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Transport effects were studied in a bismuth single crystal at liquid-helium temperatures in a magnetic
Geld. Except for a Geld-orientation study of the galvanomagnetic eBects for mapping the light-holes ellipsoid,
all the measurements were taken in the basal plane of the crystal with the Geld parallel to the trigonal axis.
The thermal conductivity was found to be almost entirely due to lattice conductivity; therefore, the experi-
mental coe65cients determined were limited to the following: the isothermal transverse magnetoresistivity
p», the isothermal Hall resistivity p», the (adiabatic) thermoelectric coeflicient e», the (adiabatic) Nernst-
Ettinghausen coeKcient 621 p

and the transverse magnetothermal resistivity p». The peltier tensor coef-
flcients were expected (from the Onsager relations) to be too stnall to be measurable and thus, were not
studied here. All these effects, except the thermal resistivity coefbcient exhibit the Schubnikov-de Haas type
oscillations. The kinetic coeKcients of the transport effects 0», 0.», ~»", and 612 were computed from
the experimental coef5cients and compared with available theories. A rough analysis of the gross effects was
made by a decomposition of each coeKcient into a sum of di6erent band contributions, each band being
approximated by a Lorentz term. General, but not complete, agreement between experiment and theory
is achieved for both two-band and multiband models. No special mechanism (i.e., like that proposed for
zinc) is needed to explain the oscillations in the different effects, since the Lifshitz and Kosevich theory
(0.»), the Zil'berman theory (a», ~»"), and the influence of oscillation in the density of states (e&q") lead to
satisfactory agreement with the experiments.

I. INTRODUCTION

'0 obtain information on the band structure of
bismuth, galvanomagnetic and thermomagnetic

potentials were measured in a single crystal at liquid-
heliurn temperatures. The de Haas —van. Alphen (dHvA)
type oscillations observed were readily analyzed,
yielding information on the various bands of carriers.
The gross eGects upon which the oscillations are
superimposed were analyzed for information on the
diferent carriers, particularly for the possible existence
of heavy carriers which show no oscillations in the
temperature range studied.

In recent years, extensive investigations have been
made to determine the electronic nature of bismuth.
These studies include galvanomagnetic eQects, ' '
anomalous skin effect, ultrasonic attenuation, cyclo-
tron resonance "" de Haas —van Alphen'4 '~ and
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The available data lead to a model of the Fermi
surface (FS), but there remain several discrepancies.
Many of the parameters associated with the different
bands of carriers are known only in order of magnitude,
or within a multiplicative factor. The present work
examines the galvano- and thermomagnetic eGects
both individually and collectively in order to add to
the present model of the FS.

A model for the electronic part of the FS was erst
established from de Haas —van Alphen oscillations. '4

This portion of the FS consists of three ellipsoids
(in momentum space) lying almost in the basal plane
[the (1)—(2) plane of Fig. 1j and interrelated by 120'
rotations about the principal axis. Inversion symmetry
in the 6rst-Brillouin zone allows for doubling these
electron ellipsoids; this doubling is probable, although
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Pro. 1. The sym-
metry axes in the
bismuth crystal. P is
the angle between
the magnetic field H
and the trigonal axis
(3) in the (3)—(2)
plane.
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(5) (I)

are often used. This threefold representation allows
computation of the tensor elements in the more con-
venient form of Eq. (1) from the experimentally
determined quantities p, e', 2r', and $. The expressions
for the tensors in Eq. (1) in terms of the experimental
quantities are

not Grmly established experimentally. These electrons
are apparently the most mobile carriers in bismuth.

A FS of relatively high-mobility holes has the form
of an ellipsoid of revolution centered on the principal
(trigonal) axis with its major axis in the trigonal
direction. "' A multiplicity of two for this pocket
of carriers is also possible, but rather improbable as there
is recent evidence for a single pocket '7»" 9

In addition to the relatively high-mobility holes and
electrons, there is evidence of other carriers —probably
holes —of quite low mobility. ""These heavy carriers
have an approximately spheroidal FS,"and a density-
of-states effective mass, m~, of the order of the free-
electron mass mo. A fourth band of carriers with even
lower mobility may also exist."'~

II. NOTATION AND CONVENTIONS

The transport effects are described in kinetic theory
by the relations

J=oE"—c"6,
w*= —2r"K*+V'6,

where J is the electric-current density and 6 is the
negative-temperature gradient. The quantities K* and
w~ are the electric-field and heat-current density,
respectively, each modified for convenience by a term
involving the chemical potential p, . The expressions
are" "

E*=E+e-' graders„

w*=w+e—'is, J,

where K is the electrostatic Geld, w is the heat-current
density, and e is the magnitude of the electronic
Charge (a pOSitiVe number). The quantitieS o., e", 2r",
and g" are tensors relating the "fluxes" J and w* with
the "amenities" E" and G.

Other relations between J, w~, Es, and 6
E~=PJ+eG,
w'= —2rJ+RG,

22 G. E. Smith, J. Phys. Chem. Solids 20, 168 (1961).
ee H. B. Callen, Thermodynamics (John Wiley R Sons, Inc. ,

New York, 1960)."J.P. Jan, in Solid State Physics, edited by F. Sitz and D,
Turnbull (Academic Press Inc. , New York, 1957), Vol. 5, p. 1.

The elements of o, e", and $, reported in this investi-
gation were calculated by means of Eq. (4). The
nomenclature for the transport coeKcients is as follows:
The condition G~=O is called "isothermal"; that of
m2*=0 is called "adiabatic. " Thus we refer to Gay, HAJJ',

and eJ~" as the isothermal thermoelectric coefficient,
the adiabatic-thermoelectric coeKcient and the kinetic-
thermoelectric coeKcient, respectively. Similarly, e» is
the isothermal Ettinghausen-Nernst (E-N) coeK-
cient; &~2', the adiabatic E-N coefficient; and a~2", the
kinetic E-N coeKcient.

The experimental transport coefficients p, e, and f
were obtained with the magnetic Geld applied parallel
to the principal axis of the crystal. Kith this geometry
and the symmetry of the bismuth crystal, these tensors
have the form

Gjy egg 0
8= —c» Gyp 0

0 0 @33.

and have the following symmetries with respect to the
magnetic Geld B:

a12 (+) +12( +)
all(+) &11( +).

The two elements a~~ and u» are the ones of interest
in the present investigation since measurements were
made in the basal plane. Since these coeKcients generally
exhibit Schubnikov-de Haas type oscillations, the
notation a tt, a~ is used to distinguish between the gross
eGect and the oscillatory part of the eGects. The ampli-
tude of the oscillations is denoted by ( a~) .

III. EXPERIMENT

A. The Crystal

The crystal was prepared from spectroscopically
pure bismuth obtained from Johnson, Mathey, and
Company. It was Grst grown as an ingot without
preorientation and then cut to shape. The Gnished
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specimen had the form of a right parallelepiped with
dimensions 24.3 mm)&6. 9 mm)(2. 5 mm. The crystal
had a resistance ratio R(300'K)/R(4. 2'K) 40. This
low purity was found to be advantageous as will be
seen in the analysis of the results. The orientation of the
symmetry axes in the specimen is shown in Fig. 1.
With the exception of the galvanomagnetic orientation
studies performed with the magnetic field in the (2)—(3)
plane, all measurements of galvano- and thermo-
magnetic potentials were made in the (1)-(2) plane
with the magnetic field directed along the 3 axis.
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B. Measuring Techniques

A chamber was constructed to provide a crystal
suspension system by which both galvano- and thermo-
magnetic potentials could be measured without disturb-
ing the contact with the crystal. Carbon-resistance
thermometers encased in thin copper sleeves were
attached by stiff copper leads directly to the crystal.
A solder composed of bismuth, tin, and lead was used
to make connections to the crystal. Electric potential
leads of No. 40 gauge wire were then soldered to the
stiff thermal leads to give common contact points for
both types of measurements. The leads were brought
out of the vacuum chamber into the liquid helium
through a seal of epoxy resin. " Thermomagnetic
measurements were made in a vacuum better than
5)&20 ' mm Hg. The isothermal condition for the
galvanomagnetic measurements was achieved by allow-
ing the surrounding liquid helium to fill the vacuum
chamber. Potentials were measured by a dc method
described by Bergeron, Grenier, and Reynolds. "

C. Experimental Data

The Hall resistivity p» and magnetoresistivity p»
are shown in Fig. 2 for magnetic fields up to 17 kG a,nd
temperatures 2.1 and 4.2'K. The curves exhibit the
characteristic Schubnikov-de Haas oscillations in 1/H.
With the field in the (3) direction, the only detectable
oscillations are those due to the light hole pocket. The
thermoelectric coeKcients e p' are shown in Fig. 3;
the temperature dependence is to be noted. Both p2~ and
e~~ show a change in sign near 1500 G. In the case of p2~,
the change of sign means that (&)I;&0, i.e., the
number of holes slightly exceeds the number of elec-
trons. In the case of ~~~', it indicates a low-mobility hole
carrier with a large density of states. Neither p p nor
e p' are analyzed directly, but rather are used together
with data on the thermal conductivity from Fig. 8 to
construct e p" and a- p.

It is important to note that the experimental data
obtained for e p' are related to the bismuth-copper
thermocouple formed by the bismuth crystal and the

~ K. S. Balain, C. J. Bergeron, Rev. Sci. Instr. 30, 1058 (1959).
n C. J.Bergeron, C. G. Grenier, and J. M. Reynolds, Phys. Rev.

119, 925 (1960).
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I'IG. 2. Hall resistivity and magnetoresistivity of the sample at
4.2 and 2.1'K for @=0. The upper two curves are for p21, the
lower two for p11. The insert shows the sign inversion occurring in
pq1 at low Geld.

copper leads. The effect of the absolute "isothermal"
thermoelectric power of the copper leads ~g is to
modify the expression for e.34 The experimentally
determined e' is given by

e = JI,"(e—leo.).
The value so„~0.8X10 ' V/deg reported by Slatt and
Kropschot" when compared to our value
=34.6&& 10 ' V/deg (both with H =0 at 4.2'K)
indicates that the effect of the copper would be less than
2% of the total; the value ec„=—3.2&&10 ' V/deg at
H= 0 and T=4.2'K for similar copper leads as reported
by Grenier, Reynolds, and Zebouni, " yields an effect
still smaller. In the later analysis, the effect of the
thermoelectric power of the copper leads is neglected.

IV. THEORY

A. Modi6ed Sondheimer-Wilson Theory

The monotonic parts of both o-
p and e p" are analyzed

in terms of a modified Sondheimer-Wilson theory. "The
expressions obtained assume a quasicontinuum of states
in "parabolic" bands with sharp Fermi distribution
functions and isotropic relaxation time independent
of energy. Under these conditions, the conductivities
are given by

ais/H= (ec) g (a)e,I.;,
oii ——(cc) Q a,~;H;L;,

where the summation extends over all bands and the
(+) sign is taken for holes and (—) for electrons. Here,
H, =cm;*/er; is a quantity inversely proportional to

~ C. G. Grenier, J. M. Reynolds, and ¹ H. Zebouni, Phys. Rev.
129, 1088 (1963).

ss F. J. Blatt and R. N. Kropschot, Phys. Rev. 118,480 (1960).
ss A. H. Wilson, The Theory of Melals (Cambridge University

Press, New York, 1954).
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FIG. 3. The adiabatic-thermoelectric coeflicients &11' and &12'.

Experimental values were obtained with H parallel to trigonal
axis (/=0) at 4.3 and 2.1'K.

37 ln case of a set of tilted ellipsoids def'lned by the mass tensor

'm, 0 0
m= 0 mg m4.0 m4 ma.

a is equal to x(m&+ms —m4 mz ') (mrm&-m4') &a)&m, -&lsm, +&a. 1f
the set is delned through the inverse mass tensor

'cx1 0 0
0 CE2 CL4

0 tÃ4 cxa

then a is simply $(n&/a2)'"+ (as/n&)'ls; and if the ratio R, between
the principal axes of the basal cross section of the ellipsoid is
known, then a is simPly xs(R,+R, ').

the mobility at zero field and is hereafter called the
saturation field; L, is the Lorentz term I;= (H'+ HP) ';
n, is the number of carriers; v, is the relaxation time;
and the subscript j indicates that these definitions

apply to the jth band. The factor u, is an adjustable
parameter introduced to correct for noncircular orbits";
for circular orbits, u; is equal to one.

Under the above conditions and with the additional
assumption that the relaxation times for electrical
and thermal processes are equal, a second-order
approximation for the Fermi function at finite tempera-
ture gives for e p",

eis"/H = —(-'rr'/e'cT) Q b Z 'L
eii" ———(-'z'k'cT) g (W)c,Z,sH, L, ,

(6)

where Z, is the density of states in band j at zero
field. Here b; and c; are adjustable parameters intro-
duced to facilitate curve Gtting. Ideally, b; should equal
one and c; should equal u, .

Since real metals do not necessarily satisfy the condi-
tions under which Eqs. (5) and (6) are derived, those
equations may need to be modified empirically to fit
the data. Possible modifications are: (1) The de-
composition of a band into several subbands; (2) the
spreading of a band into a continuum, and (3) the
shifting of a band by considering the saturation field

H; to be field-dependent. In the analysis of these data,

no such modification was considered; a match of each
band by a single Lorentz term of the type of Eqs. (5)
and (6) was attempted.

B. Lifshitz-Kosevich Theory of Oscillations
in the Galvanomagnetic Effects

A large amount of information comes from a detailed
study of the dHvA type oscillations which occur at
high-magnetic fields. For an understanding of the
transport processes, one must explain the scattering
mechanism and their magnetic-Geld dependence. As

yet, a theory has not been devised which approaches
the excellence of the theory of the de Haas —van Alphen
effect. Attempts have been made, however, to obtain a
theory of the Shubnikov —de Haas oscillation, Grst by
Levinger and Grimsap' and more recently by Lifshitz
and Kosevich, " who related the Geld-dependent
oscillations in the conductivity tensor (T p to the suscepti-
bility oscillations through the classical mobility tensor.
Zil'berman~ and others4'~ have also studied the
influence of Landau quantization on various galvano-
magnetic and thermomagnetic eGects. The Zil'berman
theory is discussed in Sec. IVD.

In the Lifshitz-Kosevich theory, the oscillatory part
of the conductivity tensor is written as

(o.„,p)z K=ao..p+A, a.o, (7)

where the Grst term arises from magnetic field-

dependent oscillations in the number of carriers in the
various bands under the assumption of a constant Fermi
energy 1 The s.econd term comes from oscillations in
the number of carriers in the different bands with
varying f but with g; (&)ts; assumed constant. With

q; & denoting the classical mobility tensor for the
carriers at the extremal cross-sectional area of the jth
pocket (band) perpendicular to the applied field, the
first term in Eq. (17) is written as

Po.p ——P q„,'&re, , (8)

where n; is the oscillation in the number of carriers in
the jth band. The explicit expression for n for a pocket
of carriers with an ellipsoidal FS with major axis parallel
to Q' is 38 39 43 44

/etiHq"
n=4pZh s~-

4 c 2 " sinhx)

Xexp sx S s(2rrxy+—,err), (9-)
eAB

» J. S. Levinger and E. G. Grimsal, Phys. Rev. 94, 772 (1954)."I.Lifshitz and L. M. Kosevich, Zh. Eksperim. i Teor. Fiz. 33,
88 (1957) Ltranslation: Soviet Phys. —JETP 6, 67 (1958)g.

40 G. E. Zil'herman, Zh. Eksperim. i Teor. Fiz. 29, 762 (1955)
Ltranslation: Soviet Phys. —JETP 2, 650 (1959)7.

4' List of references can be found in the review article by A. H.
Kahn and H. P. R. Frederikse, in Solid State Physics, edited by
F. Seitz and P. Turnbull (Academic Press Inc. , New York, 1960),
Vol. 9.

4s P. Horton (private communication).
4' I. M. Lifshitz and L. M. Kosevich, Zh. Eksperim. i Teor. Fiz.

29, 730 (1955) [translation: Soviet Phys. —JETP 2, 636 (1956)g."R.B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952).
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where p is the multiplicity of the ellipsoids, E is the
ratio of major to minor axis of the ellipsoid(s), S„ is
the extremal cross-sectional area (of the ellipsoid)
perpendicular to the magnetic field, ) is 2rr'km*cT/eAH,

y is a parameter defined such that yc/ehH is the area
of the lowest Landau level and is equal to one-half for
free electrons, and k is Boltzmann's constant. Note
that the period in 1/B is

E=h(1//B) =eh/cS„.

The second term in Eq. (7) is

(10)

where i and j are summed over all bands, (q, &}, is the
average classical-mobility-tensor coefficient of the ith
band carriers. Here, N,' denotes the number of states
in band i, where the zero refers to zero magnetic field.

C. Oscillation in the Density of States and in
the Thermoelectric Effects

In the absence of a theory for Landau quantization
in the Nernst-Ettingshausen effect, the classical
expression Eq. (6) is applied directly. Thus, the oscil-
lations in the density of states 2 is expected to give a
contribution to the oscillatory part of the thermoelectric
tensor ~ p" of the form

;"~,/z, ', (12)

where e~;" is the jth term in Eq. (6) and 2=Bn/@'.

D. Zil'herman Theory for Oscillations in the
Conductivity Coef5cient c» and the

Thermoelectric CoeKcient s&~"

The inQuence of Landau quantization on electron
scattering on lattice imperfections has been studied by
Zil'berman in the effective mass approximation with
complete isotropy. The amplitude of oscillations in the
conductivity coefficient

~
oii~ and in the thermoelectric

coeKcient
~

e»"
~

can be written for band j in a, first-
harmonic approximation

5
l~»t s;i=~», -~ l(J'i&)'",

4 sinhX;)
(13)

(1—X; cothX;
t

"I.'i=e» "(3 ~)l . (I' ~) " «4)
X, sinh)I, ;

vrhere 0»; and e»;" are given as the jth terms of Eqs.
(5) and (6), respectively. The above equations are the
results of a modification of the Zil'berman theory by
Horton. "

8(q, &}.
hie.p

———Q X;o+Q (q,'&}.Z,e

~ 0

&&[+ Z,sg' g 8;, (11)

l I t I 1 1 1 }'
I ~ ~ 4 5 6 7 8 9 6 II IR .I3 l4
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FIG. 4. Typical plots of 1/H at successive maxima (or minima)
of the Shubnikov-de Haas oscillations versus integers (or half-
integers) for different orientations of the magnetic Geld in the
(3)—(2) plane.

It may be noted that when the oscillations are small,
the expressions Eqs. (13) a.nd (14) simply add to the
contributions from Eqs. (7) and (12) since the sources
of the oscillations are diferent in the two cases.

V. RESULTS

A. The Light-Hole Elliysoid

The high-mobility hole pocket was mapped in detail
first by Brandt from dHvA oscillations" and then by
the present authors from galvanomagnetic oscillations
in the early stages ' of this study. Other experimental
techniques previously had established some of the
parameters of this pocket. '8""In this investigation,
oscillations in the resistivity tensor elements p & for
various magnetic-field orientations in the (2)—(3) plane
were observed at 1.8'K in fields ranging up to 16 kG.
The dimensions of the ellipsoid are established by
computing 5 for various orientations P from Eq.
(10).Here P is the angle [in the (2)—(3) plane( between
the (3) axis and the applied magnetic field as shown in
Fig. 1. The periods were determined by examination
of the recorder traces for maxima and minima. The
values of 1/B corresponding to successive maxima
were plotted against successive integers; the slope of
the resulting curve determined the value of the period.
Typical plots are shown in Fig. 4. The oscillations
observed are due not only to the hole ellipsoid under
investigation, but also to other pockets of carriers. The
presence of one of the high-mobility electron ellipsoids
mapped by Shoenberg can be seen in the /=63 6' plot.
where it shows up as a periodic error in the determination
of the shorter period due to the holes (see next section).
Since an extensive mapping of the electrons pockets has

4' J. R. Sybert, C. G. Grenier, and J. M. Reynolds, Bu11. Am.
Ph~&. 6, 4|.~ (~96~).
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B. Fluctuation in the Period of the
Light-Hole Ellipsoid

Despite the very good agreement between the present
mapping of the light-hole ellipsoid and the one of
Brandt, as well as the good match between the effective
mass found here and the one found by cyclotron
resonance and anomalous skin eGect determinations,
some doubt still exists about some of the characteristics
of this pocket:

(a) Most of the analyses of galvanomagnetic effects
with a two-band model seem to indicate a smaller.

TABLE I. The cyclotron mass m*/mo of the hole ellipsoid, with
the magnetic field parallel to the trigonal axis, obtained from the
temperature dependence of the oscillation amplitude in the Hall
conductivity o-12 and magnetoconductivity 0-~~, respectively, at
different magnetic-field values.

Magnetic-Geld
values (H)

(kG)

10
12
14

From temperature
dependence of o 1~

0.0647
0.0636
0.0658

From temperature
dependence of 0~~

0.065
0.0694
0.0639

already been made, no attempt is made here to analyze
the oscillations due to the electrons. Only a few periods
were checked and found in perfect agreement with the
Shoenberg'4 or Lerner~ data. For a prolate ellipsoid of
revolution, Eq. (10) can be written in the form

I"-= (eh/s. uc)'$(u '—c ') cosQ+c '),
where a and c are the semiminor and semimajor axes,
respectively. A plot of & as a function of cos'P is shown
in Fig. 5. The linearity of the curve indicates that the
FS of the light holes is indeed ellipsoidal. There is
evidence from the work of Bralidt et ul."of a departure
of the FS from an ellipsoid for values of f)75' (just
beyond the range of our measurements). However, this
departure was not mentioned in a later publication
concerning, presumably, the same experimental data. "
The period for P=-0 is 1.52X10 ' G ' and the period
extrapolates to 0.43X10 ' G ' for /=90'. The volume
of the ellipsoid in momentum space is found to be
V=4.97X10 " (g cm/sec)'; the number of holes per
atom per ellipsoid is 1.21&10 ' per atom or 3.43)(10"
per cm' in good agreement with data of Brandt et aft.

The temperature dependence of the oscillations in the
o & (with $=0) is the same as that in nas gi,ven by Eq.
(9). For constant H, the values of the effective mass
m* and, consequently, of the chemical potential f p call
be determined from Eq. (10) with 5 =2s.m*is. The
experimentally determined values of I* are given in
Table I; the value m*/ms ——0.065 is adopted as a good
average of those. This value, together with the other
parameters obtained from the present work for the
group of light holes, is shown in Tab1e II, along with
corresponding results from other techniques.

LO

0
0 I.O

number of holes, NA=2. 5X10'" cm ', (see the two-band
model in Sec. VE) than found in the light-hole mapping;
(b) a possible departure from ellipsoidal shape is
indicated in the first report of Brandt et, aP'; (c) lately,
an indication has been given by Lerner" of the existence
of isotropic periods 7.2)& j.0 ' G ' appearing mostly for
large values of P. These periods are interpreted by
Lerner as those of the heavy-carrier ellipsoid. Should
they be interpreted as belonging to the light-hole pocket
with the period 7.0)&10 ' G ' replacing the extrapolated
4.3)&10 ' G ' value, the result would be a number of
carriers close to the value expected from the two-band
model.

A careful investigation of the period of the light
holes was performed again with the field in the (2)—(3)
plane, mostly for large values of P. With P in the range
0 to 30', perfect monoperiodic oscillations were seen
in most of the 6eld range with an appearance at high
field of a slight distortion of the oscillations interpretable
either in terms of the appearance of a second harmonic
or in terms of Lerner's isotropic period. For higher lt'

values, 30' to 60', a slight modulation appears in the
periods as a function of the 6eld; the period of the
modulation seems to correspond to the longest period
of the electron pockets. Since the modulation amp]itude
is small, the average period obtained by fitting a
straight line to the /=63' data in Fig. 4 still can be
considered as a suitable determination for the mapping
parameters.

For P greater than 60', the galvanomagnetic oscil-
lations decrease in amplitude; the range of field for
which they are detectable rarely exceeds the range in
which the modulation occurs. A 6eld-dependent period
is then obtained in the analysis. In the case of the
largest P angle, instead of a smooth variation in period,

COS

FIG. 5. E' versus cosQ for the light-hole ellipsoid. Data were
taken at 1.8 K. The straight line corresponds to an ellipsoid with
ratio of major to minor axis 3.59.
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TABLE II. Direct data from various mmeasurements on ig -mo i i ym h' h- b'1't holes ellipsoid. The characteristic parameters of
1' t data on the ellipsoid are indicated.the hole ellipsoid. Some of the ear iest a a on

Si& (10 ~ g' cm' sec ')
S& (10 ~ g'cm'sec ')
Si/Sii (=Z)
n (10'" holes cm ')
t p (10 '4 erg)
m3/mp
m, /no
mj/ma (E')

Present
work

6.97
25.02
3.59
3.43
1.9
0.065
0.84

12.9

dHvA effect
Brandta et al.

6.75
25.75
3.81
34
2.5
0.05
0.7

14

Cyclotron
resonance
Galtb et at.

~ ~ ~

0.068
0.92

13.5

Anomalous
skin effect

Smith'

~ ~ ~

12.8

Hall effect
Reynolds

et al.

2.0
0.062

a See Ref. 16.
b See Ref. 12.
e See Ref. 8.
&See Ref. 18.

the variation appears almost discontinuous as if the
electron oscillation were a,pproa ching the extreme
quantum limit. The determination of an average period
is then questiona, ble. The experimental values or t e
periods are plotted versus f in Fig, . or ~I

data are in excellent agreement with the form of Eq.
(15). For $&50', a considerable sca.tter in the data is
apparen . anyt. Many of the data points fall into the range

theby Lerner. " (Lerner ha, s recently indicated that e
eriod and size of this pocket would be very sensitive

sample to the next. ) The existence of the heavy-carrier
pocket discussed by Lerner is neither confirmed nor
rejected; the scatter of the data calls for caution. For a
two-band model with one hole ellipsoid and three elec-
tron ellipsoids as shown in Fig. 7, some explanation is
found for this behavior of the period. When the mag-
netic field is in the direction of the binary axis (I( = '),
two of the electron ellipsoids present very small cross
sections to the field. For field strengths somewhat above
25 kG, the last Landau level is above the Fermi energy

th t no states are available for electrons in the two
ellipsoids. In a first approximation, if e, is t e init'
number of electrons per ellipsoid, the third electron
e ipsoill 'd must increase its population to e,' an t e
hole-ellipsoid population must decrease from eI,——e,
e~' ——e,'. The new extremal cross-sectional area S ' of
the hole ellipsoid is then smaller than the origina
value S; the associated relative increase in period is
given by

P'lI'= 6-.+f.)l(3"'f.+(-.),
where t e ~ s areh g"' the respective chemical potentials.
This corresponds to an increase of the period y a ou

necessary for the extreme quantum limit; but the
emptying o eof the two electron ellipsoids progresses in a
manner periodic with increasing field.

With the phase from Eq. (9) written in the form

I5—
PLANE (2) (3)

where S ' is the field-dependent cross section of the hole
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ellipsoid, comparison can be made with the phase @
expected from a fixed 8 value

cS f'1 pp
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with Ans/res the relative variation of the number of
holes in the hole pocket. The above is also in first
approximation

4 1 f@
' Dn, AN,

1+—— X =0.36
P—Pp 9 3f, I, I, (17)

where DN, /rl„ is the relat. ive variation of the number of
electrons in one of the electron pockets as the extreme
quantum limit is approached. According to this equa-
tion, the fluctuation in the curve /=63.6' of Fig. 4
seems to indicate an order of magnitude for —(6e,/e, )
of 3 and 15% for H= 8 kG and H= 15 kG, respectively,
values which can reasonably be expected from an
expression for Am, similar to Eq. (9). Equation (17)
must be modified to account for larger Quctuations.
Departure from the quasicontinuous distribution of
states in the hole pocket, directions of field different
than that of the binary direction, and possible existence
of other bands may need to be considered. Nevertheless,
since fluctuations in g' are important, the value of the
apparent period I" as determined from measurements
in a short range of field is affected appreciably since
1/P = (1/2~) r)P'/r) (1/H) The wide. scatter of the
points in Fig. 6 may be a consequence of this mecha-
nism; in which case, caution should be used in inter-
preting periods measured at high fields, over a short
range of fields, for directions f greater than 60'.

In Fig. 4 for /=63.6', the values of P/2m and g'/2m
plotted versus 1/H are represented by the straight
line for @/2~ and by the experimental points for p'/2~,
respectively. The relative deviation is

AS 2 kris

P—Pp S 3 es
0

0

T ('K}

and White and Koods4~ are presented in Fig. 8. The
low-temperature points may be made to fit the T'
behavior of lattice conductivity as expected when the
size effect is preponderant. The conductivity seems to
reach a maximum around 3.6'K, but more recent
measurements on the same crystal" indicate a maximum
around 4'K with a value of X at 4.2'K about 12%
higher than reported here.

An indication of the contribution of the electrons to
the heat Row is obtained from the Wiedemann-Franz
law: At 4.0'K and zero field, the electronic part of the
thermal conductivity is X,=3.18X10 ' W/deg-cm. By
comparison with the data of Fig. 8 it is seen that the
expected electronic contribution to the total thermal
conductivity is only a fraction of 1%.

Measurements of t with and without an external
magnetic field served to substantiate the neglect of the
electronic contributions. In the calculation of the
tensor elements the heat conductivity is assumed to be
due to the lattice only; thus, the thermal effects are
described simply by

FIG. 8. The thermal conductivity in function of temperature for
a zero-magnetic field. This conductivity is practically due to the
lattice only. The dashed line is the expected low temperature Ta
variation adjusted to fit the data. Data of Schalyt (Ref. 46), White
and Woods (Ref. 47), and Gillingham and Mackey (Ref. 48) are
also given.

C. Thermal Conductivity 62= 0; ~l ~1161 ~LG1 ) ~2 0) ~21 (18)
Knowledge of the thermal-conductivity tensor is

necessary for the computation of the kinetic thermo-
electric coefficients. It is ordinarily computed from the
experimental thermal resistivity coefFicients. ' Bismuth
shows a particularly simple thermal-resistivity behavior
with a practically field-independent p» term and a
negligible ysi Righi-Leduc resistivity (Gs ——0, ysi ——0).
This can be summarized by j=pii1 and the conduc-
tivity give simply K=X»l with Xi& ——y&t '.

Data for the thermal conductivity at zero-magnetic
field, along with earlier work on bismuth by Shalyt4'

' S. Shalyt, J. Phys. USSR 8, 315 (1944).

If the mean free pa, th A is established by scattering
from the boundaries of the crystal, the expected value
of the thermal conductivity, ) L= -', CLeA, is 5.4
W/deg-cm at 2.07'K. Here the average sound velocity
v and the lattice heat CL are computed classically with
a, Debye characteristic temperature o$ 117'K.24 This
value compares favorably with the experimental value
Xr,=4.3 W/deg-cm.

4' G. K. White and J. B. Woods, Phil. Mag. 3, 342 (1958).
4'R. Gillingham, S.J. and H. J. Mackey (private communi-

cation); R. Gillingham, Ph.D. thesis, Louisiana State Uni-
versity, 1962 (unpublished); H. J.Mackey, Ph.D. thesis, Louisiana
State University, 1963 (unpublished).
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FIG. 9. The Hall conductivity and the transverse magneto-
conductivity. The o-

p over the complete range of H are shown by
using three different scales. These curves were calculated from
experimental data using Eq. (4).

with the band parameters as determined from oscil-
lation analysis, i.e., number of holes be equal to 3.4
&10' cm ', are required, serious discrepancies result.
Table III gives the results of a deliberately short
analysis of the curve fitting. Work is now underway in
analyzing more complete field and temperature data
to unravel many of the problems encountered in the
present analysis. ' The curve-fitting technique, in
addition to requiring that the final results match the
experimental 0-

p and e p", involves curve extrapolation
at high- and low-field limits. The utility of these plots
is evident from an expansion of Eqs. (5) and (6) in, the
high- and low-held limits. 4' Low-field extrapolations are
made by the plotting of ea,ch of the quantities ois/H,
ets"/H, eii", and o ii, versus H'. For the high-field limit,
the useful plots are H(Ti2, Hei~", H'~ii", and H'o-ii versus
1/H'. Further, the results should satisfy the funda-

It is of interest to note that dHvA type oscillations
have been reported in the thermal resistivity of bismuth

1 604 K) but were not observed in the present
study (minimum temperature 2.1'K) perhaps beca, use
of the impurity content of the sample.

D. Four-Band Model

The mobilities, populations, and densities of states
of the various bands are obtained by the 6tting to Eqs.
(5) and (6) of the coeKcients o e, Fig. 9, and e,e",
Fig. 10, determined from the experimental data. This
process does not, in practice, completely solve the
problem, but does give a useful indication of the various
bands. A reasonably good fit can be obtained if only
one of the quantities, say 0-», is considered. If a simul-
taneous 6t for all the tensor elements and a correlation

IP
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Fzo. 11. Ho.11 versus lnEI for T=4.2'K. The broken lines are
representative of bands I, II, III, and IV, respectively, of the
multiband model. The full line is the sum of the diferent bands
constributions. The crosses represent experimental points. The
right scale shows directly the apparent population of the bands
a;h;. Bands (e) and (h) oi the two-band model, which give a
relative good fit of the experimental point, are also indicated.
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mental requirements. "

orrdH=-', grec Q a,e, ;

o„/HdH = ,'rrec P .(a)N~/H, .-
(19)

t I l I

.05 .I .I .5 .5 5 2 4 6 8 9 IO I2 I6

H(kG)

Fro. 10. The kinetic thermoelectric coefBcient and the kinetic
Ettingshausen-Nernst coef5cient calculated from Eq. (4) in
function of magnetic field. The e p" over the complete range of II
are shown by using there difI'erent scales.

The experimental evaluation of fo"o»dH yields a value'

g g,~;= J.0)&10" cm ' at 4.2'K which, for example,
eliminates the possibility of a multiplicity of 2 for the
light-hole ellipsoid. It was found also that one of the
most illustrative ways to plot the data was that of
6'i2 Ho'ii Ci2 H6]] versus lnH, for which plots, the

"J.W. McClure, Phys. Rev. 112, 715 (1958).
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TABLE III. Parameters of the different bands in bismuth, when the diferent transport eftects are decomposed into Lorentz terms
using Eqs. (5) and (6). The italicised quantities have been forced into the analysis, for example the parameter of band 11 in the multi-
band model are those of the hole ellipsoid in Table II. Between parentheses are the values of the saturation 6eld giving the best indi-
vidual fit, for example II& =30 Il&=65 best fit for the 0» analysis in the determination of a&n& and usns. Band (4) arises from the iden-
ti6cation of the high-6eld behavior of some of the eGects with a Lorentz term; it is common to the multiband and "two" band model.

H;
I; (10"cm ')
o,a; (10 "cm ')
b;Z; (10"cm ' erg ')
cqZ; (10"cm ' erg ')
f; (10 '4 erg)

Z; (10"cm ' erg ')
Cg

b;

Electron (1)

30 to 35 G
4.3 (32)
4.3 (30)
30 (30)
17 (35)
Z.8
~2.4
1

~7

Multiband model
Holes (2) Holes (3)

60 to 65 G 500 G
3.4 (65) 1.1
3.4 (65) 2.5
z.j 10
Z.7 (60} 7
1.P 0.42

2.7 7
24

1

1 1

Holes (4)

13 to 14 kG
0.01

0.25
21

28to35 G
2.62 (29)
6.4 (35)
30 (30}
15 (32)
Z.8
1.4

2.5
~20
~11,

300 to 450 6
2.8 (300)
3 (450)
12
7.5 (400)
1.P
2.2
1.1
5.4

Two-band model
Electrons Holes

contribution of the various bands can be best visualized
as in Figs. 11—13 for IIO]y H6y]', and O.g2 at 4.2'.

(1) The high-mobility electron pocket (Ht-—-32 G)
is identified with that discovered by Shoenberg from
dHvA studies. ' It should also be compared to the
electrons of the two-band model interpretation of the
galvanomagnetic effects, cyclotron resonance, and
anomalous skin effect. Some of the experimental values
of e& obtained by various means are shown in Ref. 50.
There is a general agreement between the value of

4.3&&10'r electrons cm ' reported in Table III LElec-
trons (1)$ and those listed in Ref. 50. There is still
ambiguity as to the multiplicity of the electron ellipsoids
since very different values for the number of electrons
per ellipsoid have been given, even recently. A value
e,=0.91X10"cm ' per ellipsoid may favor a 6 ellipsoid
set; a value m, = 1.4&10'~ cm ', a 3 ellipsoid set.

One difFiculty in the identification of band (1) with
the electrons of Shoenberg's ellipsoids comes from the
experimental result u~e~=e~, which would indicate an
isotropic band. The value of a~ as obtained from various
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FIG. 12. JI611 versus lnH for T=4.3'K. The broken line curves
are representative of bands I, II, III, and IV, respectively, of the
multiband model, the full line is the algebraical sum of those bands'
curves. The right scale measures directly the apparent density of
state of each c;Z;. Bands (e) and (h) of the two-band model which
give a relatively good 6t of the experimental point are also indi-
cated. Oscillations in the high-6eld range are indicated by some
of their maxima (o) and minima (+).

~~
E
I

C$ ~
'O

90—

T 42K
f 0

I ~ ~

CO

6

C;

' The number of electrons per ellipsoid measured directly may
vary if correction for nonparabolicity and nonellipticity LMorrel
H. Cohen, Phys. Rev. 121, 387 (1961)7 are made. Some of the
values are (0.91,0.95, 1.01, 1.09, 1.25, 1.4) X10'r cm 3 per ellipsoid
from Refs. 11, 17, 23, 23, 14, and 4, respectively. From the two-
band model interpretation of cyclotron resonance, or effect of
alloying, the total number of electrons will be L4.6 (80'K), 4.9, 5.5,
5.8, 2.5, 3.9, 4.2$X10"cm '„as given in Refs. 1, 2, 8, 17, 7, 4, and
12, respectively.
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H(e)

FIG. 13.0.1~ versus lnH at T=4,2'K, The broken-line curves are
representative of the electron band (e) and hole band (h) of the
two-band model. The full line is the combined eBect of the two.
The points represent some of the experimental values. The right
scale shows directly the size of the band as measured by I;/II; in
G ' cm '. Also bands I, II, and III of the multiband model are
indicated.
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experimental data" ranges from 3.22 to 11 with an
average value about 5. However, because of the high
mobility and the restriction of Eq. (19) which excludes
another densely populated band of electrons, band (1)
must be designated as Shoenberg's ellipsoids and a~= 1.

result must be considered as an anomaly, yet un-
explained. Probably removal of the restriction that 7- be
isotropic and independent of energy would bring the
theory more in line with experiment. Another surprising
result in this band is the extremely large value of bIZ~,
which is 12 times the expected value stir/f i, (bi ——1),
where est and" it are taken from Table III. This
anomalously large value for the density of states may
account for the anomalously large specific heat (see
Sec. VE), a fact which, if true, is unexpected and which
at present is not understood. Work on an unexpected
temperature dependence of the parameters of this band
may help clear this point. " Only the c&Z& value ap-
proaches theoretical expectation" with cy=7.0. The
condition c~=a~ is far from being established experi-
rnentally since a~ is apparently anomalous.

(2) Band (2) is logically identified as the single
ellipsoid of light (high-mobility) holes, described in
Sec. VA. The sign (+) and popula. tion of the band, as
well as the comparison of its effective mass to that of
the light-electron band" (Hi/Hs=mi*/ms*, the same r
assumed for each) contribute to this identification. Thus
the value res 3.4X10'r/cms ——has been adopted even
though a more recent investigation" shows a slightly
better 6t with e2 somewhat smaller. The adopted value
of BED=65 G is a compromise —a smaller value is called
for in the e~~" curve fitting, but there is a degree of
uncertainty here due to the nearness of band (3). In the
e~~" and &~2" fitting, the effect of these light holes can
hardly be seen, which indicates there is no anomaly in
the density of states as with the light-electron band.
In fact, the apparent density of states here is only 10%%

of that of the light electrons. Since the FS for this band
is circular in the basal plane, we have set a2, b2, and c2

equal to unity. Recent experiments" indicate that a
value of b2=1.5 may be more appropriate.

(3) The third band consists of rather low-mobility
holes (Hs 500 6). The population of this band iss has
been determined only within limits: Contradictory
evidence sets n3 between 0.7)&10' and 2.5)&10' cm '.

"The weighting factor uP' (or c&), the ratio between linear
average and rms average of the mobility in the (1)—(2) plane for
electrons, can be computed from data of different authors: 11.3,
4.5, 4.6, 5.35, 6.35, 3.22, 5.55, 4.75, etc. See Refs. 14, 12, 10, 11,23,
1, 14, and 4, respectively.

"Shoenberg's value (Ref. 14) 2.8X10 '4 ergs is used here as
the value of the chemical potential g, . This value is in agreement
with Lerner's (Ref. 23). The nonparabolic model correction
t see Cohen, Ref. 50)] leads to the somewhat different values
(3.5, 4.2) X10 ' ergs per electron. See Refs. 17 and 23, respectively.

53 The cyclotron mass for the electrons in the (1)—(2) plane has
been directly measured by cyclotron resonance (0.08, 0.051)&(tpso

(see Refs. 12 and 13, respectively) or can be computed from
different effects. m,~=0.055m& has generally been the value
adopted for best 6t (Refs. 14, 10, 11, 17, 23). Then m1~/m2*=0, 85
as compared to Hq/Hs ——0.5.

A careful weighing of the evidence gives ca=1.1&10'
cm ' and a3n3=2.5)&10'" cm ' for the most suitable
concentration. In any case, these values are smaller than
the value of 2.88&(10" cm ' obtained by Lerner. "
It is worthy of note that the presence of band (2) and
the parameters adopted for it inhuence the parameters
of band (3) to such an extent that many investigators
have considered only a single band of holes. A band of
low-mobility carriers such as ba, nd (3) is needed to
explain the high density of states in bismuth as seen
from specific heat data. Nevertheless, as indicated in
Table III, the contribution to the density of states by
this band (as determined by both Ettingshausen-
Nernst and thermoelectric data) is, although large, only
about —,

' the apparent contribution of the light electrons.
If this band is composed of a single isotropic pocket
as suggested by Lerner, "one should set a3= b3= c3= 1.
For n3 = 1.1 && 10 and. Z3= 7)& 10 ', the chemical
potential is is ——0.235X10 '4 ergs (Fermi temperature
of 13'K) and the effective ma, ss is nzs*=0.57ms. The
existence of more than one pocket in the third band
would force a larger value for m3~ and a smaller value
for the Fermi temperature T3. An indication of the
effective cyclotron mass for the carriers in this band is
obtained if equal relaxation times for all carriers are
assumed. %ith II&, II2, and II3 given by 32, 65, and
500 G, respectively, and m&* and m2* given by 0.055fsp
and 0.065mo, respectively, the effective cyclotron mass
values of tisi*Hs/Hi ——0.Has and ms*Ha/Hs ——0.5mo fall
quite close to the above value for the isotropic effective
mass ms*.

(4) Band (4) does not have the same significance
as the other three: The maximum contribution of this
band to the transport processes appears at high field
(H4=13 kG) in the range where the oscillations are
important. In this magnetic field range, the semiclassical
theory is no longer applicable, except for the asymptotic
behavior of 0.~~. Indeed, very little evidence for this
band can be shown from a~2, the only c'ue being the
existence of an extremely small concentration of holes
(ts4=0.015X10'r cm '). In fact, more recent data on"
0~2 gives a value for ~4 even smaller with limits of
precision which make it impossible to distinguish
between a hole or electron character for this carrier.
Nevertheless, band (4) is analyzed in the usual manner,
since considerations of o.~~, e~~", and &~2" indicate the
existence of a band of the standard form. The low
apparent number of carriers u4m4=0. 25X10"/cms in
0-», with practically no contribution in 0.», along with
the extremely large apparent density of states seems
to indicate th.e band may be due to impurities or to a
departure from the simple theory used here. The hole
character is mainly indicated by the sign of the ~ji"
thermoelectric data

In summary, the band structure of bismuth can be
explained by four distinct bands, three of them with
the usual character due to groups of carriers. An
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illustration of the contributions of the various bands
to the observed effects can be seen in Figs. 11—13. In
Fig. 12 the quantity He»" is plotted as a function of
0;=lnH. The contribution of each band is a uniform
curve of the form A; sech(n n—,) where A, = (n'k'cT/6)
X(e;Z;). The sum of the four curves coincides very
nearly w'ith the experimentally observed values as
shown in Fig. 12. Similarly, the quantity Hg» is
displayed in Fig. 11 as the sum of the contributions
from each of the four bands. It should be noted that in
similar plots of the transverse effects o.~2 and &~2", more
importance is attached to the higher mobility bands.
This is the case since 0-~2 and &~2" directly exhibit the
quantities e;/H; and fi;Z;/H;, respectively, as seen
ln Fig. 13.

E. Density of States and Specific Heat

The electron specific heat is known to be a direct
measure of the total density of states, 'C= 3m'k'TZ. In
the case of bismuth, a strangely large value of the
specific heat (Z=50X103i erg ' cm ') has been found

by Kalinkina and Strelkov. '4 More recent measurements

by Phillips" indicate a smaller value, with Z=15.5
X10". The apparent density of states as determined
from Table III is (in units of cm ' erg ') P b;Z;
=64X10", P c;Z;=38X103i, in reasonably good
agreement with Kalinkina and Strelkov. However,
assuming the possibility of the fourth band being due
to impurities, one would 'obtain Qia b,Z;=43X103i,
Pia e;Z;=27X 103i for very pure bismuth. Furthermore,
if the abnormally large value of b&Z&=30)(10" is
rejected and the expected value of Z~= 2.4)(10"
substituted, a result Z=Zi+Z2+b3Z3=15. 1X103i, is
obtained as a reasonable value for very pure bismuth;
in excellent agreement with the results of Phillips. "
No attempt is made here to take account of the nuclear
quadrupole contribution to the specific heat.""

F. Two-Band Model

A relatively good fit of the experimental data is
attained with only a two-carrier model. Evidently, the
pseudoband which appeared in the preceding analysis
as band (4) will appear here too; but as already pointed
out, no carriers seem to correspond to it. Thus attention
is given only to the contributions of the other bands.
The fact that bands (1) and (2) of the preceding analysis
are so close together make possible the consideration of
the two as a single one in first approximation. The
hole band (3) of the former analysis is slightly more
populated and slightly more mobile. The results of the
two-band model analysis are shown in Table III. The
number of electrons is close to the value found from
low-field galvanomagnetic effects." The excess of
ho]es over the electrons is most probably due to some
acceptor impurities. The weighting factor" a, for
electrons is in better agreement with the expected

values' than in the former case of the multiband model;
but the ratio between the hole and electron mobility
H./Hi, =0.1 is much too small compared to the expected
value" of 0.85. The holes play a role more in agreement
with the heavy holes suggested from different
studies' ""and are by comparison to the electrons,
much too heavy to be identified with the light-hole
ellipsoid (Sec. VA).

The identification of the light-hole ellipsoid (with
its chemical potential of 1.9X10 '4 ergs) leads to a
density of state 3.4 to 5.4 times smaller than the
apparent values obtained from the Nernst-Ettinghausen
thermoelectric effects. As in the multiband case, an
extremely large apparent density of state also appears
in the Nernst-Ettinghausen effect for the electrons

(t.=20).
There is no doubt that the analysis of the thermo-

electric effects by terms of the type of Eq. (6) should

give only a rough determination of the density of
states. Any dependence of the relaxation time on field,

energy and momentum will inhuence these effects even
more than in the case of the galvanomagnetic effects.
A more comprehensive analysis of these effects is now

underway. 48

Oj2 L—K

H H Z'
=eePP —(~)A, (2o)

H'+H ' H'+H9 Z

where Z=g Z;. In the trigonal direction only oscil-
lations due to the light holes (j=2) are observed. Since
for high fields, H, of the light holes and electrons can
be neglected so

ec H'
012 L—K +2

H H'+H ' (21a)

where Z /Z is taken as unity. With 82 taken from Eq.
(9) and the experimentally determined values of ). and

R, Eq. (21a) is solved for H„. In taking only the first

G. Oscillations in the Galvanomagnetic Effects

Examination of the Lifshitz-Kosevich theory, Eqs.
(7), (8), and (11), for o.i2 shows that no oscillations
should appear at high magnetic field values where all
bands are asymptotic. This is evident since the classical
mobility (&)eeH (H'+Hg) ' reduces to q;"(q,"),
(+)ec/H for H&&H, . Experimentally, the oscillations
are quite pronounced in the high field range, as shown
in Figs. 9 and 14. The implication is that some band
(or bands) in bismuth has not reached its asymptotic
value in the range of fields used in the experiments.
Suppose there is one low-mobility band (j=u) which
enhances these high-field oscillations. If the relaxation
time is assumed independent of the energy, Eq. (7) can
be written from Eqs. (8), (11),and (5) as
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TABLE Dr'. Comparison of the amplitude of the oscillations 1n the conductivity coefficients, o.ii Iexp ~0/Q, expI 0 I with the Lifshitz and
Kosevich theory. Equations (22), (24), (21b), (23) are used to determine some characteristic parameters of the unasymptotic band, for
diferent values of the magnetic Geld.

(kG)

10
12
14

&1I exp 012 exp
(0 cm) ' (() cm) "

2.17 0.79
2.25 0.82
2.6 0.9

H /a
(1~6)

3.63
3.67
3.46

(kG)

4.15
4.60
5.95

(kG)

3,88
4.11
4.54

1.07
1.12
1.31

Z4/Z $4
(H4=13 kG)

0.205 3.58
0.195 3.54
0.205 3.76

term in the summation of Eq. (9), one obtains

IoisI L K=0.110H"9 (sinh)() ' in (0 cm) '. (22)
Hs+H„'

The values of H„obtained when this term is identified
with the experimental amplitude, for various values of
H, are given in Table IV.

The coefficient o-11 can be examined in a similar
manner. With all bands asymptotic except one, we
obtain

ec a„H„H
Iot)I ~K—(~)))s

H ET+H„'
(23)

(—) if the unasymptotic band is holes, (+) if electrons.
In this approximation, the ratio of oscillation ampli-
tudes is

I ~»l ~x/I o»
I
~K= a.H/H' (24)

However, as seen in Fig. 14, there is an apparent
difference in phase between the oscillation in o-12 and
oii, at high field, the phase diA'erence approaches ~/2,
where a relative phase of m would be expected if the
unasymptotic band were a hole band. Values for H„a„,

ecn2 H4' Z4

H H'+H4' Z
(21b)

Table IV gives the values of Z4/Z calculated for H4= 13
kG as obtained from the curve fitting (Table III). The
results compare favorably with the apparent value
b4Z4/hZ=0 32 or c4Z4./cZ=0. 29 computed from Table
III. A smaller value of H4 would bring Z4/Z closer to
these values.

With all bands asymptotic except j=4, the ratio of
o11 tO o121S

a H, H„, u are summarized in Table IV as determined,
respectively, from Eqs. (22), (23), and (24) for data
taken at 2.1'K. Note from the table that the experi-
mental value of H increases with H. This is expected
from this analysis if there are actually two bands (H3
and H4) which are not asymptotic. The lower satura-
tion field Ha=500 G is indicated in the curve-fitting
techniques and is substantiated in the next section by a
comparison of . the oscillation amplitudes in o.12 and

//
612 ~

If, in the high-field range 10 kG&H&14 kG, the
effects of the first three bands are neglected, Eq. (20)
becomes

Ptl tloaA/(deg K-cm)]

2.I K

2-

,=~.vVS
2-

IO Ad)tdeg K- Cm)
II

4.3'K

(' [lo A/(dcgK-cm)]
I2

4.5~ K

()I) [(n-cm)-l]

2 I'K

())( [(0-cm) l]

2.l' K

IIQ-cm) ]
4.2'K

(r)& [(Q-cm) ]
4.2 K

0—

0-

2-
0-

2—
0-
2-
0

0 [Kr A/(dcgK cm)]-
l2

2.l K

a kTT I

I ~~4
8 IO l2 f4

I
~»

I ~K/ I
o»

I
~K= ~4HIH4 (»)

The values of a4 obtained from H4=13 kG are given in
Table IV. The difference between the values obtained
here and those given in Table III are quite large but
are of little significance since the parameters of the
fourth band are quite indefinite. Although the nature of
band (4) is not clear, the band enters in the Lifshitz-
Kosevich theory in a straightforward manner.

H. Oscillations in the Thermoelectric Coefticients
and in the Density of States

As has been indicated, e p" are calculated from the
experimental e„d' as shown in Fig. 3 by means of Eq. (4).
With H parallel to the trigonal axis and the simplifi-
cation due to Eq. (18), the tensor elements become

(2~)
//

// // / /
&12 &21 &I Lo 11&12 M(712&11 g-

H(KG)

FIG. 14. The oscillatory components of the e p" and 0 p
at high fields at 2.1 and 4.2'K.

Calculated values of e p" display strong osciDations, as
seen in Figs. 10 and 14.

For the high field oscillations in etc", Eq. (6) is used
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in the asymptotic form

x'k2cT
gZ;.

3II
(27)

If Eq (27) is valid in the quantum case, oscillations arise
from the variations of the carrier's density of states. The
oscillatory part of e»" for band j= 2 only is obtained
by inserting Eq. (12) into Eq. (27) as

~2k2cT
Z2, (28)

TABLE V. Comparison between the amplitude of the oscillation
in the experimental Nernst-Ettinghausen kinetic coefIIcient
Ie~s" ~,„~ and the amplitude of the oscillation

~

e»"
~ s., due to the

incidence in Eq. (28) of oscillation in the density of states, at
different temperatures and for different magnetic 6eld values.
t Units of 10 ' A ('K cm) '.j

H
(ltG)

6
8

14
F~ 16

T=2.1'K
&12 d.s. &12 exp

600 3500
900 5000

1100 5250
1180 5250
1200 6000
1220 6750

T=4.2'K
~12 ds. ~12 exp

90
300
600
880

1120
1320

1650
1750
1750
2500

magnetic field dependence is followed quite well by the
experimental data. However, the experimental values
differ by a factor of 5 from those expected from this
simplified theory. At 4.3'K, the values of t.i2" predicted
by the theory differ from experimental values by a
lesser margin; however, the agreement in the field
dependence is not as good as that at 2.1'K. The
predicted temperature variation is not observed.

The oscillations in &~2" are related to those in 0.~2

by Eqs. (9), (21a) and (28) as

4s'Is'cm* T / H'
q

I
e»"

I s '=i . —
1
1+

3esa H & H.sJ

~B II2
=i 1+ (ots~L I, (30)

3e B„2

where a) 1 terms of Eq. (9) have been neglected and
all bands are assumed asymptotic except one charac-
terized with H„and Z„=Z.

where Z, = (BS,/Bt;) The. most important term in Eq.
(28) comes from the differentiation of the phase in ns,
see Eq. (9).

If only the It=1 term in Eq. (9) is retained, the
oscillation amplitude is

~
eys

~
e., =0.095TH '~'X/sinhX in A/deg-cm. (29)

The data of Table V show that at 2.1'K the expected

As shown in Fig. 14, the oscillation of &~2" are shifted
in phase by vr/2 relative to those of ots, in excellent
agreement with Eq. (30).

The experimental values for ~&2" and g.i2 substituted
into Eq. (30) yield values for the low mobility satura-
tion field H =1.6 kG at B=10kG and II =2 kG at
H = 14 kG, both at 2.1'K. These values seem to indicate
that the unsaturated third band plays a larger role
than shown in Table IV.

Equation (12) is used to determine the effect of
oscillations in the density of states on the thermoelectric
coefIj.cient for band j=2 only

[ e„~, , —
~

e„' ~,XZ,/Z, . (31)

This expression does not yieM an amplitude as large
as that expected from the contribution of scattering
in the Zil'berman theory, see Eq. (11).

.1'. Oscillutions in (7~i and &~i" and the Zil'herman Theory

In the Zil'berman theory, the oscillations due to a
particular carrier depend on the characteristic param-
eters of that carrier alone; here, the light-hole band
(j=2) parameters. Oscillation amplitudes for ~o»)zu
and

~

ett"
~
zu shown in Table VI are computed from

Eqs. (13) and (14) at T=2.1'K for the following cases:
Case (a) The multiband model with the light-hole

band as mapped in Sec. VA (as=can=1, ns=3.4X10'~
cm ', Zs ——2.7X10" cm ' erg ', Hs=60 G).

Case (b) The two-band model with the experimental
parameters found in Sec. VF (a@is——3X10'" cm ',
csZs=7.5X10st cm ' erg ' Hs ——400 G).

Case (c) The two-band model with isotropy imposed
on band j=2 (as ——cs——1, vs=2.8X10" cm ', Zs
=2.2X10st cm ' erg ', Hs ——400 G). In every case, Xs
is computed with m2*=0.065mo.

In Table VI, as shown for cases (a) and (b), the
Zil'berman theory predicts the right order of magnitude
for the 0-~~ amplitude; the experimental values lie
between those of case (b) and those of case (a). The
experimental and predicted field dependences diGer
appreciably. It should be remembered that in the
Lifshitz-Kosevich expression ~o.qt~L K, matching can
be obtained by adapting the parameter a„or a4 to the
quite reasonable value 1.2 or 3.5, respectively. Probably
both terms o.tt

~
L I and o'tt

~

z.i contribute to the experi-
mental oscillation.

Table VI also shows the expected values of ~~~" from
the Zil'berman theory in the three cases. Agreement
in the order of magnitude is achieved mostly in case (b)
where the large apparent density of states for the holes
is used; and thus favors the idea outlined in Sec. VF. In
Table VI are also shown for comparison the amplitudes
of oscillations expected in e~~" due to oscillations in the
density of states. The amplitudes ett"/e, for the
optimum case (b) are shown to be negligible compared
either to the experimental values or to the values
calculated from the Zil'herman theory.



GRENIER, REYNOLDS, AND SYBERT

TABLE VI. Comparison of the amplitude of the oscillation in the experimental magnetoconductivity ( o» ~, ~ and kinetic-thermoelectric
coeKcient [4»"~«s with the oscillation expected from Zil'berman's theory ~o»~z», [4»"~z», for the difierent cases. (a) o& ——cs=1,
ns=3.4)&10+"cm, Z& ——2.7X10» cm ' erg ', Hs=60 G; (b) o&n&=3X10" cm ', csZ& ——7.5X10"cm 4 erg ', Hz=400 G; (c) as —cs —1,
ns ——2.g)(10" cm ', Zs ——2.2&(10"cm ' erg ', Hs ——400 G. The c are given in (0 cm) '& the 4" in 10 A ('K cm) '. Also given, the

~

4»"
~
4, shows the incidence in Eq. (31) of the oscillation in the density of states.

H
(kG)

6
8

10
12
14

I +»)«p
(Qcm) '

1.7
2
2.18
2.25
2.6

0.55
0.62
0.61
0.56
0.5

&ll Z il

3.7
4.2
4.1
3.7
3.2

~ll exp

[10 4 A ( K cm) ']
4320
7300
8370
7830
8100

216
214
180
144
111

(4»"[z»

4000
4000
3300
2450
2030

1180
1170
1000
720
600

611 d.s ~

b

55
62
60
53
48

%ith the different oscillatory effects written in the
form

2 cos(2z/PII+Pp),

with A a positive amplitude; some comparisons can be
made between the phase of each effect and th.e theo-
retical prediction. The value of pp determined from.

experiment and theory are displayed in Table VII. The
value of the period I' used for the experimental determi-
nation of pp was taken as 15.1)&10 ' G '. There is some
uncertainty in the phase determinations for 0» and
~~2" because these effects show some deformation in the
high-field region. Thus for o.is, two values of gp are
given, one for low and one for high field, —1.37m and
—1.67m, respectively, with a somewhat good high-field
fit of the value —1.75+ expected from ~o,z~ i, K. The
phase for ~o.ii~ i K is for the case of an unsaturated
hole band. The experimental

~

o.ii~ „,» matches well the
Zil'berman value but some contribution of

~
oii~ i K is

still possible. For
~

eis"
~ «p, two values of gp are given,

for low and high field: —1.82m and —2.0x, respectively,
which are in fair agreement with the expected value
—2.25m for

~

ers" ~a, . A good agreement for the phase
exists between

~

eii" ~,„„and (
eii"

~
zu, it was expected

from Table VI that
~

eii"
~
a., would not be in6uential.

In the above computations of the phase from theo-
retical expressions, the value of y in Eq. (9) was taken
equal to its free-electron value of —', . An almost perfect
fit would be obtained between theoretical and experi-
mental effect with 7=0.42.

CONCLUSION

The properties of the crystal of bismuth used in this
work, because of the relatively poor resistance ratio
Rspp K/R4. 2 K—40, have the following simple features:

Its thermal conductivity is practically all lattice
conductivity; no size-effect correction has to be made
for the galvanomagnetic effects; the residual resistance
is attained at liquid-helium temperatures so that
lattice-defect scattering can be assumed; the saturation
fields of the different bands are in the magnetic field
range most favorable for observation. However, the
impurities in the crystal may be responsible for the
appearance of a pseudoband, band (4), and the slight
excess of holes over electrons.

The mapping of the light-hole Fermi surface agrees
with that of Brandt and his co-workers as modified by
the results of Gait et at. and those of Smith.

The band analysis of the different transport effects
using a Lorentz term for each band can be made in
either the case of two or three bands, plus the addition
of a "pseudoband" in each case, to account for the
high-field behavior. In both cases, a somewhat unusually
high value of the apparent density of states is obtained
for the light electrons. In the three-band model —one
light-electron band (1), one light-hole band (2) and one
heavy-hole band (3)—general agreement is obtained
with the various data existent on bismuth, except for a
very large uncert. ainty in the parameter of band (3)
and the strange tendency for the light electrons to show
an isotropic behavior. In the two-band model, difFiculty
exists for the identification of the hole band with the
holes of the mapped ellipsoid. An unusual temperature
dependence of the thermoelectric effects is found but
not explained.

The oscillations in the different eRects can be made to
match or, at least, be of the order of magnitude of those
expected from different theories. Thus the result of the
Lifshitz-Kosevich theory for the oscillations in the Hall
conductivity matches the experimental values when
the empirically determined characteristics of band (4)

TABLE VII. Comparison between the phase of the oscillation in the experimental kinetic coeflicient
~
o ~s

~ «s ~

a.» ~ «P ~

4~4"
~ «~ ~

4~~" [,»
and the phase expected from the diiferent theories (with the y=-,'free-electron assumption).

Theoretical

Experimental average

&12 L-K

—1.75m

1034
to—1.672I.

011 L—K

—0.75m

011 Z ii

—1.2571-

&12 d. s.

—0.25m
or—2.25vr—1.82m
to—2.0m.

&11 d.s.

—0.252I
or

=2.252I.

&ll Z i]

10757l
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are used. The Zil'herman result for oscillation in the
conductivity 0.11 matches the experimental values for
conditions somewhat intermediate between the two
and three band models, but the Zil'berman result for
oscillation in the thermoelectric coeKcient ~11" favors
the two-band model. The right order of magnitude for
oscillation in the Nernst-Ettinghausen effect &12" is
obtained from the oscillations in the density of states.
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The equation of state of NaCl is given using the Kellermann model of NaCl as well as a modi6ed model
making use of a repulsive potential energy of the Born-Mayer form Ae ". The Gruneisen parameter
y, = —dlnv„/d InV, where v; is the normal mode frequency and V is the volume, is derived by the development
of a perturbation method in the volume. This is then used where needed to calculate all thermodynamic
quantities of interest using an IBM 7090. A spectrum of 11 454 frequencies and p; s are used in 6nding these
quantities rather than the approximations made previously of utilizing the elastic constants and the moment
expansion p(S) =Z; p,:v /Z; v,'= —(1/S)d ln(v )/d lnV, where (v ) is the Sth moment of the frequency
distribution. To check previous work by Barron and Blackman p (0), p(2), 7 (1), and y( —3) were calculated
where y(0) =y„, the high-temperature y, and y( —3) =go, the low temperature y. Fair agreement is found
for y(—3), whereas the deviation in ~(2) is high.

p, = —d lnv;/d lnV (2)
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I. INTRODUCTION

'HE equation of state of a real crystal such as
NaCl has been considered by several investi-

gators. Barron'' and Blackman' using a Kellermann
model' of NaCl and assuming equal masses for sim-

plicity have recently obtained values for the low-

temperature (T-+ 0) Gruneisen"" parameter ys. Barron
was able to 6nd a high-temperature (T&O, where 8
is the Debye temperature) Gruneisen parameter y„by
defining a weighted y in terms of the moments of the
frequency spectrum with (v ) the Sth moment

t1
y (S)=P; y,v,'/P, v,'= —

~

—d ln(v )/d lnV, (1)
&s

where

and v, is a normal vibration frequency, V is the volume,
and the sum over i here and in all such expressions is
to be taken over all normal modes of vibration. He
found expressions for y(2) which he maintained should
be approximately equal to y(0)=y„and by making
use of the elastic constants found a ps ——y(—3). It was
found that deviations from Griineisen's relation should
occur at 0.30. Barron then compared his work to
Born's' and Slater's. Slater's formula, which is derived
from a consideration of the elastic constants, is

y.=-', d ln. (xV "')/d lnV, (3)

6M. Born, Atomtheorie des Festen Zustundes (B.G. Teubner,
Leipzig, 1923).

7 J. C. Slater, Introduction to Chemical I'hysics (McGraw-Hill
Book Company, Inc. , New York, 1939), Chap. XIV.

where g is the compressibility and V is the volume.
This formula was derived under two assumptions, one
being that Poisson's ratio is constant and the other
that there is a characteristic temperature given by
Debye's expression for an isotropic continuum,


