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Ultrasonic Absorption by Superconducting Nb-Zr Alloys
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Ultrasonic attenuation studies in dilute superconducting Nb-Zr alloys have revealed strongly temperature-
dependent absorption peaks which cannot be explained in terms of single electron-phonon scattering proc-
esses. The set of temperatures at which these peaks occur is dependent on the frequency of the sound wave
and the strain content of the sample. A phenomenological model is proposed. which interprets the absorption
peaks as being due to an exchange of energy which occurs when the sound frequency is equal to one of a set
of collective excitation mod. es of the electron gas. The assumptions on which the model is based are the
same as those which yield collective excitations within the energy gap in more fundamental descriptions of
the superconducting state. The phenomenological treatment involves a hydrodynamic approach in a finite
superconducting phase, based on volume derivatives of the electronic free energy under conditions of charge
neutrality. The interaction constant for the collective excitations is empirically assumed to be decreased by
the factor, x(ro)—=Q'ra exp(o. —Po '), when the extent of the superconducting phase ro is less than the
coherence distance P. Good agreement between the experimental data and the results of the proposed model
is obtained.

INTRODUCTION

HE study of the attenuation of ultrasonic
waves by pure metals at low temperatures has

yielded considerable insight into the interaction between
phonons and the conduction electrons in both normal
and superconducting metals. Morse' has discussed this
interaction in detail. Concisely, the magnetoacoustic
effect has been fruitful in the mapping of Fermi surfaces,
and attenuation measurements made below the critical
temperature in elemental superconductors have pro-
vided a striking verification of the Bardeen-Cooper-
Schrieffer' (BCS) theory of superconductivity. In view
of the short electron mean free path in alloys and in
impure elemental solids, it has long been felt that there
would be no observable electronic contribution to the
ultrasonic attenuation. In this paper, recent measure-
ments of the attenuation of ultrasonic waves in samples
of Nb-Zr alloys are reported; this paper reports an
extension of previously discussed experiments by the
authors' and contains details of a phenomenological
calculation based upon the model of hard supercon-
ductivity which incorporates a filamentary structure.
The model is successful in predicting some quantitative
features of the structure in plots of attenuation versus
temperature, in the superconducting state. Results of
measurements on the influence of heat treatment on the
behavior of the attenuation with temperature are re-
ported and are discussed in terms of the proposed model.

EXPERIMENTS

The superconducting alloys were prepared by arc
melting in an inert atmosphere previously weighed
samples of niobium and zirconium bar stock. X-ray and

' R. W. Morse, Progress in Cryogenics, edited by K. Mendels-
sohn (Academic Press Inc. , New York, 1959), Vol. 1, p. 221.' J. Bardeen, L. N. Cooper, and J.R. SchrieGer, Phys. Rev. 108,
1175 (1957).

'

'L. T. Claiborne and N. G. Einspruch, Phys. Rev. Letters 10,
49 (1963).

emission spectroscopy indicated that the samples were
uniform solid solutions and contained no zirconium in
a precipitated phase. The samples, after being lapped
to yield two parallel faces, are roughly described as
cylinders of 14-in. diam and 8-in. length. The ultrasonic
attenuation measurements were made by the pulse-echo
technique with equipment of the type described by
Chick et c/. 4; on occasion, the pulse-echo equipment
described by Einspruch and Manning' was used. A
radio frequency pulsed oscillator is used to excite a
quartz transducer which is bonded to the sample by a
thin layer of Nonaq' stopcock grease. The mechanical
pulse, produced by the transducer, is reRected each time
it reaches the face of the sample opposite to the trans-
ducer; after each transit, some of the mechanical energy
is sampled and reconverted to electrical energy by the
same transducer. These electrical signals are amplified,
detected, and displayed on an oscilloscope. The varia-
tion with temperature of echo height is monitored with
a calibrated pulse comparitor; the temperature de-
pendence of the change in the attenuation is thus
obtained.

EXPERIMENTAL RESULTS

The initial observations made in an unannealed
Nb-1 jo Zr alloy were reported previously' and are
shown in Fig. 1. The following conclusions were reached
in regard to the mechanism producing the resonance
peaks: (1) It is a property of the superconducting state.
(2) It is probably related to pressure and/or charge
density modulations. (3) The set of temperatures at
which peaks occur is strongly dependent on the fre-
quency of the sound wave. (4) The amplitude of the
peaks decreases as the frequency of the sound wave
increases. (5) The mechanism is not dependent on the

4 B. B. Chick, G. P. Anderson, and R. Truell, J. Acoust. Soc.
Am. 32, 186 (1960).

~ N. G. Einspruch and R. J. Manning, J. Acoust. Soc. Am. BS,
215 (1963).

Nonaq, Fisher Scienti6c Company.
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FIG. 1. (a) Relative attenuation (dB cm ') at 10.0 Mc sec ' as
function of temperature for 99.9% pure Nb. (b), (c), (d) Attenu-
ation (dB cm ') as function of temperature in Nb —1.0% Zr alloy
for 29.0, 16.5, and 10.0 Mc sec ', respectively. (d') Data of curve
(d) with background (a) removed.

amplitude of the sound wave for the small strains used
in this experiment.

Measurements of the temperature dependence of the
compressional wave absorption in other Nb-Zr alloys
have been made over the same range of frequency (5 to
30 Mc sec ') and temperature (1.3 to 4.2'K). Structure
similar to that in Fig. 1 was found for all samples tested
(1.0%, 2.1%, 2.6%, 3.6%, and 4.5% Zr). The most
meaningful comparison of results is made for annealed
samples, since the dislocation structure resulting from
preparation can vary greatly from sample to sample.
Figure 2 shows the temperature variation of the absorp-
tion at 12 Mc sec '. From Figs. 2(a) and 2(b), one can
see that some of the peaks are reduced in amplitude as
the sample is annealed, while the temperature at which
each peak occurs is essentially unchanged. One can also
see that the structure which remains after 16 h of
annealing is the same for the 1.0% Zr and the 2.6% Zr
samples, except for a possible small difference in ampli-
tudes. In the absence of a model to explain these results,
a reasonable inference might be that the peaks which
are removed by annealing are related to dislocations,
and the remaining peaks are due to the presence of the
Zr ions. These results will be discussed later in terms of
a model proposed in the next section.

PHENOMENOLOGICAL THEORY

A phenomenological treatment of the attenuation of
compressional sound waves in metals via single, conduc-
tion electron-lattice scattering can be made from a
consideration of electron ion density modulations under
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FIG. 2. Relative at-
tenuation (dB cm ')
at 12.0 Mc sec ' as a
function of tempera-
ture for (a) Nb —1.0%
Zr after 2-h anneal;
(b) Nb —1.0% Zr after
18-h anneal; and (c)
Nb —2.6'Po Zr af ter
16-h anneal.

7 A. B. Pippard, Phil. Mag. 46, 1104 (1955).
s P. W. Anderson, Phys. -Rev. 112, 1900 (1958).' N. N. Bogoliubov, Zh. Eksperim. i Teor, Fis. 34, 58 (1951)

Ltranslation: Soviet Phys. JETP 7, 41 (1957)].

conditions of charge neutrality (cf. Pippardr). Starting
with the Boltzmann transport equation and invoking
Maxwell's equations, one can derive an expression for
conversion of energy from the sound wave to random
thermal energy due to irreversible scattering of the
electrons. The electron and lattice systems are separated
except for the fact that the electron distribution must
follow the lattice ions in order to cancel the electric
fields arising from displacements of the ions. The energy
loss mechanism for the electron-lattice system is the
random scattering of the electrons by impurities or
thermal phonons. The expression derived by this ap-
proach should be valid for all sound frequencies up to
the Debye cutoB frequency for the particular lattice.
In general, this electronic attenuation is a monotonically
increasing function of the parameter q/, where q is the
magnitude of the propagation vector of the compres-
sional wave and 1, is the electron mean free path.

When q/, becomes an order of magnitude less than
unity, the electronic attenuation becomes negligible.
Therefore, for sound frequencies of 10' to 10' cps, l.
must be of the order of 10 ' to 10 ' cm in order for the
electronic attenuation to be measurable. This condition
can be achieved only for extremely pure metals

( 99.999%) at liquid-helium temperatures. It can be
seen that for superconducting alloys, which have high-
strain content as well as high-impurity content, the
ultrasonic attenuation due to single-electron processes
should be quite small. The data cited in the last section,
however, indicate that there is some mechanism for
temperature- and frequency-dependent compressional
wave ultrasonic absorption which is characteristic of the
superconducting state. Since the temperature depend-
ence of the parameters of the superconducting state is
determined by the electronic properties, it follows that
there must be some additional mechanism for inter-
action between the lattice vibrations and the electron
distribution which has been overlooked heretofore.

Anderson' and Bogoliubov' have shown that there
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are low-frequency, collective-type excitation modes for
the electrons in the superconducting state which corre-
spond to pressure waves in a neutral Fermi gas. The
basic equation used in the hydrodynamic formalism for
plasma oscillations involves terms in the electromag-
netic fields and a term in the pressure gradient. Pressure
gradient eftects for normal metals are negligible com-
pared to the electric field effects; however, pressure
effects in superconductors become dominant for low-
frequency density modulations. Such modes would de-
cay rapidly in the normal state, for which the density
of states is finite at the Fermi surface, while excitation
states lying within the superconducting energy gap have
long lifetimes. The excitations have been shown to enter
into both real and virtual processes. The high-frequency
plasmon modes, for which Coulomb forces are im-
portant, exist in the superconducting state and are
essentially unchanged from the normal state.

The authors' initial paper' on the subject of the ultra-
sonic absorption peaks included an analysis based on
isothermal displacements of a phase boundary between
two types of superconducting material. An equilibrium
position of the phase boundary, under the constraints of
the system, which minimized the electronic free energy
was assumed. Displacement of the boundary would lead
to a linear restoring pressure, hence, to a set of
temperature-dependent resonant modes of vibration for
the phase boundary. A major di%culty arises, however,
when one attempts to assign an inertia to the boundary.
In the initial paper an inertial density of the order of the
electron-mass density was assumed. The form of the
resonance condition, obtained by setting the sound fre-
quency equal to one of the harmonic frequencies of
vibration for the phase boundary, was in good agree-
ment with the Nb-Zr absorption data, and permitted a
simple interpretation of the absorption peaks. It will be
shown below that a consideration of density modulations
within the electron gas in a finite single phase under
conditions of charge neutrality leads to the same form
for the resonance condition without the difficulty in
determining the inertial density. It is now recognized
that the present analysis is simply a phenomenological
derivation of the excitation modes, with appropriate
boundary conditions, for a superconducting phase of
finite dimensions. The special case for which the phase
boundary is free to move with the electron density
variations was considered in the initial paper. Here, a
more general phenomenological approach will be con-
sidered in so far as density modulations within a single
phase will be considered, and the resonance conditions
will be obtained for both fixed and free phase boundaries.

The derivation will proceed from a hydrodynamic
approach. For the low-frequency collective excitations
in the superconducting state, the electric field eBects
are neglected. Specifically, it will be assumed that for
sufFiciently slow local variations of electron density with
respect to a fixed lattice, the long-range Coulomb inter-

actions can be neglected so that the important restoring
forces on the electron distribution arise from the pres-
sure gradients. Then, the pressure-density relation for
the electron plasma can be obtained from the iso-
thermal volume derivative of the Helmholtz free energy.
It will be shown that the isothermal condition does
indeed, apply to density modulations in the frequency
range to be considered.

The concept of a pressure associated with the super-
conducting state was first considered in regard to the
electromagnetic stresses at the boundary of a super-
conducting region. A change in volume 6V of the super-
conducting phase, which involves no change in free-
energy density f changes the total internal free energy
Ii by an amount

Normal material is converted to superconducting ma-
terial in 8V. There is an effective pressure P= —8F/8V
which does work against the electromagnetic stresses,
and in equilibrium

7

C2

where X is the penetration depth, j,» is the surface
current, and H, (T) is the critical field. "This difference
in energy density is defined to be the Meissner pressure.
In order to find the electron gas pressure in the super-
conducting state, a volume change which implies a
change in electron density must be considered. It should
be mentioned that in the superconducting state there is
an ambiguity between the Helmholtz and Gibbs free
energy. Thus, an isothermal volume derivative of the
BCS free energy has the form of a true pressure. The
superconducting, electronic free energy in volume V is

where ep is the density of states at the Fermi level,
e(T) is the temperature-dependent energy gap, and 5, is
the entropy of the superconducting state.

Single-Phase Suyexconductors

Consider a single phase of superconducting material
occupying V. Since there is only a change in the elec-
tronic free energy between the normal and superconduc-
ting state to a first approximation,

F.=F (i/8a)H, '(T) . —

The actual temperature dependence of H, (T) and F,
is complicated; however, the Gorter-Casimir" relation

is within about 4% of the BCS prediction and is as-

IF. London, Szcperggids (Dover Publications Inc. , New York,
1960), Vol. 1, p. 138."C. J. Gorter and H. B. G. Casimir, Physik. Z. 35, 963 (1934).



624 L. T. CLAI BORNE AN D N. t". EI NSPRUCH

(BF,
P.= (BF./BV)r =—(2', 'l

(By r
From Eq. (4) it follows that

(8)

Bnp ??.(T) (BH.(T))P,= —
—2,?r2(k??T)21 —2 ll~

By & 8~ E By

1
+ 2?r2(k~T)2rir+ H 2(T) (9)

where F„ is defined by F = —?s?r'(ki?T)2N&, and k—?? is

the Boltzmann constant. The partial derivatives of e(0),
ep, and 1, with respect to y will have the forms

Be(0) e(0) ( y))
l
P+Q- I,

By f k l)
BT, T,( y=—

I
P+Q-,

By

Br4, n( y)
(10)

By r(
'2 P. Morel, J. Phys. Chem. Solids 10, 277 (1959).

sumed to be correct. For simplicity, Eq. (4) will be
used for the isothermal derivative of the free energy
with respect to volume. The variation of H, (0) and T,
with respect to volume can be found from the variation
of e(0) and Nr according to the simple BCS relations

H, (0)= L4?r22r]'~'e(0),

T,=se(0), (6)

where s is a constant. In a semiempirical calculation of
the transition temperature and the effects of pressure
on the transition, including the contribution of 24mklapp

processes to the electron-phonon interaction, Morel"
developed a formalism for the variation of e(0) with
volume changes, i.e.,
d lne(0) /0. 850~2) d 1n22r

= —3pylnl +2
dlnr, 4 T, dlnr,

/0. 8502)) m* a'
, (7)

T, ) m 2(1+a')
where r, is the Fermi-Thomas radius, y is the Griineisen
constant, 0'2? is the Debye temperature, m is the electron
mass, m* is the normal electronic e6ective mass, and
a'= 0.167 r, . r, is defined by 42?r(asr, )2—= 1/N, where as 'is

the Bohr radius and E is the number of electrons per
unit volume. If a small linear displacement y of one
surface of area 0', of the volume element is considered,
and if the second derivative of e(0) with respect to r,
exists and is positive, then it will be shown that there
exists an excess pressure linear in displacement which
will lead to a hydrodynamic wave equation.

Let V(y) = SLl—y]. The total hydrodynamic pressure
of the neutral Fermi gas is

The constants P, Q, A, and 8 will be determined below.
Since

/BH, (T) BH,(0) / T '-

By r By

then

t9 T
+??,(0)—1—

(
—

)By T,

BH,(T) H, (0) y
2P 8 2

(Tl y
(2P—A)+ (2Q—8)- . (11)

KT.)

( T')' Tq4
Xl —I+L1—(2P—A)] —

l

) T,) T,)
H.'(0) /y ( Tl'

+ I

— (fl+2Q-)+(4Q P~)l —-l
8 kr, )

T'l—(2Q —8) —l, (12)
T,)

where p=——s?r222r(ki?T, )2LH, 2(0)/8?r] '. According to
BCS theory, the constant P is a universal constant
(P=2.14) which expresses the law of corresponding
states for superconductors. For real superconductors,
the simple relation e(0) =1.75T, does not always hold;
therefore, P=(2.14)(1.75/s)2, where s is defined by
Eq. (6). The first term in Eq. (12) represents the hydro-
static pressure Po,' the second term represents the excess
pressure, P„which is linear in the displacement y. The
total electron density is p =ps(1+y/1); the excess density
corresponding to P, is p.=ps(y/l), where ps is the un-
perturbed electron density. Extrapolating to a con-
tinuum representation of the electron gas, one expects a
velocity of propagation for a compressional wave to be

c=Pp
H.2(0) ( T 2

—(~+2Q)+(4Q —»)l—
iT,Swapo

—(2Q —~) —
l (»)

T,)

It remains to be shown from an evaluation of the con-
stants that c is real.

The assumption will be made that the second deriva-

When coeflicients of powers of (y/l) are collected, the
complete hydrodynamic pressure is

H, '(0)
P,= l 1—(A+2P)]+l (4P—2)+P(1—A)]
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B lnep =5.1, ln'[0. 850' T. '] 203 )
m 2(1+a')

d in/
t

1 d in/

3d lnr,
B lnr,

—3y = —-7.1, a'= 0.40, E= 19.7,

Og) = 109'K, T,=3.37'K.where f is any continuous function of volume. Thus,
the constants will be found from derivatives with respect
to r, . Hence, The five terms in Eq. (16) are 368, —13.8, +16.3,

—0.66 and —0.82, respectively. It can be seen that the
strongly dominant term is E(E 1). T—he dominance
of the first term seems to be the case for the other
superconductors for which Morel's equation gives a
result in agreement with experimental data. Since

B'e(0)
—1 BT, T; Bl-ne(0)-

Br,' r, Br, r,' B lnr,

/B ines
in[0.858 T, ']l +2)

kB lnr,

Tc+-
Bt'8 .(o)—

-'s E+-s'E(E—1)—
t

' '
t

'
Be(0)

(17)
B m* e'

+—ln'[0 85Q~DT, ']
Br, m 2(1+a') then I' = sE an—d Q~ —

s (E—1)E. For indium,
P= —6.6 and Q= —123. For a simple free-electron gas,
one would expect [B lntsp/B 1nr,]=—1; however, Olsen
and Rohrer" have shown that for real metals

B Im* ) 1
+in'[0.850')T ']

~

a'
~

Br, k m ~2(1+a')

tive of e(0) with respect to volume changes can be ob- using the data given by Morel:
tained from Eq. (7). For an isotropic medium,

m*u' B
+ln'[0 850DT '] (1+a') ' (15)

2m Br,

Using the fact that

B 1nml/B lnr, =3(g—1),

where g is a constant which is determined experi-
mentally. It is assumed that (Be&/B„) can be determined

by expansion in powers of (y/t) to give

8 =Op2—
m kp'

BQp 1 sp=- —3(g—1) 1+- .
By 3 y t

(18)

where kp is the magnitude of the wave vector at the Then A=B=g—1; for indium g
—1=1.7.

Fermi surface and c' can be rewritten as

B lnr,B lnr,

B lnegkp ' B lnep
+2

H, '(0)
c'= — [8+2Q]

Supp

B'e(0) e(0)
(E 1)E—(3y+E)—

r.2BT8

the derivatives are readily calculated. The result is

or
c'= cs'[1—&Ts+aT4]. (20)

/4Q PB)( T ' /2Q —BfT)l'—
II
—+I

&2Qya) kT, &2Q+a (T,&

—2 in[0.85ODT, '](3y+E)

+in'[0 85QDT, ']
u' B lnep

+2
m 2(1+a') B lnr,

where

—ln. '[O.85 0~T ] (16)
m 2(1+a')'

B lne(0)

B lnr,

As an example of the magnitude of this derivative for
a real metal, Eq. (16) will be evaluated for indium

For indium, ps 10 s
g cm ' and II,(0) 300 Oe.

Hence, cs 10' cm sec '. The term F„(T,) for indium
is approximately 10' ergs cm ', while H.(0)(8~) ' is
approximately 3&&10' ergs cm '. Therefore, the tem-
perature coeKcients are a 0.010 and b 0.19. It can
be seen that in this calculation the temperature function
is positive for all temperatures below T„ therefore,
there exists a real velocity of propogation for a com-
pressional wave in the superconducting electron gas.

Consider a slab of superconducting material of thick-
ness t in the direction of propagation. One would expect
a discrete set of standing wave modes for these com-

"J.L. Olsen and H. Rohrer, Helv. Phys. Acta 30, 49 (1957).
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pressional waves. If the boundaries are fixed, then the
harmonic modes are given by v =cavo[1 —bT'+aT']'~';
if the boundaries are free, v = (2m+1)vo[1—bT'+aT']'~'
where vo=co(2l) ' and rs is a positive integer.

Although the electrons are capable of density modula-
tions relative to a fixed lattice, these modulations re-
quire that the electrons be dragged accordingly. It
would not seem unreasonable, therefore, to suppose a
direct interaction between lattice phonons and the col-
lective excitation modes. It would appear likely that
there would be a maximum exchange of energy from a
compressional ultrasonic wave to the electron gas when
the sound frequency, v„ is equal to the frequency of one
of the harmonic standing wave modes. Thus, absorption
peaks would occur at temperatures for which v, =v .

The ultrasonic absorption measurements which are
made in single phase, soft superconductors usually in-
volve a path length on the order of 1 cm or more. For
indium, a 1-cm thickness implies vp 10' sec '. In the
discussion of the data it will be shown that the energy
absorbed from the sound wave decreases rapidly with
the order of the harmonic. A sound frequency of 10~

sec ' is of the order of the 100th harmonic; therefore,
the energy absorbed via this mechanism is negligible
in the megacycle frequency range. If, however, there
are smaller regions within a bulk superconductor which
have altered superconducting properties so that there
are separate superconducting phases present, it would
be possible to have fundamental excitation modes in
the megacycle frequency region.

Hard Superconductors

A hard superconductor, in general, has a high-strain
content arising from both impurities and dislocations.
The various theories for the current-critical field be-
havior of a hard superconductor suppose that if the
applied magnetic field exceeds the bulk critical field,
the strained regions act as nucleating centers for the
formation of smaller regions capable of sustaining a
supercurrent. As has been pointed out, the strain fields
also alter the local superconducting parameters such
as the energy gap.

An idealized hard superconductor can be represented
as consisting of uniformly spaced regions of strained and
unstrained material. Initially, a semi-infinite slab of
alternating layers of strained (modified) and unstrained
(unmodified) materials will be considered. The thickness
of a region is taken to be 2rp. All magnetic 6elds are
assumed to be excluded from the interior regions. For
simplicity, the strain fields are taken to be uniform
throughout the modified regions. There will be an inter-
facial energy at the boundary between the modified and
unmodified phases. Presumably, the location of the
phase boundary is such as to minimize the electronic
free energy subject to the constraints of the system, The
interfacial energy should depend on the difference in
energy densities between the two phases. The total

free energy of a system containing one modified and
one unmodified region is of the form

F=F,g+F, 2 Sa—, (H,p H,—p) ) (21)

where
v =vo[1 bT'+aT']"'— (22)

H, (0) —8—2Q u'

4$ 8~pp
Vp= exp[a —pro '],

(2Q+8)T.'
' L. T. Claiborne, J. Phys. Chem. Solids (to be published).

(where S is a characteristic length) plus possibly a
surface term involving the difference in normal elec-
tronic free-energy density. It can be seen that the
derivative of the total free energy with respect to a
displacement of the phase boundary yields a restoring
force acting on the boundary having a temperature de-
pendence which is a quadratic in T, similar to Eq. (12).
Actually, the initial report of this absorption phe-
nomenon included an attempt to derive the resonance
condition in terms of this restoring force on the bound-
ary. The hydrodynamic approach of the present paper,
however, is an improved description of the actual
physical situation. The role of the restoring force on the
phase boundary in ultrasonic absorption is discussed
below.

For the two-phase system, one would expect two sets
of discrete standing wave modes for the collective excita-
tions. The fundamental frequencies will depend upon the
extent of the phase and the parameters which determine
the velocity of propagation as in the single phase calcu-
lation. In the real, hard superconductor, the strain fields
are those associated with defects such as dislocations
and impurities. The extent of such strain fields is small
in general, e.g. , the order of 10 A. Due to the nonlocal
nature of the superconducting state, interactions over
distances less than the coherence distance $ must be
greatly reduced. It will be postulated that the interac-
tion responsible for the collective excitations is reduced
by the empirical function z(ro)—=rap 'exp(a —pro '),
where o. is a constant of order unity and 2rp is the extent
of the phase in the direction of propagation. The func-
tion x(rp) is one of the simplest forms that could be
assumed; it will be shown that this function leads to
results in good agreement with the Nb-Zr data. In
addition, it has been shown by one of the authors" that
y(ro) leads to a prediction for the solute concentration
dependence of the transition temperature in dilute
superconducting alloys which is in remarkably good
agreement with data for various solutes in Sn, In,
and Al.

The complete expression for the fundamental collec-
tive excitation mode in one of the small strained regions
with Axed pha'se boundaries is
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(23)

Gibbons and Renton" have considered the conditions
for isothermal compression over a length / in a metal.
The time required to establish thermal equilibrium is

t= CP/8~, (24)

Intermediate State

There is one other situation in which it might be
possible to observe collective modes ultrasonically, If
in the intermediate state there is a number of strata of
superconducting material having approximately the
same thickness d in the direction of propagation, then
there is a possibility that a discrete set of collective
modes exists which can be exicted ultrasonically. The
free-energy density is altered somewhat in the super-
conducting phase of the intermediate state, but one
would expect the fundamental frequency to be tempera-
ture-dependent and inversely proportional to d. At a
fixed temperature the frequency would be determined
by d, which is, in turn, determined by the applied
magnetic field II. Although the details of the calculation
are not presented here, one can see that ultrasonic
resonance peaks as a function of magnetic Field should
be expected.

'5 D. F. Gibbons and C. A. Renton, Phys. Rev. 114, 1257 (1959).

where C is the specific heat in J cm ', and s is the
thermal conductivity in W ('K) ' cm '. In terms of a
compressional wave in a solid medium, the frequency at
which the crossover from isothermal to adiabatic con-
ditions occurs is

v, =Cc'/16s,

where the appropriate length is one-half the wavelength
of the sound wave. For a compressional mode in the
electron gas, the electronic specific heat must be used.
It should be noted that when one considers the adiabatic
and isothermal conditions for a fixed length, the high-
frequency processes are adiabatic, while the low-fre-

quency processes are isothermal. When the length under
consideration is one-half the wavelength of a sound
wave, which is inversely proportional to the frequency,
the situation is reversed. The thermal relaxation time
decreases as the inverse square of the frequency so that
high frequencies imply isothermal conditions and low

frequencies imply adiabatic conditions. For indium, the
electronic specific heat at the transition is approximately
SX10 ' J cm ', the thermal conductivity is approxi-
mately 8 W 'K ' cm '; thus the cross-over frequency
is v, 4)&10' sec '. Consequently, the higher harmonics
of the collective modes for the 1-cm-thick indium sample
are i.sothermal. The isothermal conditions for the Nb-Zr
system will be considered in the discussion below.

Recently, Leibowitz and Chandrasekhar" have re-
ported an oscillatory dependence of the ultrasonic ab-
sorption on magnetic field in the intermediate state
which cannot be entirely attributed to the normal
magnetoacoustic e6ect. At this time, their data have
not been compared with a calculation such as has been
indicated here; however, it does seem that the excitation
of collective modes is a distinct possibility as the source
of this oscillatory absorption behavior.

TABLE I. Experimental values of the three sets of constants.

Small

0.237
0.000125
0.0209

Medium

6.563
0.00210
0.0849

Large

10.5
0.000316
0.0575

peaks. The positions of the maxima for all other sound
frequencies are correctly predicted by these constants.
The order of the harmonics goes as m, indicating fixed
boundary conditions.

If one assumes that the temperature spread of each
absorption peak represents a frequency "band width"
for the absorption, then the temperature spread of any
harmonic can be predicted at any sound frequency from
an experimental fit at a single-sound frequency. The
fitting of the data and the prediction of the absorption
at other frequencies are illustrated in Figs. 3 and 4.
Curve (a) of Fig. 3 shows the data for 16.5 Mc sec '.
Curve (b) is the composite curve of the interpolated ab-
sorption peaks drawn on line (c).Except for the base line,
which is a monotonically decreasing function of tem-
perature, the interpolated absorption peaks of line (c)
reproduce the quantitative positions of the data as well
as the qualitative shape of curve (a). The test of the

'6 J. R. Leibowitz and B. S. Chandrasekhar, Bull. Am. Phys.
Soc. 8, 308 (1963).

DISCUSSION OF DATA AND THEORY

A study of the data for the 1% Zr sample such as the
16.5 Mc sec ' data of Fig. 1 indicated that there were
three sets (small, medium, and large) of absorption
peaks present. According to the present model, each set
of peaks represents consecutive harmonics of the tem-
perature-dependent fundamental mode of collective
excitation for one type of superconducting phase. The
temperatures at which the maxima occur should be
determined from either v, =. ev for fixed boundaries, or
v, =(2n+1)v for free boundaries, where v, is the sound
frequency and v is determined from Eq. (22).

The constants vo, u, b, and the order of one of the
harmonics are determined from the data at one measure-
ment frequency. The results obtained from fitting the
experimental data for the 1% Zr sample at one fre-
quency are given in Table I for each of the three sets of
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Fro. 3. (a} Ex-
perimental curve—
attenuation versus
temperature at 16.5
Mc sec ' in Nb—1.0% Zr alloy. (b)
Composite theoreti-
cal curve. (c} Inter-
polated maxima.
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interpretation is to predict the data for the same sample
at other sound frequencies. In Fig. 4 on line (c) the
predicted peaks at 10.0 Mc sec ' are plotted, keeping
the relative amplitudes of the three sets of peaks the
same as for 16.5 Mc sec '. The composite predicted
curve (b) agrees remarkably well with the data of
curve (a). Again there is a base line shift which is not
accounted for. The agreement of the composite pre-
dicted curves for the other frequencies for which data
were taken in the same sample is equally good. Con-
sequently, there seems to be a strong experimental
verification of the resonance condition. An additional
qualitative feature of the data is the dependence on e of
the amplitude and width of the peaks. The amplitude
seems to be a monotonically decreasing function of e
while the frequency band width is relatively insensitive
to the order of the harmonic. Taking into account the
amplitude variation, the agreement between curves (a)
and (b) of Fig. 4 would be even better. The amplitude
dependence on n can easily be seen by comparing
curves (c) and (d) of Fig. 1.

As was pointed out in the section on experimental
results, some of the peaks were reduced in amplitude
when the 1% Zr sample was annealed. The predicted
composite curve for 12 Mc sec ' is given by curve (a) in
Fig. 5. The data observed after 2 h of annealing are
given by curve (b) in Fig. 5. It is readily noted that
the medium and large peaks have been somewhat re-
duced in amplitude relative to the small peaks. If the
amplitudes of the medium and large peaks are reduced
by a factor of 2, the composite curve (c) results and the
quantitative as well as the qualitative agreement is con-
siderably improved. After an additional 16 h of anneal-
ing, all that remains of the "large" peaks are two small
edges on the remaining small peaks, as can be seen in
curve (d) of Fig. 5. An examination of curves (b) and (c)
of Fig. 2 reveals that the small peak structure of the
1%Zr sample after an anneal time of 18 h is essentially
the same as that for the 2.6% Zr sample after 16 h of
annealing. The "medium" and "large" peaks are still
in evidence in the 2.6% Zr sample data but have been
greatly reduced.

Since the Zr ions and the dislocations are quite

likely to be randomly distributed, one would not expect
any coherent resonance peaks to be associated with the
unstrained niobium background. The small peaks are
not affected by annealing; therefore, they must be due
to some type of modified region which is fixed in the
crystal. Perhaps the most obvious assumption would be
that these peaks are due to the superconducting phases
in the strain fields associated with the Zr ions. The
medium and large peaks, however, must be associated
with modified regions whose number is decreased by
annealing, e.g., dislocations or grain boundaries.

At present, there is not sufhcient information avail-
able about Nb to permit a complete evaluation of the
theoretically predicted constants as given in Eq. (23).
Some conclusions can be reached, however, regarding
orders of magnitude and the relative sizes of the con-
stants for dislocation strain fields compared with the
strain fields associated with the presence of Zr ions in
the Nb system. Assuming that Q and 8 are of approxi-
rnately the same magnitude as calculated above for
indium and that T, and H, (0) are approximately the
same as for the unstrained pure niobium and using
Eq. (23), then 5 =0.026'K ' and () =0.00015'K 4. From
Table I it is seen that these values are of the correct

magnitude and are, in fact, quite close to the experi-
rnental values for the small peaks. The fundamental
frequency at absolute zero is )()~10'$ ' exp((r —(rs ').
In an alloy, such as the 1% Zr sample, with high strain
content, one would expect the coherence distance to be
less than the penetration depth. A value of 10 ' cm is
probably a good estimate. Using the fundamental fre-
quency for the small peak, and assuming that o.= 1, the
extent of the strain field ro can be estimated to be

5 A, about one lattice spacing, as would be expected
for the strain held about an impurity ion. Making the

I I I I j I I I I
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FIG. 4. (a) Experimental curve —attenuation versus tempera-
ture at 10.0 Mc sec '. (b) Composite predicted theoretical curve.
(c} Individual predicted peaks.
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Fio. 5. (a) Theo-
retical curve previ-
ously obtained. (b)
Experimental data
after 2-h anneal.
(c) Theoretical curve
after reduction of
large and medium
size peaks. {d) Ex-
perimental data after
18-h anneal.
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forces acting on the phase boundary. If this force is

dissipative, the energy lost from the sound wave is

proportional to F„and would have a temperature de-

pendence similar to that for c'. From the magnitudes

of a and b for niobium, it can be seen that this function

is monotonically decreasing for T&T.. Such a mecha-

nism for the absorption of sound energy will be ampli-

tude and frequency dependent. More experimental data
are necessary before this possibility can be studied

thoroughly.

CONCLUSIo N
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same assumptions, the fundamental frequency for the
large peaks would imply an ro 8 A. Since it is expected
that the strain field about a dislocation line is of greater
extent than that about an impurity ion, it is seen that
the variation of frequency with ro is consistent with the
interpretation of the source of the various sets of peaks.

The agreement of the theoretical estimate with the
experimental values of a and 5 is quite good. However,
the justification for the form of x(r,) from the data is
extremely qualitative. A much more quantitative justifi-
cation for the reduction of the interaction constant for
small strain fields by x(ro) is given in the study" of the
solute concentration dependence of T, mentioned above.

An additional qualitative feature which might be
discussed in terms of the phenomenological ideas pre-
sented in this development is the temperature depend-
ence of the background attenuation. Even though the
phase boundaries do not seem to move with the collec-
tive modes in a 6rst approximation, it is still possible
that the interaction of the compressional sound wave
and the local strain field does work against the restoring

The collective excitation modes discussed herein are
similar to the low-frequency collective modes introduced

by Anderson and Bogoliubov except that the present
calculation is made from a phenomenological viewpoint

for a finite superconducting phase. The basic assump-

tions that the long-range Coulomb forces can be ignored,
and that the electron distribution can be treated as a
neutral Fermi gas are common to both treatments.
An attempt was made to introduce the features of the
superconducting state into the hydrodynamic treatment
through the use of Morel's equation relating the super-

conducting parameters to volume or density changes.
The resultant temperature dependence of the excitation
modes is in good agreement with the interpretation of
the data for the Nb-Zr system. A more fundamental
calculation of the collective excitation modes for the
electron distribution in a finite phase should be made.
At this point it is evident that ultrasonic absorption
measurements are a particularly direct method for

studying the microstructure of hard superconductors.
Further work along these lines is now in progress.
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