplied by about 0.8/1.347, since spin

j makes about (0.8/1.347)vz single displacements per
second. Since displacements of more than %2ao are
possible in a single encounter, there should be added to
(26) double sums with l and m separated by more than
V2ao, multiplied by numbers less than L'o. The net
result is to multiply (26) by about 0.7, since the first
sum in (26) is at least ten times the second, and opposite
in sign.

In the zero-frequency limit, the terms in (27) with
3=m are still the most important in the sum, but terms
for which //m and l or m are far from the origin are also
significant. Most of these latter were handled with the
implicit use of the diffusion equation, of which (30)
is the solution. The correlation correction to the dif-
fusion coeKcient is 0.78, so the net correction to (27) is
presumably to multiply p, by between 0.7 and 0.78

Correlation effects are likely to be even more impor-
tant for like-neighbor interactions (and also for chemi-
cally identical unlike isotopes). Here both spins i and j
must be considered as taking part in a single encounter.
If spin j is the 6rst to be displaced by a given vacancy,
it will make 1.347 jumps as before, and spini will make
Z(r) jumps, where r is the initial distan. ce between i and
j. Thus, there are Z(0)+Z(r) relatrwe jumps per en-
counter. Since there are 2vz(relative) jumps per second
there must be 2vrLZ(0)+Z(r) j ' encounters per second
of a single vacancy with the two spinsi and j.This is in
contrast with 2vz relative displacements in the random
walk model. The probabilities for various relative dis-
placements resulting from a single encounter are likely
to be roughly the same as for a single spin; the probabil-
ity for zero displacement and for more than unit dis-
placement may be somewhat greater in the present case.
Taking the probability for zero displacement in an
encounter to be 0.1 as before, we conclude that the
high-frequency approximation result (26) should be
multiplied by about 0.9/LZ(0)+Z(%2440)=0. 55. Here
we use the value of Z(r) appropriate to the nearest
neighbor because terms for which / is nearest to the
origin are by far the most important in (25). The zero-

frequency result (27) should be divided by a number
which is between the high-frequency correction of 0.55
and the diffusion coefficient correction of 0.78.

Ke have tried to show that correlation effects may
play an even greater role in nuclear relaxation than in
tracer diffusion. It is to be hoped that relaxation meas-
urements will be as useful as diftusion measurements for
the elucidation of diffusion mechanisms in solids. '
Unfortunately in most cases dipolar relaxation is par-
tially obscured by quadrupolar and electronic relaxa-
tion, making such studies dificult.

Ts ' joAzao 'v——r '+700Asao '(vz+vs) '. (34b)

The numbers j and k are tabulated in Table II for the

TABLE II. Constants occurring in Eqs. (34) and (35)
for three 6eld orientations.

Lattice Orientation jI ko kI k2 j3 k3 j4 k4

NaC1

fcc

t100j
L110]

L1ooj
L110)
L1113

2.78
2,53
2.45
2.78
2.53
2.45

2.28
0.64
0.09
0.163
0.226
0.247

0.26
3.56
4.66
0.744
0.618
0.576

7.12
5.45
4.90
1.29
1.30
1.30

1.03 4.25 3.96
1.23 1.48 3,96
1.30 0 56 3.96
1.03 0.92 3.96
1.23 1.09 3.96
1.30 1.15 3,96

10.2
10.2
10.2
5.27
5.27
5.27

NaC1 lattice, and also for the fcc jattice of cube edge
2ao containing two isotopes, The other terms have been
previously defined. These relaxation times are those of
the I species, assuming that the 5 species remains at
thermal equilibrium. This assumption is likely to be
valid unless the difference in resonance frequencies
~orr

~

—
~4os~ of the two species is small. The sum and

difference frequencies u&1&cog are computed using op-
posite signs for coz and ~8 when yz and y8 have opposite
signs.

In the low-field, high-temperature limit the calcula-
tion predicts

Ti '=To '=j4Azao 'vr '+k4Asao '(vz+vs ). (35)

These formulas by no means exhaust the applications
of our calculations. They are applicable whenever vz

and v8 are not of the same order of magnitude as cog,

cup, or col+co8. Dynamic polarization of the S species
through saturation of the I species could be easily
treated, using Eq. (87) and (88)."

These results were obtained assuming that the I and
S species walk randomly with jump probability vy

and vq. If account were taken of the correlation in

"P. G. Shewman, DQflsion i7/I, Solids (McGraw-Hill Book
Company, Inc. , New York, 1963}.

V. SUMMARY OF RESULTS

In the high-field, ]om-temperature limit the results
of this calculation can be summarized by the formulas

Tl =JiA i&0 vroiz +A sero (vz+ vs)

X JLtoo(4or tos) +foitor '+700(4or+tos) l &
(34a)
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direction of successive jumps of the nuclei, and of the
tendency of jumps to occur close together, the results
will be altered, as discussed in the previous section.
For the NaCl lattice, j& will be multiplied by about 0.55
and kp, ky and k2 by 0.75; j3 and j4 will be divided by
roughly 0.65, and ka and k4 by 0.75. For the fcc lattice
j&, kp, k&, and k2 will be multiplied by about 0.55 and

j3, j4, k3, and k4 divided by roughly 0.65
This calculation is in good agreement with Torrey's

calculation of Tj in the fcc lattice. In the high-field
(low-temperature) limit our result for Ti ' is 5%
greater than that predicted from Torrey's Eq. (80).
The discrepancy probably represents an error in our
result due to omission of all but near neighbors in
evaluating the second sum in (26); the error would be
less for the X"i(&v) and in either case it is small com-
pared to the correlation correction discussed in Sec. IV.
In the low-field (high-temperature) limit our calculation
yields a value for Ti ' which is 18% larger than that of
Torrey. This is reasonable agreement considering the
differences between our respective models. The low-
temperature angular dependence of Tj and T2 is small
for the fcc lattice, according to our theory, but it is
easy to see from (26) that for the bcc lattice the angular
variation should be large (of the order of 2:1). No
indication of such angular dependence has been re-
ported in measurements" on bcc metals.

n;+k;q—
! — — !

2 2 ) (A1)

ways to distribute pluses and minuses on the array to

' D. F, Holcomb and R. E. Norberg, Phys. Rev. 98, 1074
(1955).

APPENDIX A: DETAILS OF THE ZERO-FREQUENCY
APPROXIMATION

We first describe the method of calculation of F„(r),
which is C "multiplied by the number of n-step paths
from one point to another at a distance r from the
first. Choose r= aog k,x, where the x, are unit cube axis
vectors and the k; are integers. Each step in a path can
be represented by a symbol such as (0+—) or (——0);
the symbol (0+—), for example, signifies no displace-
ment in the x~ direction and positive and negative
displacements, respectively, in the x2 and x3 directions.
A path of m steps can be represented by an array of e
such symbols. Such an array has 3 columns and n
rows. Each row must have one and only one zero, so
there are e zeros. If there are e—e~ zeros in the first
column, n —n2 in the second, and e—n3 in the third,
then there are e!/(e —ni)!(e—n~)!(I—m3)! distinct
ways to distribute the n zeros under this requirement.
The number e; is the number of steps in the +x;
direction, so such a path can connect the origin with
r only if for all i, e; is odd or even as k; is odd or even.
In that case, there are

have the path end on r, because the number of +signs
in the ith column. must be —,'(e,+k;). Summing over all
allowed n; we have

ft fb 3

F.=~!c --p p iiN, !
nI=ky ~2=&2 s=l

/N~+k, q e;—k;
( —

~) 'I I
' ! (A2)

2 )
Here ra= 2n —n~ —n2, terms in the summation for
which any of the —,'(e,—k,) is negative or nonintegral
are to be taken as zero. To obtain the quoted values of
Z(r), F„was computed for I&10; for e) 10 an asym-
ptotic expression was used which is based on the fact
that for large m the overwhelming majority of paths
will have all e; approximately equal to —3n. The pro-
bability of a net displacement of k; steps during a one-
dimensional random walk of -', n steps is (3/7re) exp
(—3k//4e) for large I, so that in the three-dimensional
case we have

3 qsl2 3r
F„(r)= —,

' —
~

exp—.niJ 4~apl
' (A3)

The factor 4 is required because, for a randomly chosen
set of e; subject to the condition P n, =2m, there is a
probability —„of fulfilling the condition that, for a/1 i,
v; be odd or even as k; is odd or even. The expression
(A3) was integrated from e= 10.5 to infinity to estimate
the terms in (28) for I)10. The part of the summation
for e& 10 is about 0.14 for r(2ap.

The evaluation of (27) was carried out point by point
for l= m in the first three shells, and also for ri ——v2ao
with either r& or r in the 6rst shell. By a "shell" we
mean a set of points equidistant from the origin. In
what follows we will use the abbreviation (l)=1 to
mean that point / is in the erst shejl.

All other terms in (27) were treated by an approxima-
tion in which a magnetic field orientation average was
first taken; thus these other terms were assumed iso-
tropic. However, in the case of the sum for unlike
neighbors the F& I' are identically zero if Ho is in the
[111)direction and either (I) or (m) =1, or if Ho is in
the [100) direction and either (I) or (m) =2. The exact
angular variation of all terms of the sum involving these
shells was inferred using the angular form (23).

In order to perform the 6eld average, the value of
(Fi„«i) given by (31) was used. To obtain (31), the
F&~«& are written in vector form [e.g., Eq. (24)) and
then rewritten in terms of components of r~, r, and
Ho in a Cartesian coordinate system for which ri is
along the Z axis and r is in the x-s plane. Taking the
spherical average of the products of direction cosines of
Ho occurring in this expression, we readily obtain (31).
Equation (31) was used for those l, m for which either
(l) or (m) = 1 and ri )v2ao, and also for 3=m, (l))3.
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Those terms tom, for which (l), (m) & 1 and those for
which either (t) or (nz)&3 were averaged over orienta-
tion of r~ with respect to r . This is a good approxima-
tion for most shells of neighbors which contain many
points. The quantity F& +~Z(r& ) for these points was
replaced by

((~~-"')Z(«-))
—= (x(-', cos'n~ —~)r~ 'r '(3ao/2nr~ ))

orientation, of a region near r~ ——r occupying 1/n~ of
the total solid angle. This exclusion was made to avoid
double counting of points for l=m which were already
summed above, and to avoid the region of integration
r~ =0 where the asymptotic expression for Z(r~„) was
invalid.

Finally, the contribution of points for which either
(t) or (m)&7 was approximated by

6 2p "err'dr

25~ ~rm „, r6

25zr) 'r~
if rt&r„. (A4) (2p' "47rr'dr

dr'. (A5)

Here the inner angular bracket on F~ ' ' is the field
average previously introduced in connection with (31),
and the outer bracket represents the angular average
over the direction of r~, keeping r 6xed, and keeping
the magnitudes r& and r 6xed. Note that the asymp-
totic expression for Z(r) is used in (A4). This integra-
tion is straightforward. When (l) = (nz) the expression
above was multiplied by (1—5m~ U'), where n~ is the
number of points at radius r ~, the term —5n~ ' ' results
from the exclusion, in the spherical average over r~

The sum over m is taken over all (m) & 7 and R, is the
radius of a sphere whose volume equals that of the first
seven shells. The quantity p is the density of points in
the lattice, i.e., 1/2a03. The erst term in (A5) approxi-
mates the sum over pairs l, m for which one member of
the pair is within R, and the other is outside; the factor
2 is included because each pair must be summed twice
in (27). The second term approximates the sum for
both / and m outside R,.


