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'vp is estimated to be about 4)& 10 "erg. Using 2kpc=2x,
one finds that for two spins at a distance c apart, the
interaction energy is roughly 12'K. The resistivity
minimum occurs at about 12'K. Hence, it is safe to
use the high-temperature expansion at around this
temperature because the average nearest neighbor
distance is much larger than c. One then finds that for
x=0.03% the change in resistivity from 8 to 12'K is

roughly
5p =5)(10—"Q-cm.

However, the observed variation is of the order of 10 "
Q-cm."This shows that the spin correlation effect does
not explain the resistivity minimum phenomenon. At
the present moment the resonant scattering theory
seems to be more satisfactory because it is supported
by another experiment.
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The energy gap equation and the current density expression for a superconductor in a slowly varying
static magnetic field are derived on the basis of a generalization of Nambu's Green's function formalism to
finite temperatures. In the integral equation for the quasiparticle Green's function G~(R; r), expansions
of G~, the self-energy part Z, and the vector potential A, about the center-of-mass coordinates R, are intro-
duced. The integral equation is solved by iteration, and the contributions of all orders in the gap 4 (R) are
summed up. With the help of Gs, the generalized Ginzburg-Landau-Gor kov (GLG) equations, valid at all
temperat'urea for slowly varying A(R) and 4 (R), are derived. For temperatures near T„correction terms
to the coefficients of the GLG equations occur which are proportional to powers of ~P4 ~'. For temperatures
near O'K, the function multiplying the term (&+2feA) p behaves like exp( —

~ P4 ~). The first-order correc-
tion to the term proportional to 2'is found to be proportional to $0'H', for T near T, and near O'K (H =mag-
netic field strength, ps = coherence length). Our results are consistent with the formula of Nambu and Tuan
for the reduction of the gap at O'K in the London region.

I. INTRODUCTION

~ QUATIONS for the superconducting energy gap
~ in the presence of a magnetic field on the basis of

the Bardeen-Cooper-Schrieffer' (BCS) and Bogoliubov
microscopic theory have been derived by Gor'kov. '
The validity of these equations is restricted to tem-
peratures T, such that T.—T&&T„and to the local or
London region where qgs&&1. Here T, is the transition
temperature, $s is the coherence length, and the q are
the wave numbers of the field. By defining a wave
function proportional to the energy gap, Gor'kov was
able to transform his equations into the Ginzburg-
Landau' phenomenological equations. In the following,
the Gor'kov version of the Ginzburg-Landau equations
is referred to as the GLG equations.

The GLG approach has been used to estimate the
magnetic field dependence of the gap. 4 One finds good
agreement between theory and experiment down to

' J. Bardeen, L. N. Cooper, and J. R. Schrie6er, Phys. Rev.
108, t&75 (&957).

s L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
/translation: Soviet Phys. —JETP 9, 1364 (1959)g.' V. L. Ginzburg and D. L. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).' See, for instance, D. H. Douglass, Jr., Phys. Rev. Letters 6, 346
(1961); 7, 14 (1961);Phys. Rev. 124, 735 (1961).

temperatures of about 0.7 T,. However, one expects
that at the lower temperatures corrections to the GLG
equations will become significant. The aim of this paper
is to generalize the GLG equations to all temperatures,
under the assumption that the vector potential A(R)
and the gap ~t (R) vary slowly over the distance of a
coherence length (s. Our main concern is to establish
the connection between the first generalized GLG
equation and the equation of Nambu and Tuan' for
the reduction of the energy gap at zero temperature
in the local region. A characteristic point of their result
is that the reduction of the gap depends only on the
magnetic field strength.

Gor'kov has derived his equations with the help of
integral equations for the quasiparticle Green's function.
These integral equations were solved by iteration in
powers of the gap, and only terms up to the fourth
order in the gap were kept. This latter approximation
is the origin of the restriction T,—T&(T,. Our calcu-
lation is based on a generalization of Nambu's' two-
component Green's function formalism to finite tem-
peratures which has been developed in a previous
paper. ' Under the integral of the integral equation for

' Y. Nambu and S. F. Tuan, Phys. Rev. 128, 2622 (1962).' Y. Nambu, Phys. Rev. 117, 648 (1960).' L. Tewordt, Phys. Rev. 128, 12 (1962).
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the quasiparticle Green's function G"(R; r), we intro-
duce expansions of the self-energy part 2, the vector
potential A, and finally of GA itself, about the center-
of-mass coordinates R. This procedure is valid since
the Green's functions in the presence of a field, like the
equilibrium Green's functions, are sharply peaked about
the zero value of their relative coordinates r, provided
that the field varies slowly over the distance of a
coherence length $0 Th.e integral equation is solved by
iteration, and infinite summations over the contri-
butions of all orders in the gap p(R) are carried out.
In this way one avoids the limitation to small gaps.
The diferent contributions are ordered in powers of
A(R), VA(R), ~p(R), VP(R), and combinations of
these terms. In this paper we shall be concerned mainly
with those terms which occur also in the GLG
equations.

In Sec. II, the first generalized GLG equation is
derived from the Hartree-Fock self-consistent equation
for Z, and, in Sec. III, the second generalized GLG
equation is obtained from the expression for the current
density in terms of G~. In Sec. IV, the magnetic field-
strength contribution is compared with the vector-
potential contribution.

II. THE ENERGY GAP EQUATION

The analog of the first GLG equation will be derived
from the Hartree-Fock self-consistent equation for the
self-energy Z of a quasiparticle in a magnetic field with
vector potential A. For finite temperatures this equation
takes on the form

Z„(1,1')=p i p roG A(1,1')roV„(1—1'). (2.1)

Here 1 and 1' refer to spatial coordinates, and the
subscripts m, m, and e—m refer to the imaginary energy
variables iE =i(2ii+1)i' ', etc. , where P=1/kiiT and
n is an integer. The eGective interaction potential
between the electrons is denoted by V. The Fourier
component G ~ of the thermodynamic Green's function
satisfies the following equation of motion

(ATE +(2m) 'ro[Vi —ZeA(1)ro]'+pro)G "(1,1')

=P(1—1')+ d2 Z (1,2)G A(2, 1'). (2.2)

Here p is the chemical potential. The Pauli spin matrices
are denoted by r&, r2, and 7.3.

In order to obtain G "we rewrite the Eq. (2.2) as

an integral equation,

G A(11) G o(1 1)+ d2d3G o(1 2)

X[X (2,3)+E(2,3)]G "(3,1'), (2.3)

where G satisfies

[iE +ro(2iri 'V'io+p)]G '(1—1')=P(1—1'), (2.4)

and where in the London gauge (divA=O) E can be
written as

Since we are interested here in the local or London
region, where A varies slowly in space, it is appropriate
to consider G A(1.1'), Z (1,1'), and K(1,1'), as func-
tions of the new variables R and r defined in terms of
the old variables 1 and 1' by

R=-,'(1+1'), r=1—1', (2.6)

and to write G A=G "(R;r), etc. In terms of these
new variables Eq. (2.3) can be written as follows:

G "(R; 1—1')=G„'(1—1')+ d2d3 6 '(1—2)

XM [R+-'(2—1)+-'(3—1'); 2 —3]
XG~A[R+-,'(3—2)+-,' (2—1);3—1']. (2.7)

Here we have introduced the abbreviation

(2 g)

Since G', M, and G" in the integrand of Eq. (2.7) are
each sharply peaked about the value zero of their
respective r variables, we can consider all the coordinate
differences (2—1), (3—1'), and (3—2) to be small. We
expand now 3E and G~ in a Taylor series in their first
arguments about R, and neglect higher than second-
order terms in the coordinate difII'erences. Then we
insert the Fourier transforms of G', 3l, and G~ in their
respective r variables; these will be denoted by Go(p),
M(R; p), and G"(R; y). Finally, we express factors
(2—1) and (3—1') in terms of derivatives of Go(ii) and
G"(R; p) with respect to p. We neglect the expansion
terms with factors (3—2) which would lead to terms

V~M= VZ+V„E;this is justified since 'Z(R; p) does
not depend on y for the model potential of BCS which
we shall use, and since the terms arising from V'„K
turn out to vanish. In this way we obtain the following
expression for G " (occasionally for shortness we leave
out the subscripts m and the arguments R and p; no
confusion is possible since all terms refer to the same
m, R, andp)

G A(R. Ii) Go+G0~GA &i(P iGO)[(q i~)GA+~(q iGA)]+ liGO(q 31)(Iir IiGA)
i (q ~q jGO)[(qgig~jilf')GA+~(g~iq~iGA)] iGO(q~iq~gII) (q ip jGA)+ i (q iGO) (q~iq~gff) (Ir jGA)

—-'(V' 'V' 'G') (7'ii'M) (V'ii'GA)+-'(7 'G') (V'ii'M) (7 ii7ii&G") (2.9)
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Here V'z' and 7'„' mean derivatives with respect to R; and p;, respectively, and M is, according to Eqs. (2.8) and
(2.5), equal to

with
M„(R; p) =Z (R; p)+E (R; p),

E(R; p) = —eA, (R) (p,/m) .

(2.10)

(2 11)
T'he term with A in E has been left out since, according to our calculations, it does not give a contribution. The
propagator Go is determined from Eq. (2.4) to be

G-'(p) = (i&- enr3) —'

with e~= t (p'/2m) —pj. From Eq. (2.12) we find that

~.'G-'(p) =G-'(P) (p'/m) r3G-'(P) .

(2.12)

(2.13)

We now solve Eq. (2.9) for G ~ by iteration and keep only terms up to second order in E. If we carry out partial
summations over all the terms containing only factors 6' and Z, then we obtain propagators 6 equal to

G-(R; P) = LG-' '(P) —~-(R; P)j ',
and in terms of these the result turns out to be

(2.14)

zpi &pi
G ~(R; p) =G+GEG+GEGEG+ {G(7;M)Gr3G Gr3G(V, M—)G)1+ {G(V',M)Gr&GEG'25$2ns

Gr 3G (V';M—)GKG+ GKG (V';M) Gr 3G GKGr 3G (7—';M) G+ G (V';M) GEGr 3G Gr 3GEG (—V',M)G)

{G(V',9;M)Gr3Gr3G+Gr3Gr3G(W, V', M)G GrHG(V, V—',M)Gr3G)
4m2

~ ~

+ {G(V';M) GrgGr BG(V;'M) G+Gr gG(V', M) G(V',M)Gr 3G
2m2

G(V';M)G(V—',M)Gr3Gr3G Gr3Gr3G(V—';M)G(V, M)G) . (2.15)

Here, and later on, V'; denotes the derivative with respect to E;. For shortness we have left out all terms of the
form (p,p;/m')Gr3Gr3G(V, M)G(V', M)G in this section.

We determine now the r& and r2 components of G ~ by multiplying Eq. (2.15) by r& or r2, respectively, and
taking the trace of the resulting equation. Since we are interested here only in the energy gap terms and not in
the renormalization terms of Z, we set

Z(R; p)=gq(R)rq+ib9(R)r2. (2.16)

It is suflicient to keep, in the case of the self-energy equation, only the terms with an even number of factors p;
in the expression for G "in Eq. (2.15), since the odd terms drop out when we integrate later over d'p. Then we

fin cl.

(G )„=(G)„+(P,P,/m') (a&e'A Q; b( 2it', F2)eA—,+c& ( 4V', V;ib&)+—d ( V,&4,Q )],—2
(G ")„=(G)„+(p,p;/m')fa~e'A;A, +b(2iV &~)eA,+c2( V4,V, t )i—+2d( —4V', V', pq) j,

where ai„ci, (0= 1, 2), and b, d, are given by the expressions

ag ———,
' Tr(GGGrp) = ~ (8/8&i, ) Tr(GG),

b = ,' Tr (Gr,Gr 2Gr 3G —GryGr 3Gr 2G+ Gr—2Gr 3Gr iG Gr 3Gr qGr qG+ Gr—3Gr iGr qG Gr 2Gr &Gr 3G), —
ci,= z Tr(2GrgGr3Gr3Gri, Gr3GriGraGra), —
d= ~ Tr (Gr2Gr3Gr3Grq+Gr3GrqGr2Gri Gr3GrgGr3Gry) . —

(2.17)

(2.18)

We now make use of these results for 6 ~ and insert them into the Fourier transform of the self-energy equation
(2.1) in the r variable; that is,

rgb (R; 1)rg ——
d p

P ' Z G-'(R;p)I'---(1 —p).
(2~)3 m=—ce

(2.19)

We calculate the r& and r2 components of Eq. (2.19) by inserting the expression (2.16) for Z on the left and the
components (2.17) of G on the right-hand side of this equation. Then we add i times the r2 components to the
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v i component, where i is the imaginary unit, and introduce the complex energy gap P by

The result of this procedure is
(2.20)

d P, , P'Pi
VP ' P pX„'+ $(a,+sas)e'A;A, +sb( ,'Ã;-re)eA, +,'(ci-+cs) (—4i7, V',g)

(2m)' m'

+Le (ci—cs)+sd](—4~'~A*)] (2 21)

Here V is an average of the potential, and G is, according to Eqs. (2.14), (2.12), and (2.16), equal to

where E is given by
Gm(R q p) = (zEm+ eyrs+QiT1+rbsT2)+m

X„=(sZ„)s—Zs Z=(. s+~y~s)'»

(2.22)

(2.23)

E is the energy of a quasiparticle in. the presence of the field. If we insert the expression Eq. (2.22) for G into the
Eqs. (2.18), we find

ai+ias (cj/——cia*)-', Tr(G G„), b= 2irb '(a, +ia—2),
—', (ci+c2)= —-', ib —2~&~ 1V '(1—2e~X ')

', (ci cs)-+id—= 2)PE~ '(1+2e—~'E~ ') . —

(2.24)

(2.25)

(2.26)

We now introduce the expressions Eqs. (2.24) and (2.25) into Eq. (2.21) and write the resulting equation as
follows:

-'sepXV y ' de/ 'P -,'Tr(G~G~) (2') '(&+2ieA)' —1+2%V deP 'P E ' &=0, (2.27)
m 0 fn

where /=mph/2ir' is the density of states, e&——Pp'/2m is the Fermi energy, and e& is the cutoff frequency for
the effective potential which is of the order of the Debye frequency. In Eq. (2.27) we have left out for shortness
the contributions which arise from the second term in Eq. (2.25) and the term in Eq. (2.26).

The second term in square brackets in Eq. (2.27) turns out to be

1+21VV de P ' P Ã ' =1 EV de B—' tanh( —,'PE) =XV/gi(~Prbj) —gi(P&e)]. (2.28)

The last line has been obtained with the help of a relation derived by Bardeen )see Eq. (4.7) in Ref. 8]. Ex-
pansions of the function gi(x), for x(1 and x) 1, are given in Ref. 8. The notation pe is used for the energy gap
at temperature T in the absence of fields. Pe is taken to be real.

The sum over m in the first term in square brackets of Eq. (2.27) can be carried out by means of contour inte-
gration in the complex iE plane. It may be remarked that the sum over m in Eq. (2.28) has been. determiried by
the same method. We find (r1 is a positive infinitesimal)

Im
x'+8'

ps as+ s&x]s—

d (x'+ E'-)
tanh-,'Px

dx (x+8)'

peee
(2.29)

(1+eee)2

In the weak-coupling limit the e integral over the right-hand side of Eq. (2.29) becomes equal to the expression
—,L(i1/Az) —1] in BCS Lsee Eq. (5.24) in Ref. 2]. It is more convenient to use another equivalent expression for
(A/Ai) given by BCS /see Eq. (C19) in Ref. 2]. By using the aforementioned relation of Bardeen, we can express
(A/A&) in terms of the derivative of the function g&(~PP~) with respect to qk In this way we obtain for the first

s J. Bardeen, Rev. Mod. Phys. 34, 667 (1962).
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term in square brackets in Eq. (2.27), denoted by p(~ PP
~ ), the relation

8 A) 8 8
v(I@el)=le ', —I=, —gi(I@+I) .

ay* ,1 ay* ay

Making use of the abbreviation y and Eq. (2.28), Eq. (2.27) becomes

v(leal)
[&+2i«(R)]'+I [ai(PA) —gi(I@41)] 0 =o

2m &2~,

(2.30)

(2.31)

In the temperature range near 2'„ i.e., for (Ppp) (1, one can use the power series gi(x) = a2x'+u4x'+ ~ ~, given
in Ref. 8, and with the help of Eq. (2.30), Eq. (2.31) goes over into the following equation:

{[1+4(a4/a2) ~PP ~'+ ](2m) '(V+2ieA)'+ (3/2ep)[1+ (u4/a2) (~PP('+ (P&0)')+ ~ ](&0'—
~ P ~'))&=0. (2.32)

The dots denote higher order terms in ~PP~' and (P&0)'. In the lowest order approximation Eq. (2.32) becomes
identical to the 6rst GLG equation.

In the temperature range near O'K, i.e., for (PPO)))1, one finds with the help of Eq. (2.30) and the appropriate
expansion for gi, given in Ref. 8, that to a lowest order approximation Eq. (2.31) becomes

{(~/8)'"0'(IPO I) '" exp( —
I 441) (2~) '(&+2i~A)'+ (3/2~~)»(A/I 4 l))4=0 (2.33)

III. THE CURRENT DENSITY

The analog of the second GLG equation will be derived from the expression for the current density in terms of
the Green's function G ~ for the quasiparticle in the presence of the held. The paramagnetic part of the current.
density, denoted by j&, is given by

2,8 +oo 28 dp
j"(R)=—P ' P {(Vi—Vi) Tr(G "(1,1'))}i i. ii

———— Pgt 'P 2 Tr(G "(R;y)).
28$ m (2~)'

(3.1)

Now only the terms with an odd number of factors p; in the expression for G, Eq. (2.15), will contribute to the
integral over d p in Eq. (3.1). The contribution due to GKG together with the diamagnetic part of the current
density, that is, P(R) = —A 'A(R), yields the BCS expression for the current density in the London limit which
will be denoted by j'. This contribution is given by

j'(R) = —h.p 'A(R) . (3.2)

In addition, we have to take into account the correction to the paramagnetic part which is due to the change of
the gap in space. This correction is determined by the first term in curled brackets in the expression for 6 in
Eq. (2.15), and it will be denoted by Aji'. We obtain

ie
Aq,'(R)=-

m2

d3p

p,p;p
—'Q [-,' Tr(Gr3GriG Gr&GraG)&, pi+—2 Tr(Gr3GT2G GT2G73G)Vj$2].

(2~)8 m
(3.3)

By using Eq. (2.22) for G, we find

-', Tr(Gr)GriG GriGrgG) =2i—$2N~ ',
2 Tr(Gr8Gr2G Gr2Gr3G) = —2—zpiX~

(3.4)

If we insert these results into the Eq. (3.3) and introduce the complex gap P, as defined in Eq. (2.20), we obtain

de/ 'QE (3.5)

where n is the electron number density. The summation over m can be carried out by contour integration as
before, 7 and the result of the de integration can be expressed in terms of (A/Ar) [see BCS, Eq. (C19)]:

1 "d» d tanh-', PE) 1 A

deP —'P X —'= ——
4 0 E dE E r 4Az

(3.6)
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From the Eqs. (3.5), (3.6), and (3.2), we find for the total current density j= jo+Aj&:

ie 4e2

(3.7)

For temperatures near T, one obtains, with the help
of the relation between (A/AT) and gi [see Eq. (2.30)]
and the power series for g~,

(~/~~) lol '=2~2P'[1+2(«/~2) Ilail'+" ] (38)

The coefficient a~ is equal «»7f'(3)/8&' [t (&)
Riemann's zeta function]. If we insert Eq. (3.8) into
Eq. (3.7) and neglect the correction terms in IPPI', we

obtain exactly the second GLG equation. In the zero-
temperature limit (i1/h. r) approaches one.

IV. CONCLUSION

Our generalized Ginzburg-Landau-Gor'kov (GLG)
equations for the energy gap P(R) in the presence of a

magnetic field with vector potential A(R) are given by
Eqs. (2.31) and (3.7). The function gi(IP&l) has been
introduced by Bardeen, ' and the function y(IPPI) is
connected to gi through the relation y = (8/8&~)
X[(B/8$)gi] [see Eq. (2.30)]. These equations have
been derived under the assumptions that g(R) and
A(R) vary slowly over the distance of a coherence
length $0. In the high-temperature region, i.e., for
(P&0) (1,Eqs. (2.31) and (3.7) go over into Eqs. (2.32)
and (3.7), combined with (3.8). Here $0 denotes the

gap in the absence of fields. In these equations correction
terms to the original GI.G equations' occur, which are
proportional to powers in I/Pl' and (Pgo)'. In the low-

temperature region, more exactly, for IPPI)1, Eq.
(2.31) takes on the form of Eq. (2.33). In this equation
the function multiplying the term (V+.2i,eA)'p behaves
like exp( —IP&l) and therefore vanishes in the zero-
temperature limit. However, the second term in Eq.
(2.25) and the term in Eq. (2.26) will give rise to
additional contributions to Eq. (2.21), and thus to

Eq. (2.31), which are proportional to V'P and V'p*,
respectively. It turns out that the coeKcients of these
terms stay finite in the zero temperature limit.

Since the contributions proportional to A' and
A. Vg in our first generalized GLG equation drop out
in the zero-temperature limit, we have to take into
account also the terms containing five G's in our
expression Eq. (2.15) for the propagator G". These
terms lead to contributions proportional to (VP)' and
IP (we use H' as an abbreviation for [(V,A;)'+ (V,A;)
X (V',A,)+ (V;A,)']}.So far, we have investigated only
the H' term, and we have compared it with the 3' term.
The additional term on the left-hand side of Eq. (2.31)
is easily calculated from Eqs. (2.15) and (2.19) and
found to be

'vp e 8 l9

+ — 1+ I y!' —gi(l py I)15' a(II) I')' allgll'

X [(V'A,)'+ (V;A, ) (V;A ~)+ (V,A, )']Q (4.1)

From Eqs. (4.1) and (2.31) we derive that in the
temperature region near T. the ratio of the H' con-
tribution to the A' contribution becomes ——,'(a4/a2)
X(v~P)'(H'/A'). Therefore, this ratio becomes small
in the local region. However, for IPPI))1, the ratio of
the H' contribution to the A' contribution is found to
be of the order of magnitude (v~/

I p I
)'(I Pg

I ) '"
Xexp ( I PP I ) (H'/A'), and therefore the EP contri-
bution becomes predominant in comparison to the 2'
contribution. In the zero-temperature limit Eq. (2.31),
together with Eq. (4.1), (and W'p set equal to zero)
leads to the formula of Nambu and Tuan' for the
reduction of the gap.


