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Nuclear Polarization in Homogeneous InSb by a Direct Current*
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Clark and Feher have shown that an electric 6eld applied to InSb in a constant magnetic 6eld produces
nuclear polarization. Two mechanisms are suggested here to account for nuclear polarizations in homo-
geneous samples. In one mechanism, the kinetic temperatures of "spin up" and "spin down" electron dis-
tributions, 8n+ and 8a, are assumed to be different. It is shown that a nuclear polarization of order S+/Ar
= (mr (8tt )/mr�(8tt+) gP&, (8tt )/r~ (8tt )) may be produced in this case. rtr and r, are the nuclear and electronic
longitudinal relaxation times (Tq s). In the second mechanism, the momentum distribution is assumed to
be displaced by an amount AP due to the applied electric field. A nuclear polarization of order Ap'/2ut*E&
may be induced in this case. It is suggested that a sizable fraction of the nuclear polarization observed by
Clark and Feher is due to the first of these mechanisms.

I. INTRODUCTION
' 'T has been shown by Overhauser' that in a system
- - in which electrons interact with nuclei via a scalar
interaction A(I s), a certain type of nonequilibrium
stationary electronic distribution results in nuclear
polarization exceeding the equilibrium value by a
factor of order y, /yN. , where y„y~ are the electronic
and nuclear gyromagnetic ratios. Feher' has generalized
this and shown that when the distribution can be
characterized by spin and kinetic (reservoir) tempera-
tures 0„0~, and 0,/eg, then a nuclear polarization of
order tanhLco.

l
1/8tt —1/8,

I ]may be obtained. &o. is the
Zeeman energy of the electrons in the external magnetic
field. He suggested that a stationary distribution in
which Og/0, be established in a semiconductor by
applying an electric 6eld that is suKciently strong to
ensure that Ohm's law is broken (i.e., that the electrons
are "hot"). Clark and Feher' have shown, that an
electric direct current of a few milliamperes can, in
fact, polarize indium and antimony nuclei in InSb.

It is unlikely that the momentum distribution of hot
electrons can be characterized by a unique tempera-
ture4; furthermore, if the distribution could be char-
acterized by a temperature, and the electron spins were
relaxed by interacting with the conduction electrons
only, 8, would equal 8tt (though both might differ from
the lattice temperature 8t), and no excess nuclear
polarization would result LFig. 1(a)].

The transport phenomena in InSb are not yet fully
understood, so at the present stage we try to understand
the relevant processes leading to a nuclear polarization
by means of certain artificial, vastly oversimplified
models. One model describing a system in which a
diHerence between 8~ and 0, is established was suggested
by Feher. I See Fig. 1(b).j Paramagnetic impurities
possessing a very short spin lattice relaxation times are

introduced into the lattice. If these impurities interact
with the conduction electrons su%ciently strongly by
means of some exchange-type interaction, a difference
between 8~ and 0, can be established in the stationary
state. Another model was suggested by Clark and
Feher. ' ' They show that when some inhomogeneity is
introduced into InSb by inhomogeneous concentra-
tions of impurities, or by inhomogeneous electric fields,
0, at a given point in the semiconconductor may diGer
from Oz at that point, and, consequently, a nuclear
polarization may be obtained LFig. 1(c)].In the present
paper, we shall consider idealized models of homo-
geneous systems, in which no localized paramagnetic
impurities are very effective. We shall also assume that
the relaxation processes can be described by rate
equations. Two types of situations will be considered:
(a) The electronic "spin up" and "spin down" distri-
butions will be assumed to be described by tempera-
tures, Og+, 0~, which, however, will no longer be
assumed equal

I Fig. 1(d)7; and (b). The electronic
distribution will be assumed to be displaced in mo-
mentum space I Fig. 1(e)j.

II. THE ELECTRONIC AND NUCLEAR
RATE EQUATIONS

In the present paper we neglect nuclear quadrupole
effects. Consequently, we can consider, without loss of
generality, systems in which the nuclear spin is J=2.
I
The population ratios E(I,)/ft/(I, 1) depend only-

on the nuclear Zeeman energy co~ and not on J. The
nuclear polarization depends on I, of course. $ Let It/+,

X be the fractions of nuclei with I,=+-,', ——',, respec-
tively. The nuclear spin rate equation will then be'

dE

xf-(p)L1-f+(p') J—f~'-l(p', + I3c~,
I p, —) I

&f+(It') k1—f (It)3~(It' —It"+~.—~~) (1)

In this equation, 3C&,=A(I ~ s) is the electron-nuclear
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Feher's expression for the nuclear polarization'
follows immediately from (1).Let

f+(y) = (exp[(p' —Es)/8iraio, /28, 7+1)-'.
This equality may be regarded as a definition of 0,.
Note that 8, de6ned this way satisfies the relationship
lim„„f+(y)/ f (p) = exp (oi,/8, ), which may be regarded
as an alternative definition of 8,. Substitute in (1);
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—S—exp[(y' —Er)/8g+oi, /28, 7) .

Making use of the relationship ps= p"—oi,+oi~ ensured

by the 5 function, the last term can be written in the
form

exp[(p"—Es )/8is —oi,/28, 7
X fE+ JV exp[ ——oi, —oiiv)/8g+oi, /8, 7) .

nuclei

Fro. 1. (a) The "hot electron" scheme proposed by Feher. Nu-
clear polarization is produced when giigg„(b) the scheme sug-
gested by Feher to provide for a difference between ep and 8„(c)
the scheme employed by Clark and Feher to establish a difference
between Oz and 0, by the application of an inhomogeneous electric
field; (d) different kinetic temperatures of "spin up" and "spin
down" distributions can result in a net nuclear polarization. See
Sec. III; (e) a displacement of the momentum distribution can re-
sult in a net nuclear polarization. See Sec. IV.

hyperfine interaction, f+(y), f (p) are the distribution
function for "spin up" and "spin down" electrons,
respectively, and y is measured in such units that
p'=E(p) is the electronic kinetic energy. oi, and oiiv

are the electronic and nuclear Zeeman energies. The
+, —,signs in the expression for the matrix elements
refer to the electron spin.

A similar equation governs the relaxation of electrolzc
spins and is

d'Iz 2x'
=—& &(I&p —I5C nip', +&I'

dr. A ~ u'

xf (p)[1—f+(p')7 —l&p', +I5(' ~lp, —)I'
Xf+(y') [1—f-(p) 7»(p' —p"+~.) . (2)

Here, n+=Ps f+(p) is the density of electrons with
spin "up" and "down, " respectively. BC,z is the Hamil-
tonian describing the interaction between the electronic
spins and the reservoir. The electronic direct spin-
lattice interaction is not included in this formula.

Thus, when (X+/E ) exp( —oisr/8ir) = exp[oi, (1/8, —1/
8g)7 then dE+/dt=0. This proves Feher's relationship
for the case of Fermi-Dirac statistics.

The following theorem follows directly from (1), (2):
Theorem I: If oiiv is neglected in the 8 function in (1),

and if l&p,
—I&~.111', +&I'=cf&p, —I3'.~le', +&I',

where C is independent of p, p', and if dN+/dt=dn+/dt
=0, then Ã+=E .

The proof of the theorem is trivial. Its significance
is that, when the matrix elements for nuclear and
electronic relaxation are proportional, no nuclear
polarization (in excess of the Boltzmann value) is
present in a homogeneous system in the stationary
state. This lack of polarization is independent of the
form of f+(p), f (p), and, thus, will hold for any
electronic distribution. The matrix element for hyper-
fine interaction is independent of y, y', consequently,
if the matrix element of the interaction responsible for
electron spin relaxation is independent of y, y', then
no nuclear polarization is possible with the schemes
discussed here.

III. DIFFERENT KINETIC TEMPERATURES OF
"SPIN UP" AND "SPIN DO%'¹' ELECTRONS

The electrical conductivity of InSb at low tempera-
tures is due to electrons (or holes) in the impurity
band. If the semiconductor is not compensated, the
concentration of electrons equals the concentration of
charged impurities; if it is compensated, the density

The definition of 8, is not trivial. In this connection, see C.
P. Slichter, Phys. Rev. 99, 1822 (1955).
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relaxation times. When 7, and r~ have the same
temperature dependence, there will be no nuclear
polarization (in excess of the Boltzmann value). This
is a slight generalization of Theorem I. For the hyperfine
interaction postulated for this model, rN(8) is inversely
proportional to 8. Consequently, if r, (8) is proportional
to 8 ', then N+/N = (8a+/8~ ) &

thus if 0. is of order
unity, nuclear polarizations of order unity can be
expected, if a sizable temperature difference can be
established between the spin up and spin down elec-
tronic distributions.

This is the main result of the present paper, therefore
it may be advantageous to dwell on it further. The
treatment of the rate equations here follows the lines
of Overhauser's paper. ' Following Overhauser's paper,
his results have often been described in a slightly
different way; see Fig. 2(a) and Ref. 5 p. 345. Let
K(&, &) be the probability to find an electron-nucleus
pair with s,= &~i, I,=&-,'. (The first sign refers to the
electron; the second to the nuclear spin. ) Then, by (6),

x(+, —) x(+, +)
01(-, —) ~(-, +)

( (o. r, (8~+) 1+exp((v./8~+)
= expI (6a)

(8g r, (8g ) 1+exp(~./8~ )

K(—,+) ( a), r~(8g ) 1+exp((u, /8ii )= expI- (6b)
X(+, —) 5 8z r~(8g+) 1+exp(&u, /8g+)

Consequently,

N+ X(+, +)+K(—,+)
N x(+, —)+—ot(—,—)

X(—,+) &(+, )r, (8g+) r~—(8i~-)

~(+, —)~(—,—) .(8.-) (8")

Note that when ~,&&8a, 8g+, then (6a) reduces to

&(+, —) &(+, +) r.(8~')

~(—,—) ~(-, +) "(8.-)
thus, if we can maintain a difference between 8~+ and
8g, we can establish an electron spin polarization
(i.e., a very low spin temperature), and in principle at
least, invert electron spin polarizations.

When 8g&&Eg, and we have degenerate Fermi
statistics, the preceding approximation does not apply.
However, we can estimate the nuclear polarization in
this case, assuming for simplicity that 8g =0, co.(&Ep.
(See Fig. 2.) Let us define a dimensionless parameter y
by Ep +co,=Ei++y8z+. JEST+, Ei are defined by
f(E&)=—,'.j The rate equation for the electronic spin
transition is now

dt

Xp(E)p(E+(u, )P, (E, E+ca,)$1 f+—(E+(u,)j
dE p(E)p(E+~.)P.(E, E+~.)f+(E+~.)

=p(E~ )p(E~+)I 8~+(1+v)P (E~+ '8m+—)-
8z—+(1 v—)P.(E~++k8r+)j (&)

In addition there is a term involving dp(E)/dE, but
this term will not create a nuclear polarization, by
Theorem I. In the stationary state, de+/df=0 and,
therefore,

~= k~lP. (E.+)jLdP. (E.+)/dE j8.+.

Let us define a dimensionless quantity 0, by

n 1 dP, (Ep+)

Ep+ P, (Ep+)

When the transition matrix element depends on E, n
will be diferent from zero, and if the dependence is not
very weak, n will be of order unity. Thus, & =n8z+/E&,
and the nuclear polarization will be of the same order.

IV. DISPLACEMENT OF THE MOMENTUM
DISTRIBUTION

When the electron-electron interactions are strong
compared with the electron lattice interactions, 8~+
=8g, and the mechanism discussed in Sec. III cannot
yield appreciable nuclear polarization. However, under
the inhuence of a strong electric field, the electron
momentum distribution as a whole may shift, and if
this shift is appreciable, it can induce appreciable
nuclear polarization LFig. 1(e)j. The displaceinent hp
of the distribution is given by Dp=m*Aitq„it ——m pe,
where m~ is the effective mass (assumed isotropic), p is
the mobility, and e is the applied electric field. If the
displacement is small, i.e., hp'/2m~&&8~, we can expand
the distribution function in powers of Dp and evaluate
the rate equations. Let us express hp in units of
(energy)' ' i.e., in units of p/(2m~)' '

(a) Maxwell-Boltzmann Statistics

It is not dificult to show that for a Boltzmann
distribution, and for momentum-independent matrix
elements, a momentum shift Dp will result in an extra
electronic spin polarization of value

(+/ ) p(—./8 )=1—~p'Xl(. /8 ) (g)

this approximation being good to order hp . Similarly,
for the nuclear polarization, the same expansion yields

(N+/N ) exp( ~~/8g) expI cv, (1/8, —1/8~) j
=1 &p'X 3(~,/8a). (9)—-
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then the two distributions are proportional. Therefore,
to order hy', the displacement Ay is proportional to an
increase in the kinetic temperature of hog= —43hy'. A
change in 8~ per se cannot produce a nuclear polar-
ization (in excess of the Boltzmann factor), and our
theorem is proved.

Consequently, for a slightly shifted Boltzmann
distribution, the nuclear polarization can be at most
of order (hp'/8~)'.

When Ap' is no longer small compared with Hg, large
net polarizations may be induced. To illustrate this
point, we shall estimate the nuclear polarization for an

When we make use of (8) to evaluate 8, by the relation-
ship e+/e = exp( —&u,/8, ), and substitute this value in
(9), we get E+/1V =exp( —cvii/8~), which indicates
that no nuclear polarization in excess of the Boltzmann
value is established. This is, of course, an immediate
corollary of Theorem I. We shall prove even a slightly
more general result; namely, for Boltzmann statistics,
there is no increase in nuclear polarization to order
Ay'/8~ even if the matrix element for an electronic
spin fhp depends on

I y —y'I. The proof is as follows:

Let f+(p) =8~ ' '2+(8,) exp( —p'/8~). Then,

f'(y —~y) = f'(p)+2(p ~y/8~) f'(y)
+2L2(p ~p/8 )'—~p/8 ']f'(p)+ (1o)

The term in the rate equations which is proportional to
Ap will vanish, due to the symmetry of the system.
(Changing the direction of the applied electric field
cannot change the nuclear polarization in the present
situation). Also, when the angular integration is
performed, (y Ay)' is equivalent to sy'hp'. Thus, (10)
is equivalent to

f'(p —&y) = (1 »y'/8~—+ 3 y'~y'/8~') f'(y)
We can also expand f+(p) as a power series in 8g,

f'(p, 8 +~8 )=L1+(p'/8 '—3/28 )~8 )f'(p,8~).

Thus, when

46y' ( 2d p' Ae 250m)

38'' 4 8g 8z' ~ex

artifi. cial model in which the electronic spin-Aip matrix
element is proportional to 1/(p —p')', and Ap'))~, .
Let us consider for simplicity a one-dimensional model,
since this does not alter the basic physical features.
The rate equation (2) reduces in this case to

dl+ d'lZ 2K
=—2 Zl&y, —I3'- ~lp' +)I'

dt dt A

X[f (p —~y) —f'(p' —~y)]8(y' —y"+~.) . (11)

Expanding the momentu~ change 8p=
I

p' —pl in
powers of a&,/hp', we get 1/5p'= (hp/~, )'(1+~,/Ap'),
when pp') 0. (The transitions for which pp'(0 can be
neglected in this approximation. ) The upper and lower
signs apply to the transitions + ~ —and —~ +
respectively. We see that the ratio of the transition
matrix elments squared is approximately 1+2m&,/Ap',
and since by Theorem I no net polarization is expected
when the ratio is unity, we may expect to obtain in
this case nuclear polarizations of order ~,/hp'. Thus,
when &u, =hp', we may expect to get a nuclear polar-
ization of order unity.

(b) Degenerate Fermi-Dirac Statistics

The rate equation (2) for the electronic spin transi-
tions is, for a distribution displaced by an amount 8p,

2Ã
=—& & I

&y' +
I
& ~

I P, —) I'
dt A

x {f-(y—&p) I
1—f+(y' —&y)]-f'(y-~y)[1-f (p- ~y)])8(p'- y"+~.)

2'=—ZZI&y', +I& ~ly, —)I'
u

exp[g(~p)] —exp[&(»)]
X

{exp[g(~y)]+1){exp[&(~p)]+1)
x8(P' —p"+ .), (»)

where

g(~p) = [(y—~p)'+l .-~.]/8. ,

~(~y) =
I
(p'-~y)' —:.—~.]/8'

When the displacement of the Fermi surface is small,
we can expand de+/dh in powers of Ay. ' The term
linear in hy will vanish due to the symmetry of the
problem while, to order hy',

exp[g (hp)] —exp[h(hp)]

{«p[g(~y)]+1) {exp[h(~y)]+1)
y' —p" expLg(o)](1 —exp[g(0)])

Qp2
2 8~' {1+exp[g(0)]}'
1 Ap COe=-——f (p)L1-f (y)][2f (p)- 1] (13)
2 0z 0a

The author is indebted to Dr. R. GrifBths for this expansion.
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ii f'(p)

]( f Ip)

ii &'(p)

holes into which the electrons can fall). Let us define
parameters P, y by

p= (pF+ pi—)g„—=0=co,/2(Ep)",
p~'(~p) = Lp~'(0)+~pl(1~7).

Then, the rate equation for the electron spins is

3p dP(hp)= P P(~p)+
pF dp

dP(2pi;)-
+2~P P(2P~)+ (1—27)

FIG. 4. Allowed transitions for a shifted Fermi distribution. The
transitions of type (b) involve a large momentum change, and if
the transition matrix elements are small for large momentum
changes, these transitions are not very important unless the Zee-
man energy is very small. The transitions of type (a} may produce
a nuclear polarization, if the transition matrix elements are energy-
dependent.

dp
p P(hp)—

p p'

dP(ap)

dP(2p p)
+2~p P(2p.)+ (1+27), (17)

d

For an arbitrary function F(E) that is smooth in the where P(~p)=27r/@!(p, —!~ii!P', +)!' » the s«-
vicinity of E=Ep, the relationship tionary state, dn /dt=0, so

/dF (E)
F(E)f(E)!1—f(E)]L2f(E)—1)dE= —8ii!—

k dE

(14)

applies to order 8'/E~. Let us define a dimensionless
parameter 0. by

dFK
d&'

l &r ', +
I
~.a

I n, —) I ')

dn dn!(y, +!SC„!y, —)!' . (15)
I'g gyp

due to the displacement of the Fermi surface, and we

may expect to get nuclear polarizations of order
a(hy /8&)(~./E&). This expansion is valid only when
(~p'~.)'~'«8,«E

When 8ii'(2 p'ca„ this approximation does not apply.
However, to understand the physics of this particular
case, we can consider a particularly simple situation,
namely, a one-dimensional model in which 8~ ——0
(Fig. 4). In this model, the allowed transitions are of
two types: (a) pp') 0 (these transitions are due to the
fact that when the distribution is displaced, the
difference between the momenta of spin up and spin
down electrons at the Fermi surface, pi;+—pi;, will
no longer correspond to an energy difference cv.); and
(b) pp'(0, (the displacement of the distribution creates

Then, the electronic spin polarization will change by a
factor of

1 Ap'co, 8~
1——

CX

2 Oz ~a&~

1 dP(ap)
Ap27=

P(sp) dp

P~ P(2P~)
1+2— +2

~ P(~p) P(

1 dP(2pi;) pi;—Dp . (18)
Ap) dp p

The last term in the denominator is very small.
When P(p) decrea, ses with increasing p suKciently

strongly (roughly, faster than 1/p), then, when P is not
too small, the second term in the denominator is small
too. Under these circumstances we may expect to obtain
a nuclear polarization of order Ap/p~. The condition
for the validity of this approximation is 8ii(hp'
(co,2/Ei. When a&, is small, we can still use Eq. (18)
as long as d p'&& Ei.

V. DISCUSSION

In the previous sections it was shown that appreciable
nuclear polarizations may be created if the "kinetic
temperatures" of the spin up and spin down distribu-
tions, Og+ and 8~, are different, or if the momentum
distribution is shifted appreciably. Let us now investi-
gate whether situations reminiscent of these idealized
ones may actually exist in the InSb samples investigated
by Clark and Feher. ' Let us first list a number of
approximations made in these idealized models.

(i) The interaction of the nuclear spins with anything
except the conduction electrons has been neglected.
In reality, the nuclei probably relax mostly via para-
magnetic impurities in the sample. ' Such relaxation
may short-circuit the polarizing eGect and result in
actual polarizations several orders of magnitude smaller
than the estimated ones. Phenomenologically, the short
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circuiting of the conduction electron-nuclear interaction
manifests itself in r~ being almost independent of Hg.

If r~ were due to interaction with the conduction
electrons, we would expect r~8g to be approximately
constant, by the Korringa relationship. ' We can esti-
mate r~ due to the interaction with the conduction
electrons by making use of the value of ~O(0) ~' esti-
mated by Gueron. ' At 8~=4'K, for the samples used,
r~ due to this interaction may be of order 1000 h for
Sb"', while the observed r~ is of order 40 h. ' Thus,
the observed nuclear polarization may be expected to
be 1 to 2 orders less than the estimated ones.

(ii) The electronic wave functions were assumed to
be Bloch waves. Such an assumption is reasonable when
8ir) re„where ce,= eked/m~c is the cyclotron frequency.
Under the conditions of the experiment, co, was of order
k X 100'K, which is large compared with eg and, there-
fore, this assumption ls not Justified. Most of the
estimates presented here are, however, independent of
the assumption ~,&8~. When co,&eg, we must use the
eigenfunctions of an electron in a magnetic field, which
are characterized by the quantum numbers e, p„and
r, where the kinetic energy is E= (n+is)re, +p,s/2m+,
and v is a quantum number distinguishing between
degenerate states. Most of the rate equations will still
be valid when these quantum numbers replace p, P„,
and p, .The situation is particularly simple when te,))8~.
In that case, only the lowest Landau level contributes
significantly to the relaxation. (See Fig. 5.) Of course,

J. Korringa, Physica 16, 601 {1950).' M. Gueron, Compt. Rend. 254, 1969 (1962).
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FIG. 5. de-Haas —van-Alphen oscillations of the nuclear polar-
ization expected for the model of Sec. III. When the magnetic
field is large, (a), only the lowest Landau level is occupied signifi-
cantly, and the velocity of "spin up" electrons exceeds that of
"spin down" electrons. When an electric field is applied, "spin
up" electrons will heat up slower than "spin down" ones, and,
therefore, &@+&HE . When the magnetic field is somewhat weaker,
(b), "spin up" electrons occupy the second Landau level, and
as a result the situation may be reversed, and 8++&8~, and the
nuclear polarization will change sign. In this graph, the density
of states is plotted as function of the energy. The average velocity
in the direction of the magnetic field is approximately inversely
proportional to it.

we must use, in the rate equations, the density of
states p(E) appropriate for this situation. When the
electric and magnetic 6elds are perpendicular, we must
also consider the Ettinghausen effect. ' '

(iii) Effects due to electron-electron correlations, '
and to electron-impurity correlations (such as "freeze-
out'"') have been neglected.

Electron-electron scattering tends to reduce the
difference between 0~+ and 0~, thus reducing the
nuclear polarization. This factor is very important
and must be taken into account in any quantitative
estimate of the nuclear polarization. When electron-
electron energy exchange is considered, it is very irn-
portant to take into account the large magnetic field,
co,=Ep(~„which makes it difficult for spin-up and
spin-down electrons to exchange energy while the total
energy and momentum are conserved.

In the experiments carried out so far, the displace-
ment of the Fermi sphere was probably small. The
displacement when the electric and magnetic 6elds are
parallel is given by Ap=m*pe; in the samples investi-
gated so far, ' "m~ =0.014nzs, p= 3&& 10' cm'/V per sec,

1 V/cm. Thus Ap'/2m~=k&(4)(10 ' 'K. This value
is very small compared with the other energies involved,
and by the order of magnitude estimates of Sec. IV,
the polarization resulting from such shifts is negligible.
However, in samples about one order of magnitude
purer than the ones investigated so far, p and e may be
considerably larger and hp'/2m* may be of order k8&.

The situation is different with regard to the mechanism
suggested in Sec. III. It is very likely that, in the
experiments of Clark and Feher, 8&+ was considerably
different from 0~ . The magnetic fields applied are
such, that ~,=Ep, and, thus, the velocity of spin up
and spin down electrons at the Fermi level is consider-
ably different.

Not enough is known about the energy exchange
between hot electrons and the lattice in InSb at helium
temperatures. The scattering of electrons by ionized
impurities is probably elastic and, therefore, contributes
mostly to the momentum exchange, rather than the
energy exchange; thus, the later may be due to inter-
action with acoustical or optical phonons. 4 However,
whatever the mechanism responsible for the energy
exchange is, it most likely depends strongly on the
electronic velocity (for example, the matrix element
for scattering of electrons by acoustical phonons is
proportional to the electronic velocity" ). The mean
kinetic temperature is of the order 20'—50'K, while
the lattice temperature is O'K. Consequently, it is
likely that (8ir+ —8~ ~/~8ir++8ir

~

=1. Also, the elec-

A
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tronic spin-lattice relaxation may be due to the mecha-
nisms suggested by Yafet,"in which the matrix element
of the spin-reservoir interaction is strongly momentum-
dependent. Thus, both necessary conditions for a
sizable polarization via this mechanism are satisfied.
A salient feature of this mechanism is, that when the
magnetic field is changed so that the Fermi energy
passes through a peak in the density of states (Fig. 5),
the sign of the nuclear polarization should reverse,
because the ratio of the velocities of spin up and spin
down electrons at the Fermi surface reverses. This is
apparently in agreement with experiment.

and with Dr. R. GriKths. The drawings were done
by R. Winsett, and the manuscript was typed by
Mrs. B. Jones. In particular, the author would like to
acknowledge many stimulating conversations with Dr.
W. G. Clark, and the continuous assistance of Dr. G.
Feher in initiating this work and in providing innurner-
able ideas. The author is also indebted to Dr. A.
Abragam for many suggestions and comments, to Dr.
A. G. Redfield and Dr. C. P. Slichter for illuminating
discussions about the concept of spin temperature, and
to Dr. P. A. Wolff for pointing out the importance of
electron-electron collisions.

VI. CONCLUSION

We have been considering idealized models that can
account for a sizable nuclear polarization in a homo-

geneous semiconductor under the inQuence of homo-

geneous, constant electric and magnetic fields. We
found that there are simple models characterized by
the following parameters: The kinetic temperatures of
spin up and spin down electrons, 8~+ and Og, the shift
of the momentum distribution, AP'/2ree; the Zeeman
energy ~„ the Fermi energy Ep, the cyclotron energy
~„and a dimensionless parameter n describing the
energy dependence of the matrix element responsible
for electronic spin relaxation. We considered the
following two classes of situations: 8tt+A8tt, AP'=0,
and 8tt+=8tt, Ap'40. We saw that, in the first case,
we may obtain nuclear polarizations of order ce~8tt+
—8tt ~/~8tt++8tt ~. We saw that in order to obtain a
large difference between Og+ and eg, co, should not be
small compared with E~, and also 8tt++8tt should not
be large compared with Ep. However, if the magnetic
field is so large that ~,))Eg, the rates for establishment
of the nuclear polarization will be very slow. Thus,
in effect, the optimum conditions for the establishment
of nuclear polarization by this mechanism are co,=Ep
=Hg+))Hg+. In the second case, we saw that in order
to obtain large nuclear polarizations, we should have
&P'/2m"=Ep, 8tt(ce.. In this case, polarizations of
order asap'/2stt*E, may be expected. In practice, it
may prove very hard to shift the momentum distri-
bution very much; therefore, it is probably hard to
obtain sizable nuclear polarization by using this second
scheme.

When the various parameters have the values
resulting in optimum nuclear polarization, it is very
hard to find rapidly converging expansions for the rate
equations, and it may be necessary to resort to numer-
ical integrations. Work is now under way in this
laboratory in this direction.
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List of Symbols

f+(p) Momentum distribution function of s,=+-',
electrons.

e+ Number of s,=&-,' electrons per unit volume.
X+ Number of I,=&-,' nuclei per unit volume. (In

this paper, only the I= zi case is treated. )
p tttk/+2stt* (so that the kinetic energy is p').
Ay Displacement of the momentum distribution

by an applied electric field.

P~ Square of matrix element of electron-nuclear
interaction.

P, Square of matrix element of electron-spin
electron-translational motion interaction.

zv~ Transition probability for mutual electron-
nucleus spin flips.
Transition probability for electron spin Qips.

n Dimensionless parameter giving energy de-
pendence of P, .

1 dP, (E)

P, (E) dE

(Et+ E, +A,)/8It —or [—p, (Ap) —pt;(0) —hp)/
PF. Et, ps are the. energy and momentum at
the Fermi surface.
Lattice temperature expressed in energy units.
Nuclear spin temperature expressed in energy
units.
Reservoir (i.e., kinetic) temperature expressed
in energy units.
Kinetic temperature of s,=+—,

' electrons ex-
pressed in energy units.
Electron spin temperature expressed in energy
units,
Nuclear longitudinal relaxation time (Ti),
assumed due to hyperfine interaction only.
Electron spin longitudinal relaxation time (Ti).
Cyclotron frequency dtH/stt*c.
Electron Zeeman energy g*PH.
Nuclear Zeeman energy g~P~H.

Some symbols that are used only in one place in this
paper are not listed here.


