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The s-d exchange-interaction model has been widely used to explain many properties of magnetic metals
and alloys. In particular, it has been suggested that the short-range order of the spins in a dilute magnetic
alloy may give rise to the resistivity minimum eRect. This paper gives a general discussion of the eRect of
spin correlation on the resistivity. The short-range correlation of the spins is investigated by the cluster
expansion method. For dilute manganese-copper alloys where the Mn spins are believed to be coupled by
the indirect exchange mechanism, the predicted variation in resistivity around the temperature where the
minimum occurs is about 2 orders of magnitude smaller than the observed value. Hence, this model does not
seem to explain the resistivity minimum phenomenon.

I. INTRODUCTION Yosida' showed that this interaction can account for
the negative magnetoresistance of these materials. If
the coupling between the impurity spins is approxi-
mated by an effective Geld, the eventual drop in re-
sistivity of some alloys at low temperatures can also be
understood. Brailsford and Overhauser' suggested that
the resistivity minimum may be due to the ferromag-
netic interaction between the spins. They showed that
when a pair of closely spaced spins are ferromagnetically
coupled, they tend to scatter the electrons more
strongly than two uncoupled spins. The extra resistivity
has roughly the observed temperature dependence and
is proportional to the square of the impurity concen-
tration. A very similar model was also discussed by
Dekker. ~

The result of Brailsford and Overhauser seems to
suggest that the resistivity is sensitive to the short-
range order of the spins. The present paper investigates
this possibility in a general way. It is assumed that the
spins are coupled by the most general type of long-range
interaction. The short-range correlation betv een the
spins is investigated by the cluster expansion method.
The resistivity is calculated by solving the Boltzmann
equation. The result is that the resistivity due to spin
scattering can be expressed in the form

' ANY dilute alloys exhibit the resistivity minimum
~ ~ phenomenon. ' The recent experiment of Gold

et a/. ' makes it seem certain that this phenomenon is
caused by the transition metal impurities. As a sum-
mary of the experimental findings, one observes that
the minimum resistivity is roughly proportional to the
impurity concentration, and the temperature To at
which the minimum occurs depends on the impurity
concentration x through the power law

(Tp)" ~ x,

where v=5—6. These materials are also found to have
negative magneto resistance and anomalously large
thermoelectric power. In some alloys the resistivity
also has a maximum at a somewhat lower temperature.

One explanation of the resistivity minimum was put
forward by Korringa and Gerritsen, ' who postulated
that the scattering between the electrons and the tran-
sition metal ions undergoes a resonance when the
electron nearly has the Fermi energy. This model seems
to explain the phenomenon quite well, even though the
basic mechanism for the scattering interaction is not
understood. Recently Hedgcock and Muir4 found
further evidence for the resonant scattering from
deHaas-van Alphen measurement on zinc-manganese
alloys.

Another model that has been rather popular lately
is the s-d exchange interaction model. The basic
postulate is that there is a spin-dependent interaction
between the conduction electrons and the impurity ions.

p. =po+ IT'+o(&(T'),

where po is proportional to the impurity concentration
x, and a is proportional to x . Under suitable conditions
a can be positive, so p may increase upon lov ering the
temperature and, when combined with the phonon-
scattering contribution, give rise to a minimum. These

onclusions are in qualitative agreement with Brailsford
nd Overhauser. However, if one tries to 6t the experi-
ental curves by Eq. (2), one finds that a should be

oughly proportional to x for most dilute alloys. Hence,
he short-range effect does not seem to satisfactorily
xplain the minimum. Moreover, if one takes the spin

s K. Yosida, Phys. Rev. 107, 396 (1957).
6 A. D. Brailsford and A. W. Overhauser, J. Phys. Chem. Solids

15, 140 (1960).' A. I. Dekker, Physica 25, 1244 (1959).

' For reviews of the problem, see J. M. Ziman, Electrons and
Phonons (Oxford University Press, London, 1960), p. 344; F. J.
Blatt, in Solid State Physics, edited by F. Seitz and D. Turnbull
(Academic Press Inc. , New York, 1957), Vol. 4, p. 200; D. K. C.
MacDonald, in Handbuch der Physi k, edited by S. Flugge
{Springer-Verlag, Berlin, 1956), Vol. 14, p. 137. For recent publi-
cations not covered by these reviews, see the references listed in
R. R. Hake, D. H. Leslie, and T. G. Belincourt, Phys. Rev. 127,
170 (1962).

A. V. Gold, D. K. C. MacDonald, W. B. Pearson, and I. M.
Templeton, Phil. Mag. 5, 765 (1960).

3 J. Korringa and A. N. Gerritsen, Physica 19, 457 (1953).' F. T. Hedgcock and W. B.Muir, Phys. Rev. 129, 2045 (1963).
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coupling to be the Ruderman-Kittel-Kasuya-Yosida
coupling "as commonly assumed, one finds that the
size of the short-range effect in these alloys is also too
small to play a role.

II. BASIC FORMULATION

where f„' is the unperturbed distribution function

f. =
l
eet'~z~)+1j ', P= 1/kHT. The transition rate

8',„ is given by

W„=P p. P 2s i(nYiH i«)i'

X5(& +ea —& —ei ), (9)The model system is described by a total Hamiltonian
II which consists of the unPerturbed Hamiltonian for where n n' label the s in states such that
the Bloch electrons IIO, the spin Hamiltonian H„and
the interaction Hamiltonian Hz. Explicitly, '" H, in)=E. in),

p-=(~l pl~&=(~le '"'l~&/2 (~l e '"*l~)c& P
=~ 6yCkg Ckg,

ks

(10)

H, = —Q J,,S,'S, ,

Hz= Q Q [57' (Ck~t Ckt Ck'i Cki)
2Ãkk' ~

+5,+ck i*ckt+S,-ck t*cki]e""-""7'. (5)

(8f„/Bt)s„tz+ (8f„//)t), .)) 0, ——(6)

where f„ is the distribution function for the electron
state )i; )i designates both the momentum k and the spin
s. The two terms in Eq. (6) are defined. by (I)t = 1)

(8f„/at)s„iz —eE.&kf,', ——

(8f. =& LII'" f"(1—f)—I&-f (1—f")j, (8)
i Bt zoll

s M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).' T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).I K. Yosida, Phys. Rev. 106, 893 (195/)."P. N. Argyres, J. Phys. Chem. Solids 19, 66 (1961). This
special form of the transport equation is used because it seems to
be the correct equation that can be derived from quantum
mechanics.

Here ck,*,ck, are the creation and annihilation operators
of an electron in the state of momentum k and spin s,
ek is the energy of this state; R, and S, are the position
and spin of the jth ion; I is the matrix element of the
s-d interaction; .V is the total number of ions in the
sample. In the spherical-band approximation, eI, de-
pends only on the size of k. The coupling constant J;;
is a function of the vector distance R;, of the two spins.
The interaction Hz should also contain a spin-inde-
pendent part. However, since this part gives rise to a
temperature-independent resistivity and since there is
no cross-product term between the spin-independent
and the spin-dependent interactions when there is no
long-range order, one may ignore the spin-independent
interaction in the present discussion. The matrix
element I should normally be a function of the initial
and final momenta k and k'. It is simplified here to
facilitate the calculation.

The electrical resistivity due to the interaction Hy is
calculated by the Boltzmann equation method. For
general scatterings the Boltzmann equation has the
form"

p is the density matrix for the spins, and the states in&

form a complete orthonormal set. Using the identity

1
5 (x) =— e'rzdt

2~

one can readily write

il'. =Z p-2 e"" "'"(n')i le 'rHZHre'r 'i«)

X(«l Hr
I
~"'&dg

Defining (Hr), .= ()i'
l
Hr

l )i), one finds after some simple
manipulations

ez ( zk—zk ') rdl

XTr[e-:t" (H,)„.„e'r p(H, )„„.], (11)

where the trace is taken over all the eigenstates of the
spin system. The quantity 8', „can be found by ex-
changing the indices K and )i' in Eq. (11). Next, one
evaluates (Hr) „.„from Eq. (5) and substitutes the result
into Eq. (11).This gives

I7I/ktk't eiizk-zk

4)V'

XTr[p e irHZS zeirHzpS z]e—i(k k') R77r—

where ( ) denotes a thermal average. Putting these
results into Eq. (8) and averaging over the spin states

and similar expressions for 8"ktk q, etc. The trace has
the form of a two-time correlation function of the spins
because, if one defi.nes

S,(l )= e'rH'S;e —'rH

one finds

Tr[Q e irHZS zeirHzpS z]ei (k—k') ~ Rzz'

p (S,z(l.)S,Z(0))ei(k—k') ~ R77
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of the incoming electron, one obtains

gf 12 co

Bt „)) 4S'
"'«~ Z &&S,(0) S;u))

xfg (1—f,)—&S,(g) S,(0))fg(1—fg )}
y ei(k—k') ~ Rii (]2)

The symbol g („--) means a sum over all clusters of
e—nz spins that can be formed out of i, j and any set
of m —m —2 of the remaining e—2 spins . Then the two-
time correlation function has the cluster expansion

&S,O) S,(0))=G,('j)+P G, ( jl k)

+Z G ( jlki)+ (»)
Hence, the calculation of the resistivity depends on the
evaluation of the two-time correlation functions of the The Proof for this exPansion is very simPle. It is clear

sp ins . that.

&S,(f ) S,(0))=F&„
III. EVALUATION OF THE CORRELATION

FUNCTIONS

In this section the correlation functions that appeared
in Eq. (12) are evaluated by the cluster expansion
method. This method is useful in studying dilute
systems because it will be shown that for a random
system the cluster expansion is equivalent to a density
expansion.

The general cluster expansion for the partition
function was erst discussed by Kubo."A very similar
method will be used here for the correlation func-
tions. The calculation is illustrated by expanding
&S;(f) S,(0)) for i&j.One defines

where Xo is total number of spins . From the definition
of G~„one can write

Ggo —F/0 Q Ggo —i Q Ggo

—E G (ijlk) —G ('j).

The result in Eq. (16) follows by transposition. The
cluster property of the expansion is also easy to
establish . If the spin k do es not interact with any of
the rest, then it is clear that

H, (ijk) =Hp (ij)
Hi (ij)= —J;,'S,' S;,

H, (ijk) = —J';,S; S—J,&s,' S&—J,&S; S&,

and, in general,

H„(ijk .) = —P J;,S,' Si,
(zi )

(13)

So

etc. Hence,

H. ('jkl" .)=H„-,(i jl" .) .

Fi(ij I k) = Fg(ij),
F4 (ig I

kl) =Fq (ig I
l)

where the sum is taken over all interacting pairs of the
e spins . Next one defines the e-spin density matrix

p„(ijk )= e e~"("~"')/Tre e~"("i~ '), "(14)

where the trace is taken over al 1 the eigenstates of
H„(ij k ). Then one defines the functions F„by

Fi(ij)=Tr[&i(if )e(r&2((i)S e ir&2(ii) .S~].—

Fi(ig I k) =Trgpi(i jk)e' ~r' "' ("i)Se 'r~&("").S,],
and

F„(ij I
kl ) =Tr[p„e'r~"S,e "r~" S,],

and the functions G„by
G (ij)=F (ij)

Gi(ij I k) = Fi(ij I k) —Gi(ij)

G.(ij I
kl. )=F (ijl kl .)—Q G i(ij I

kl. . )
(n—1)

G, (ig I k) =F,(ij)—Fi (ij)=0,
G4(ig I kl) = Fi(ijl l) —Gi(ij I l) G, (ij)—=0,

and, in general,

G„(ij I
kl" )=0,

for every n. The proof can be extended to show that
if the spins can be divided into two noninteracting
groups, then any G„which contains members from both
groups is identically zero. In other words, Eq. (17) is a
linked cluster expansion.

In a similar manner one can expand &S„(|) S,(0))
into a cluster expansion whose leading terms are

&s,Ã .S,(0))=s(sy 1)
+P; (TrL (ij)e' ~r' "(S), e'r"'("'') .S;)

—s(s+ 1)}+ . . (18)
Therefore,

Z &S'(r) S'(o))e"" ""*'=&os(s+1)

(n—2)
G„(ig I

kl .)—

G3(iy I k) —Gi(ij) . (16)

+E (»I:~i(ii )e"""'"~~e '""""'Sij S(S+1)}—
+p TrLp (ij)e(res( i) S,e—'r"2('i& . S,J'e'(&—&')

R Kll4op J Ph ys. Soc. Japan 17, 1100 (1962) . +higher order terms. (19)
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In a polycrystalline random alloy one should average
the result of Eq. (19) over the positions of the spins
and the relative orientation of the pairs. This gives

Putting these results into Eq. (20), one obtains

Q (S,(P) S,(0))e'&

P (S,(f) S,(0))e'"-"' * =X&(S+1)+&V,x
i7

Xp (Tr[p&(0j)e'r '(")Soe 'r~'(") So]—S(5+1))

+p/ohio Q Tr[po(0j)p(r&o( /) So&
'r'Ir (2"/) .S,] where

+-~o& P [So'S']S(q~')
7

+-"Vox Q F(0j)[1—$(qR,)]+0(x'), (22)

where S(qR;) = sin(qR;)/qR;, q=
~

k—k'
~, x is the

density of the impurities Xo/X, 0 is any convenient
reference point in the lattice, R; is measured from 0,
and the sums are now taken over the whole lattice.
The higher order terms of the expansion involve the
interaction of more than two spins, they are propor-
tional to higher powers of the density.

The method of evaluation of the various terms in

Eq. (20) is illustrated below for 5=—,'. The identity

For general S the result can be written down in terms
of the Clebsch-Gordan coeKcients.

To summarize this section, a cluster expansion is
developed for the two time-correlation functions in Eq.
(12). The leading terms of the expansion. are explicitly
calculated for 5=-', case. In a dilute random alloy the
cluster expansion is shown to be a density expansion.
The convergence of this series of x is very diffcult to
establish. One is more or less guided by physical
intuition to expect that the properties of a dilute system
at a finite temperature can be approximated by a finite
number of terms of the expansion. In the present
problem, the lowest order collective effect of the spins
is given by the pair interaction terms.

exp(a&ri oo)=4(1—(ri (ro)e ' +-'„(3+(ri eo)e, (21)

where a is any number and e&, o2 are Pauli matrices,
will be very useful. For example, the two-spin partition
function

Tr(e ~~'("))=Tr[exp (oiPJo (ro &r )]
2 e (o/4) p&o/p—o

&,
(i/o) p&o/

2 IV. CALCUATION OF THE RESISTIVITY

XS(qR.)+0(x') (20) F(0j)= [So S/]{[cos(fJo,)—1]coth( —', P Jo;)
i—sin(i'Jo, ) ) . (23)

because Tr ((r, &ro) =0 and Tr (1)= 2. S'ince

So&
"VII&(02') —

&
(r—/Io(0&) So+

—[So e (rH&(0/) )—j )

using Eq. (21) and the multiplication rules of the
spinors& one can find

[So (,
—(r&o(o/)] —(, ((roX (r,)[( (8/4)r J»—e((&/4)r Jo/]

In this section the resistivity is calculated by finding
an approximate solution of the transport equation, Eq.
(6). Using the result of Eq. (23), one can write the
collision term Eq. (12) as, for 5=—,'

(
Bf), 2mlo

Q ([A(oo, oo )at,.)( 4.V' ~

Therefore, +Z»(oo oo )&(P~)]fo (1 f))

—[A(oo., oo)+P»(oo)oo)S(P/)]f), (1—fo)) ) (24)

e(tlat' o~) Soe (rao(o» So+(,&rIr2(0&) [S&) &,
"rH (o&)]o—

)

=So+4(So—S;)(e' ro/+e 'r»' 2)—
,'i(SoX—-S)(e' r» e'r /)—, o

where

A(oo, oo) =-,'1Vo()(oo—oo )where Eq. (21) is again used to expand the product. It
is now a simple matter to calculate the traces in Eq.
(20). One finds that

+1Vox P [So S;] l)(o„—«„.+J&),)
et'~07 —1Tr[p~(0j)eirao(o& So&, 'ter""'So]-

=S(S+1)g-', (-;—[S, S;])[cos(|Jo )—1]
f[So S;]—sin(&Jo;), () (oo ok Jo;) c'oth (-,'P—Jo&)()(co oo&)

where

Tr[po(0j)e'r)ro(o/)So&. —(rao(o/) .S.] eP 07

=[S'S~]——:(-:—[So S;])[-(rJ.,)—1] and

+i[So S,] sin(Vo/) 8 (oo oo)=Pot[So S;] [1+coth(-', )&)Jo;)]()(oo—oy )

[So.S;]=Tr[po(oj)So S;]
—3 (&,

(ilo) p~» g (o/4) p~»')/—
4(g—(8/4) p Jo/+ 3g(1/4))o Jo/)

I)(oo—oo +Jo;)
et'~» —1

Also

4
—LSo S/]=2[So S/] coth(oPJo))

l) (oo—oo —J„) . (25)
el'~07 —1
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The transport equation is solved by the ansatz"

fx——fio+kgc(pi) 8fio/Boi,

fk f——~'+k, 'c(p, .)af,'/a p, . ,

where the s axis is chosen to be the direction of the
external field. The unknown function c(oi) is assumed
to be a smooth function of the energy. Using the
following relations:

8(&~—pi )[fp'(1—fio) —fl, '(1—fi )]=0,
b(o p pi —+Jo,)[e~ '~ fp''(1 fP—) fp—'(1 fi—')]=0,
&(oa —p~ —Jo,)[f~'(1—fP) —e""f~'(1—f~')]=0,

one can readily verify that

[2 (op) po, )+Q 8j (pi) oo, )S(qR,)]fi'(1—fp')

Then one may carry out the summation on k' by using
the results

Q b(pi, —pi, ) = ,'N(op),
k'

Q 5(po —oi, &Jp, ) =-', lV(pi &Jp;),
kl

where N(oi, ) =mkU/pr' is the density of electron states
at eA,. Ordinarily Jo,((ej, for &~=op, so one may take
N(op+ Jp, )—N(oi, ) since N(pp) is a smooth function.
Since it is assumed that c(oi) is also a smooth function,
so c(oi+Jp;)—c(p~). Then one can write

8' 2vrIP Bfk'
k,c(pi) X-', N(pa)F(oI),

Bt „)) 4%2 BeA,

where

F(op)= 4oNo+Npo-pg [Sp S,][L(kR;)—M(kR;)]

Hence, the zeroth-order term vanishes. If one also
neglects the products of c's, one obtains a linear
expression in c.

&fp rifi
D(pi„pi, )k,'c(pp )

co)) 4g k'

~ A.
"

—D (op, op)k, c(ep)
BEy

where

D(pp, pp ) = [A(pp, oo )+P I3, (pi„po )S(qR,)](1 fk')—
+[a (...p,)+P I3,(....,)S(qR,)]f,o

,'Noh(pp -pj, )+%pop P [Sp'S ]S(qR,)

Xb(pp —p„.)+Nod p [Sp S,][1—s(qR;)]

+No@ Q [So S;][1—L(kR, )+M(kR, )]

f'( +Jo) f'(" Jo)—
X e~~0 +

ed~07 —1 fio

—coth (-,'PJo;)

From Eq. (7) one finds that the drift term is

(
af,

)
afa' k. aja'

= —eE = —eIi-
Bt g»f~ Bk, tÃ Bej,

Putting these results into Eq. (6) one obtains

[c(pi)] '= 7rmI'N(pi)F(o—i)/4N'eE. (26)

The current density is

' e&~0~ —1

X[&(pp—pi +Jo;)+ee~"&(pa—
pi,

—Jo;)]

2e
&"fp=—

U ~ m(2pr)'

= —ekp'c(op)/37r'.

ufo
k, I,

' k,c eI, — d'k

(27)

—coth( —,'pJo, )p(p„—&„,) . Therefore, the resistivity is

Now one averages over the angles of k'. It can be
veri6ed that

(S(qR,)), =I.(kR,),
(k,'S(qR, ))p

——M(kR, )k„
where

L($)= (1/2P) (1—cos2$),

M ($)= (1/2)4) [P+1+(P—1) cos2$—2$ sin2$].

"See A. H. Wilson, The Theory of 3feluls {Cambridge Uni-
versity Press, Cambridge, England, 1954), p. 268.

E 3+'L~

p(T) = = — [c(o~)]—'
j ek p'

=37r'mI'N (op)F (p p)/4 V'e'k i'.
Hence,

p=po{1+-;xQ [So S;][L(kpR;)—M(kpR;)]

——;~g [S,.S,][1—L(k~R;)+M (k,R;)]

Xtanh(piPJog. )}, (28)
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where
pp= 97r'mN (es)N p/16iV'e'k p'

=97''Is Vpx/16e'k p'. (29)

where
pp=37rm'I'V pxS(5+1)/4e'kp'

for general spin S. The approximation in Eq. (30) is

obviously a good one when S is very large. For S=—,',
one may compare Eq. (28) and F,q. (31) at high
temperatures. To the first order of P, it can be verified
that

(Sp' S )=LSp ' S ]—i pP Jp&',

tanh(s pJ„)=-',pJ„.
So the last term in the bracket of Eq. (28), which is the
contribution of inelastic collisions, is of the order P .
Therefore, to the order P, only the elastic scatterings
need to be considered and Eqs. (28) and (31) agree.
This conclusion should also hold for higher spins.

V. DISCUSSION

The result of Eqs. (28) and (31) shows that at high
temperatures where the spin correlation is negligible,
the resistivity is pp. At lower tenlpelatules whele the
collective eGect of the spins becomes significant, the
modification to the resistivity is at least of the order x'.
These conclusions are in agreement with Brailsford and
Overhauser. To the lowest order of PJp;, one finds

p(T) =pp+a/T+0(P', x'),
where

a= ppxS(5+1) P Jpz(L(kpR;) —M(kpR, )]/3kB (32)

and k~ is the Boltzmann constant. If the sum in the

' P. G. de Gennes and J. Friedel, J. Phys. Chem. Solids 4, 71
(1958)."Y.A. Rocher, I. Phys. Radium 22, 367 (1961).

Vp is the volume of the unit cell.
It is interesting to note that de Gennes and Friedel"

and Rocher" studied a similar problem, the effect of
short-range order on the high-temperature resistivity
of ferro- or antiferromagnetic metals, by the "elastic
scattering approximation. " The method essentially
ignores the energy transfer between the spin system
and the conduction electron. Or equivalently, one
approximates

(S (f) S'(o))=(S'S') (30)

As a. result the collision term Eq. (12) consists only of
elastic scatterings and the transport equation is easy
to solve. The resistivity as found this way is

(Sp S,)
p(T) = pp 1+xg [L(kpR, )

i 5(5+1)
—M (k,R,)], (31)

Tp = (a//Sb)"' ~x"', (33)

since a is proportional to x'. Therefore, the concen-
tration dependence of Tp disagrees with the experi-
mental law, Eq. (1), for most alloys.

In dilute alloys where the spins are on the average
rather far apart, the coupling mechanism between the
spins has been shown to be due to the second order
effect of the s-d exchange interaction. ' "The coupling
energy Jp, is given by

Jp, ———np(2k pR, ) ')2k pR, cos(2k pR, )—sin(2k pR, )]
and np=9rrIsZ'/4e p, Z is the valence of the solvent ion.
The summation in the expression for a will involve
lattice sums of sin(2k pR, )/R, and cos(2k pR, )/R, e

and their products. Since the sine and cosine function
are rapidly oscillatory, one may approximate them and
their products by the average values, i.e.,

cos (2k pR, )—sin (2k pR, )—0,
cos(2k pR, ) sin(2k pR,)=0,

cos'(2k pR, )—sin'(2k pR, )=-', .
This gives

Q Jp,D (k pR, ) M(k pR, )]=—n p P
7 16kp'R„'

Therefore, u is, indeed, positive. If one approximates the
lattice sum by an integral, one finds

1

7 R,' Vp

~ 4zR'dR 2z

R' 7

c'

where c= (Vp)"' is the linear dimension of the unit cell.
From these results one finally obtains

a—nppxS(S+ 1)np/24k~ (k pc) '.
It is now possible to make a numerical estimate of a.

The solutions of manganese in copper is used as an
example. The commonly accepted value for the s-d
exchange-interaction constant ~I~ is about 0.5 eV. iP

Taking 5=2 and the effective mass ratio to be unity,
one 6nds for a 0.03% alloy

pp—0.6&(10 8 Q-cm,

which is comparable to the observed minimum re-

sistivity 2.2&10 Q-cm. "The spin-coupling constant

"A. Kjekshus and W. B. Pearson, Can. I. Phys. 40, 98 (1962).

expression for u is positive, then the resistivity tends
to rise when the temperature is lowered. The total
resistivity of the material is p(T) plus a phonon
contribution, i.e.,

I i(T)=~(T)+bT'
pp+—a/T+ b T'.

It is apparent that if a) 0, pi (T) can have a minimum
at a temperature Tp such that
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'vp is estimated to be about 4)& 10 "erg. Using 2kpc=2x,
one finds that for two spins at a distance c apart, the
interaction energy is roughly 12'K. The resistivity
minimum occurs at about 12'K. Hence, it is safe to
use the high-temperature expansion at around this
temperature because the average nearest neighbor
distance is much larger than c. One then finds that for
x=0.03% the change in resistivity from 8 to 12'K is

roughly
5p =5)(10—"Q-cm.

However, the observed variation is of the order of 10 "
Q-cm."This shows that the spin correlation effect does
not explain the resistivity minimum phenomenon. At
the present moment the resonant scattering theory
seems to be more satisfactory because it is supported
by another experiment.
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The energy gap equation and the current density expression for a superconductor in a slowly varying
static magnetic field are derived on the basis of a generalization of Nambu's Green's function formalism to
finite temperatures. In the integral equation for the quasiparticle Green's function G~(R; r), expansions
of G~, the self-energy part Z, and the vector potential A, about the center-of-mass coordinates R, are intro-
duced. The integral equation is solved by iteration, and the contributions of all orders in the gap 4 (R) are
summed up. With the help of Gs, the generalized Ginzburg-Landau-Gor kov (GLG) equations, valid at all
temperat'urea for slowly varying A(R) and 4 (R), are derived. For temperatures near T„correction terms
to the coefficients of the GLG equations occur which are proportional to powers of ~P4 ~'. For temperatures
near O'K, the function multiplying the term (&+2feA) p behaves like exp( —

~ P4 ~). The first-order correc-
tion to the term proportional to 2'is found to be proportional to $0'H', for T near T, and near O'K (H =mag-
netic field strength, ps = coherence length). Our results are consistent with the formula of Nambu and Tuan
for the reduction of the gap at O'K in the London region.

I. INTRODUCTION

~ QUATIONS for the superconducting energy gap
~ in the presence of a magnetic field on the basis of

the Bardeen-Cooper-Schrieffer' (BCS) and Bogoliubov
microscopic theory have been derived by Gor'kov. '
The validity of these equations is restricted to tem-
peratures T, such that T.—T&&T„and to the local or
London region where qgs&&1. Here T, is the transition
temperature, $s is the coherence length, and the q are
the wave numbers of the field. By defining a wave
function proportional to the energy gap, Gor'kov was
able to transform his equations into the Ginzburg-
Landau' phenomenological equations. In the following,
the Gor'kov version of the Ginzburg-Landau equations
is referred to as the GLG equations.

The GLG approach has been used to estimate the
magnetic field dependence of the gap. 4 One finds good
agreement between theory and experiment down to

' J. Bardeen, L. N. Cooper, and J. R. Schrie6er, Phys. Rev.
108, t&75 (&957).

s L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959)
/translation: Soviet Phys. —JETP 9, 1364 (1959)g.' V. L. Ginzburg and D. L. Landau, Zh. Eksperim. i Teor. Fiz.
20, 1064 (1950).' See, for instance, D. H. Douglass, Jr., Phys. Rev. Letters 6, 346
(1961); 7, 14 (1961);Phys. Rev. 124, 735 (1961).

temperatures of about 0.7 T,. However, one expects
that at the lower temperatures corrections to the GLG
equations will become significant. The aim of this paper
is to generalize the GLG equations to all temperatures,
under the assumption that the vector potential A(R)
and the gap ~t (R) vary slowly over the distance of a
coherence length (s. Our main concern is to establish
the connection between the first generalized GLG
equation and the equation of Nambu and Tuan' for
the reduction of the energy gap at zero temperature
in the local region. A characteristic point of their result
is that the reduction of the gap depends only on the
magnetic field strength.

Gor'kov has derived his equations with the help of
integral equations for the quasiparticle Green's function.
These integral equations were solved by iteration in
powers of the gap, and only terms up to the fourth
order in the gap were kept. This latter approximation
is the origin of the restriction T,—T&(T,. Our calcu-
lation is based on a generalization of Nambu's' two-
component Green's function formalism to finite tem-
peratures which has been developed in a previous
paper. ' Under the integral of the integral equation for

' Y. Nambu and S. F. Tuan, Phys. Rev. 128, 2622 (1962).' Y. Nambu, Phys. Rev. 117, 648 (1960).' L. Tewordt, Phys. Rev. 128, 12 (1962).


