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The classical dielectric theory of optical properties is a local theory, and results in a dielectric constant
dependent only on frequency. This dielectric behavior can be written as a sum over resonances, each reso-
nance occurring at a particular frequency. The spatial dispersion (i.e., nonlocal dielectric behavior) effect
considered here is the eRect of the wave-vector dependence of the resonant frequencies on optical properties.
The additional boundary condition needed for the application of such a theory is discussed for the case in
which the resonance is due to an exciton band and the wave-vector dependence to the Rnite exciton mass.
Experimental data presented on the reflection peaks due to excitons in CdS and ZnTe exhibit gross de-
partures from the reQectivities expected from classical theory. Particularly striking are sharp subsidiary
reRectivity spikes. The departures from classical results are all well represented by calculations based on the
theory of spatial resonance dispersion and a simple approximation to the derived boundary condition.

I. INTRODUCTION

HE mell-known classical optics of nonmagnetic
crystals is based upon the concept of locaJ di-

electric behavior. In this approximation, the dielectric
polarization P within a small volume of radius ro

(ro«any wavelength involved) depends only on the
value of the electric field inside this volume (at the pres-
ent time and in the past) and is Not explicitly dependent
on the electric field or other parameters outside the
volume under consideration.

The term "spatial dispersion" has been used to apply
to dielectric behavior for which the local description is
not valid. In general, spatial dispersion refers to the
wave-vector dependence of the dielectric constant.

Implicitly contained in the supposition of local di-
electric behavior is the neglect of the transport of
energy by any mechanism other than electromagnetic
waves. When energy transport by other mechanisms
must be considered anomalous (nonlocal) dielectric
behavior results, often accompanied by new physical
phenomena. For example, a metal in which the electron
mean free path becomes smaller than the classical skin
depth exhibits the anomalous skin e6ect. ' In this case,
the energy transported by the electrons is, in the in-
terior of the crystal, as important as the energy trans-
ported by the electromagnetic field.

Of all possible spatial dispersion effects, we confine
ourselves to the one which seems to be the most radical
in effect in classical optics, namely, the effect of a second
mechanism of energy transport on classical optics. In
particular, the effect of a noninfinite exciton mass on
the reQectivity of insulating crystals near an isolated
exciton line is investigated both theoretically (Secs. II
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II. THEORY

The development of the theory of spatial dispersion
in optical spectra of excitons has in great part been due
to Pekar' ' in a series of papers beginning in 1957. The
nature of this theory has unfortunately been obscured

by its formalism. In this section, the rudiments of the
theory of spatial dispersion are developed from a simple
classical point of view.

Let an electric field Ese'"'*e '"' exist in a crystal. A

polarization wave

P (Q n(k+2~G ~)esttto x)E etit xe irat—
6

where G is a reciprocal lattice vector and n(k+2srG, co)

is a second-rank tensor function of k+2z.G and co, will

accompany the electric field. By restricting considera-
tion to sufFiciently low energies Lco«c/(lattice constant)]
the terms of nonzero G introduce only renormalization
corrections which can be absorbed in n(k, to). In this
approximation,

Pi(co) =n(k, to)Ei, (co) (2)

and n(k to) can be regarded as the frequency- and wave-
vector-dependent polarizability tensor. It describes the
polarization response in a "Gedanken" experiment for
which k and co are independently specified.

By "the effects of spatial dispersion" we mean the
effect of the wave-vector dependence of n in (2). Classi-

s S. I. Pekar, Zh. Eksperim. i Teor. Fiz. 33, 1022 (1957) Ltrans-
lation: Soviet Phys. —JETP 6, 785 (1958)].

'S. l. Pekar, Fiz. Tverd. Tela 4, 1301 (1962) Ltranslation:
Soviet Phys. —Solid State 4, 953 (1962).j

and III) and experimentally (Sec. V). Section IV con-
tains a brief account of general experimental and theo-
retical problems involved in demonstrating the e8ect
of spatial dispersion in the exciton region.
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(8) CLASSICAL DIELECTRIC

k and the others perpendicular to k in directions in-

dependent of the magnitude of k (e.g., k is in a (100)
direction in a cubic crystal). Fourth, only the zero and
second-order terms in the expansion of n(k) and cp;(k)
will be retained. The first-order terms will vanish in a
crystal having inversion symmetry and will be small
under much broader circumstances. For E polarized in
a given principal direction, (2) is approximated by

ep 1— (np+Qsk )oIp
Pi(oI) = + ~~(~) (4)

4pr oIps+ Bks ops scpI—'—
The solutions (periodic in space and time) to Max-

well's equations for the dielectric defined by (2) are
found by solving the eigenvalue problem,

CO Ct)

k'EI, —k(EI, k) = —iDx =——[EI,+4prPI, ].
c') c'

(5)

cal local dielectric theory is obtained simply by setting
k=0 in (2).

For a given wave vector, insulating crystals are
characterized by polarizabilities of the form

n, (k)oI,s(k)
n(k, oI) =P—

i cp'(k) —oI' —soII', (k)
(3)

by virtue of the fact that the polarizability obeys a
Kramers-Kronig relation at any fixed wave vector. )The
summation in (3) should be understood to include the
possibility of integration over the index j.g A conven-
tional isolated optical absorption line is associated with
an isolated resonance, a single term L for which oI;(0)
is isolated from the other zero wave-vector resonant
frequencies.

The presence of resonances in (3) prevents n(k, oI)

from being usefully expanded in powers of k. Instead,
both the numerator and denominator (of each term)
must be expanded.

To keep the physics from disappearing in a morass
of tensor notation, the problem will be simp/ified. First,
the frequency will be chosen near a particular resonance
in (3), and the sum over all other oscillators will be
lumped into a frequency- and wave-vector-independent
background dielectric constant e. Second, the wave-
vector dependence of the phenomenological damping
term I' will be ignored. (Indeed, the calculations of
Sec. IV show that the value of F is small enough to be
ignored in some experiments. ) Third, a direction of k
is chosen such that e has one principal axis parallel to

WYÃY/YYYYFPY/YÃYNÃZYÃNÃYPNFYPYYÃi

(b) SPATIAL DISPERSION

Fzo. 1.The spring and charged mass-point models of a classical
dielectric, (a); and one exhibiting spatial resonance dispersion,
(b). These models represent scalar analogs to the actual vector
equations. The directions of P and x are indicated. 47I (Qp+Qsk )oIp= ep+

oIps+Bks
(6)

For real frequencies, k and e will be in general complex.
In classical optics, o.~=8=0. For a given frequency,

(6) is linear in k', and there are two roots for k. These
roots are the complex numbers, k and —k one referring
to a right-running and one to a left-running solution.
For a given (principal) pola, rization, frequency, and
direction of propagation only one transverse mode exists.
The ca,se 8=0, o.2&0 is rather similar to the classical
case. Although there will be some effects of the wave-
vector dependence (in particular, when np=0, a "for-
bidden" absorption line will be seen if ~2/0, a line which
would be absent in classical optics), (6) remains linear

0 I I

0~ki kr —--= 0
ki kr~

Fn. 2. The frequency wave-vector dispersion relation for the
transverse normal modes of light coupled to a classical dielectric
(graph at left) and a dielectric having spatial resonance dispersion
(at right). No damping is included. The normal mode wave vectors
are in either case either purely real or purely imaginary, and are
plotted to the right or left accordingly. The dashed lines show the
dispersion relations for 0.0 ——zero; the solid lines for a fjnite (xp.
Parameters have been chosen to display clearly the differences
between the models,

Under the approximations described, the solutions of
(5) divide themselves into longitudinal solutions (EI,
paralle1 to k) and transverse solutions.

When (4) is substituted into (5), the transverse solu-
tions to (5) are determined by the condition
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1 O'P. (x) O'P,x
+P.„(x) B—=npE(x), (7b)

COp" Bf2

for the two cases, respectively, for transverse waves
propagating in the x direction. If E(x) and P(x) have
the forms Ei, exp[i(k, —ppt)] and P,„,i, exp[i(k —p~t)],
then the exciton contribution to the polarizability
P, i,/Ei, determined from (7b) is the second term on the
right in (6) for the case np= 7=0.

When springs between the polarization oscillators
are included there are, even for n=O, two methods of
propagating energy at a given frequency, one "electro-
magnetic" and one "mechanica]. "The coupling due to
~, of course, mixes the modes, but does not change their
number.

The wave-vector dependence of the denominator in

(6) has an obvious interpretation. The normal mode of
the crystal to which the light couples clearly has the
dispersion relation,

1 A'k'
pi'=imp'+Bk' or Puu=h&pp+

2 m*

For the case of a dielectric resonance due to an exciton
band, m* is by definition of the exciton mass.

The rest of the present paper concerns, of all spatial
dispersion effects, only those effects due to the nonin-
finite "mass" (nonzero B). To distinguish these effects
from more general ones, we shall refer to them as being
due to "spatial resonance dispersion. "

IG. BOUNDARY CONDITIONS

We consider here the effect of the wave-vector de-
pendence of the energy of an isolated pole of the dielec-
tric constant on the optical reQectivity of a crystal. Only
the simplest case experimentally attainable is treated,
normal incidence in a principal direction. For normal
incidence, all wave vectors involved in the problem are

in k', and no profound change of the electromagnetic
equations results.

The case 8/0, &2=0 is much more interesting. For
this case, given cu, (6) is quadratic in k . There are in
this case tao transverse solutions propagating in each
direction for a given principal polarization and
frequency.

That there should be two propagating modes is easily
seen by examining a mechanical model of a classical
dielectric, and comparing it to a model which exhibits a
nonvanishing B.The model of Fig. 1(a), in a continuous
limit, defines a classical dielectric. Figure 1(b) defines a
dielectric with B/0. The transverse normal modes for
the two systems are shown in Fig. 2. The equations of
motion for the local oscillator polarization P, (x) in the
continuous limit (but without damping) are of the form

1 O'P.„(x)
+P. (x) =npE(x), (7a)

VACUUM

Ep k), E)
CRYSTAL

ER kp, Ep

FIG. 3. A schematic diagram of the normal incidence reQectivity
problem. The arrows denote the wave directions, and the diferent
E's the wave electric 6eld amplitudes.

Ep+Ez=Ei+Ep,
Ep—Eg =niEi+ n pEp,

(10)

where ni=cki/pp, np=ckp/pp, and ki and kp are the
two "right-running" roots of the dispersion relation
c'k'/p~p= p(k, co). Substituting (9) into (5) [equivalent
to (6)], niP and npP are found to be given by

1 cv FM) {ac )Mp—i
2 — ppp ppp ) kpi

1 td S1C2COp

pp+ 1—
4 COp Cd p AG)

mc'cop
+4mnp . (11)

Aco

collinear. To appreciate the importance of the choice of
a principal direction, it must be recalled that a finite
np in (4) requires an "oscillator" having vector proper-
ties. In a cubic crystal at k=O, such an oscillator is
degenerate, transforming like x, y, s. Away from k=0,
the degeneracy splits. In a (100) or (111)direction, the
form of the degenerate perturbation theory splitting is
determined from symmetry considerations. The split-
ting in these directions is into purely longitudinal and
purely transverse modes. At normal incidence in a
principal direction, a single transverse polarization can
be chosen, the longitudinal mode does not enter, and the
resultant wave equation and boundary value problem
are one dimensional and scalar.

The model dielectric under consideration has a dielec-
tric constant

4~n~p2
(k,pi) ='pp+

pppP —a)'+ (Ak'pp p/m*) ip)I'—

in a frequency region near &up. (This dielectric constant
applies to a case in which the exciton polarization and
the electric field are parallel, and both perpendicular to
k. In a uniaxial crystal, the electric field must, in addi-
tion, be either parallel or perpendicular to the optic
axis. ) The wave-vector dependence of pp is neglected
(Sec. II).

The reAectivity boundary problem to be solved is
illustrated in Fig. 3. Unlike the classical problem, there
are two right-running waves in the medium. The usual
Maxwell boundary conditions on E, 8, D, and H must,
of course, be satisfied. These conditions become
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For the classical case of ore mode of propagation in
the medium, (10) can be solved for the reflection coef-
6cient E)r/Eo. In the case of two modes of propagation,
these equations are not sufficient to determine a solution;
an additional boundary condition is needed.

This need of an additional boundary condition is
evident in comparing the dielectric models of Fig. 1 and
Eq. (7). In the continuum limit, the differential equa-
tion of motion of I' is of zero order in x for Fig. 1(a), but
second order for Fig. 1(b). For the second-order equa-
tion, a boundary condition on I' at the termination of
the medium is needed (just as at the end of a continuous
elastic bar). This boundary condition is specified by the
manner of termination in the case of an elastic medium
(e.g., a bar with a free end has the boundary condition
that the strain vanish at the end).

The oscillators by which the dielectric polarization
I' can be described are abstract. The problem is to find
the appropriate boundary condition for these oscillators.
The optical excitation of direct excitons results in dis-
crete exciton absorption lines due to isolated oscillators.
The boundary condition on I',„, the contribution of a
single exciton mode to the dielectric polarization, will
be investigated for one of these transitions.

Several previous investigations of boundary condi-
tions' ' have been made, yielding three difIerent bound-
ary conditions. One of these (Ref. 4) is incorrect. The
difficulty with the other two is that each is appropriate
to a model which does not contain sufficient generality
to apply to the real physical world.

The exciton as a quantum-mechanical particle can
be specified by its internal state and its total wave
vector k. Given a particular internal state, the eigen-
value equation for the exciton is

E(k)4 (k) =El (k), (12)

h'k'
E(k)=E,+

(13)

is obtained as the Fourier transform of (12).
If a (perfect) crystal exists only for x)0, a free exciton

incident from the right will be totally reflected back to
the right by the crystal. boundary. The exciton wave

4 V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 34& 1593 (1958)
)translation: Soviet Phys. —JETP 7, 1096 (1958)j.

s J. J. Hopiield, Ph. D. thesis, Cornell University, 1958 (un-
published).

where E(k) is the exciton band energy. For a given
direction of k, E(k) is expandable in powers of k.
Expanding around the minimum of E(k) (presumed at
k=0) and considering only waves propagating in the
x direction, the free exciton effective-mass equation
[valid for

~
(E—Eo)/Eo ~((1]

h' 8'
+Eo lk(x) =EN(x),

2(os* Bxs

A. Frenke1 Excitons with Nearest-Neighbor
Interactions

For the one-dimensional. problem under consideration,
represent the crystal by a line of equivalent atoms,
each of which has a single excitation state and coupling
to its nearest neighbors. The linearized exciton Hamil-
tonian, in terms of the operators b;+(b,) which excite
(de-excite) atom i is

(15)

If the sum extended also to all i(0, the crystal would
fill all space and plane-wave states would be eigenstates.
For the truncated crystal, the normal mode creation
operators are of the form

[s k( + ) e ik(x+a—)Qb+
r

j&0
(16)

where a is the lattice constant, and have, of course, the
plane-wave exciton energy

EJ,——3—2J coska.

The exciton "wave function" as a function of position
is, from (16),

P(X ) &(k(x&+s) &
—(k(z&+e)

and defined only at lattice points. In the exciton ef-
fective mass approximation, x; can be replaced by a
continuous function P(x). All the normal modes of the
semi-infinite lattice obey the "boundary condition"
P(x) =0 when extended outside the crystal to the point
x= —a. For long wavelengths, the boundary condition
is approximately

f(0)= (e))J'/e) )(0),
or, more crudely,

(20)

Equation (20) is the boundary condition calculated by
Pekar. '

It is, of course, possible to add other terms to (15)
to terminate the crystal. For example, A could be modi-
fied for atom zero. Such a modification still leads to a
boundary condition of the general form of (19) for small
k, with a multiplied by a numerical factor.

function, for x&0 but well away from the boundary,
must then have the form

Q (X) o e(kx+ S (pe (ks

where y is a real function of the energy.
To calculate q, a microscopic understanding of the

forces which cause the exciton to turn around is neces-
sary. The investigation of these forces in the absence of
a coupling between the light and excitons for two ideal-
ized cases follows.
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This case is seldom literally applicable, but demon-
strates clearly the origin of the exciton boundary
condition.

B. The Case of Wannier-Mott Excitons

Consider a simple hydrogenic exciton in its ground
(1S) state. The interaction between the exciton and its
image charge results in a potential energy of the exciton

1('e—1 (ii
V(x)= —

i

- Eai—

I'IG. 4.Energy ver-
sus x for the poten-
tial U(x) (solid line)
and the infinite bar-
rier approximation
(dashed line).

Q
K,
LaJz
ul

where u is the exciton Bohr radius, E~ the exciton
binding energy, and e the static dielectric constant.
Since e is greater than 1, the force is repulsive. Shorter
range effects of "overlap" with the surface, surface
field, etc., also contribute to the effective potential.

If all the effects of the surface could be represented
by a potential U(x) for the exciton, U(x) would have
to be suKciently repulsive to cause the exciton to be
totally internally rejected. In such a case, the exciton
Schrodinger equation and boundary condition

h' 8'lt
+h, lt (x)+U(x)P(x) = h lt (x),

2m* Bx2

P(x) =0, x&0,

(22)

completely specify the re6ection of the exciton at the
surface. For ~E—Eo~&(Ea, the classical turning point
is welI. removed from @=0. In this energy region, the
energy region of real interest, the potential is character-
ized by exciton parameters, and is independent of de-
tailed knowledge of the crystal surface.

An exciton is the "particle" of the classical polariza-
tion 6eld in the same sense that the photon is the par-
ticle of quantum electrodynamics. The exciton wave
function P(x) is in reality a boson field operator. The
operator E,„(x) which gives the exciton contribution
to the polarization field is proportional to f(x)+P*(x).
Replacing a& by i(B/pit) in (22), the equations of motion
of I', in the absence of an electric 6eld for frequencies

[ (oi —cop)/cop
~
&(1, is given by (23).

B2—+poo-
Bt

~no B
+2

8z Bx

~oU(x)- r, (x,t) = 0 (23)

=o.o~oosE(x, t) . (24)

The presence of an electric 6eld simply adds a term
oooo'E(x, t) as in (24), to lowest order. Semiclassical
radiation theory is now recovered by reinterpreting
the I' and Z operators in (24) as classical fields.

Two simple cases emerge. First, for m* —+ , the
left-hand side of (24) expresses the classical polariza-
bility of a medium whose resonant frequency changes
near the surface. Second, for U(x)=0, the polariza-

bility determined by (24) is that represented by the
second term on the right in (9) if damping is neglected.

The boundary condition problem can now be ade-
quately described. For case A, U(x) =0. Approximate
boundary condition (20) implies P, (0)=0. If this is
the case, the two propagating modes must sum to no
exciton polarization at x=0, and the additional bound-
ary condition is therefore

x&0:

x&0:

1 B2E=+-
@2 BP

B E 1 B
(epE+47rE.—),

BS2 c2 BP

(26)

Equation (24),

subject to the boundary conditions

E(0 )=E(0 ),
BE BE

(0-)= (0+)
Bx BS

(27)

I', =0, x&0,

and the asymptotic conditions best described by looking
at Fig. 3. The solution is then determined since U(x)
is suKciently singular to eliminate the exciton I', at
the boundary.

The solution oi (26) and (27) is annoyingly difFicult.
The chief physical effect of the repulsive U(x) is to
cause the free exciton to be totally reflected from an
effective barrier a 6nite distance inside the surface. One
is tempted, therefore, to replace the potential U(x) by
an in6nite potential barrier a finite distance l inside the
crystal as indicated in Fig. 4. At and to the left of such

++ 0 or (itl oo)+1+ (~2 ep)E2= 0. (25)

A slightly more complicated boundary condition can be
derived for boundary condition (19).

For case 8, U(x) is not equal to zero, and a much
more complicated equation must be solved, namely,
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(nt+-n) e """'—n+n-'
e*=s —--

(nt+n)e "'"'+n nt—
IV. INTERPRETATIONAL PROBLEMS

(30)

Several attempts have been made' ' to observe the
effect of spatial resonance dispersion on optical proper-
ties near exciton absorption peaks. One of the striking
properties of spatial resonance dispersion is the pre-
dicted existence of additional propagating waves in a
crystal. The interference between the two propagating
waves (when classical optics would have produced but
one wave) should, in. principle, produce observable
effects on the optical transmission. If all multiple re-
Qection effects are neglected (and all classical inter-
ference effects therefore impossible in isotropic materials
for normal incidence on a plane parallel slab), two kinds

of oscillatory effects should be observed. One is a periodic
modulation of the transmission at 6xed energy as a
function of the thickness. The other is a periodic modu-

lation of the transmission at fixed thickness as a func-

tion of the energy due to the variation of the two in-

dices of refraction with energy. These effects are at-
tractive ones to investigate, since their existence can

6I. S. Gorban' and V. B. Timofeev, Doklady Akad. Nauk
S.S.S.R. 140 791 (1961) Ltranslation: Soviet Phys. —Doklady
6, 878 (1962)].

7 M. S. Brodin and S. I. Pekar, Zh. Eksperim. i Teor. Fiz. BS,
74 (1960); 38, 1910 (1960) Ltranslations: Soviet Phys. —JETP
11, 55 (1960); 11, 1373 (1960)).

M. S. Brodin and M. I. Strashnikova, Fiz. Tverd. Tela 4,
2454 (1962) Ltransiation: Soviet Phys. —Solid State 4, 1798
(1963)).

a barrier, the boundary condition P(l) =0 will apply. In
this case, there will be three spatial regions, x&0,
0&x&i, and x)l. The first two are characterized by
classical indices of refraction 1 and ass, respectively.
The third region is anomalous. The usual Maxwell
boundary conditions plus the I', -=0 boundary condi-
tions determine the connection between the second and
third regions.

The l which best represents (27) is not clear. A guess
might be the l for which the energy in (22) is the same
as the exciton-phonon interaction energy 2srrshrop/sp

This yields the estimate that / is about twice the exciton
Bohr radius for all semiconductors.

The reflection coefficient E=Err/Ep can now be
calculated. It is conveniently written

E= (1—n*)/(1+n*), (28)

where e~ is an effective index of refraction. For the case
2 with boundary condition (20),

nt= (nrns+ ep)/(ni+ns), n*= nt . (29)

Case B, with the repulsive barrier approximation, has
the reQectivity the same as it would be for a classical
dielectric interface having three layers of n=1, ges,
and e~, respectively. One 6nds for this case et is given

by (29), but n* for (28) is given by

be theoretically predicted independently of the precise
boundary condition employed.

This mode of experiment suffers from one chief de-
fect. In order to obtain an interference effect, it is
necessary for both modes of propagation to traverse
the crystal and to arrive at the back with finite ampli-
tude. In order to obtain this, it is necessary that the
collision time o$ a bare exciton be comparable to or
greater than the exciton transit time for the crystal used.
For typical semiconductors, the characteristic velocity of
the excitons involved is about 10s cm/sec. (This velocity
is no greater than 2rrk/X „m, or ((4rr~r p/sp) (is~os)ns )'",
whichever is greater. ) Since characteristics relaxation
times (collision times) are of the order of 10 "—10 "
sec, crystals having thicknesses of the order of 10—
1000 A are necessary.

The experiments performed on Cu20 by Gorban and
Timofeev' in which an interference effect as a function
of thickness is reported cannot, we believe, be viewed
as a verification of the theory. The oberved linewidth
gives in this case an exciton collision time of about 10 "
sec, whereas the transit time in crystals of the thickness
used ( 100 000 A) is of the order of 10 ' sec. In addi-
tion, the data show no oscillations at fixed thickness.
It seems likely that the observed results are an artifact
of the indirect method of measurement.

The experiments of Brodin and Pekar' are much more
likely to demonstrate the interference effects. The
thickness of crystal investigated was of a more appropri-
ate thickness 500—3000 A. Unfortunately, there is not
sufficient data on anthracene to make an independent
estimate of either the mean free path or the exciton mass.
The oscillation periods are different at the two fre-
quencies reported.

Recent experiments by Brodin and Strashnikova
have shown that the dispersive and a,bsorptive parts of
the index of refraction of CdS (as obtained from a clas-
sical analysis of thin film measurements) do not appear
to be quantitatively compatible. They have suggested
that the cause of this incompatibility is spatial
dispersion.

The incompatibility with classical analysis seems
quite plausible. Any effect which changes the boundary
conditions in an energy-dependent fashion (as spatial
dispersion does) will automatically introduce inconsist-
encies, even if only one mode crosses the crystal. To
confirm this hypothesis, quantitative calculations would
be necessary.

ReQectivity experiments have one teal advantage
over other varieties of experiments for detection of
spatial resonance dispersion, namely that thin crystals
are not needed. For crystals several absorption lengths
thick, the results are independent of thickness. I'urther,
the reAectivity results are expected in theory to be in-
dependent of the exciton collision time as long as this
time is suKciently large. (This domain of r =10 " sec
can be experimentally attained by the careful selection
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FIG. 5. The normal incidence reflectivity spectrum of CdS in
the vicinity of the irst exciton peak for two diBerent but classically
equivalent geometries $(a) and (c)g. A classical reiiectivity curve
crudely representing these anomalies is shown in (h).

V. EXPERIMENTAL OBSERVATIONS
AND CALCULATIONS

A1l experimental reQectivity spectra described here
were taken on "good" CdS and ZnTe crystals at I.6—
4.2'K. The spectra were measured using a Bausch and
Lomb grating spectrograph with a linear dispersion of
2 A/mm. Some spectra were obtained from a photo-
graphic plate, but the more detailed spectra in CdS
were measured photoelectrically. In some experiments,
great care was taken to keep the cone of incidence and
angle of incidence as small as 2'. No observable dif-
ference between these experiments and experiments
using angles of incidences 2—3 times larger was observed.
It is therefore believed that no qualitative (and only
small quantitative) difFerences exist between these
experiments and ideal ones performed with parallel
light at normal incidence. "Good" crystals of CdS was
taken to mean crystals in which the higher states of the
excitons from the first valence band were observable in
reQection. In really good crystals, the v=3 state is ob-
servable as an anomaly in the reQection, and the e= 2

of CdS crystals. The absence of an v=2 state in the
dispersion curves of Brodin and Strashnikovas suggests
that their r was an order of magnitude shorter. )

ReQectivity experiments also have their drawbacks,
the chief of which is the question of what the surface
looks like. Experimental reproducibility defines a sur-
face condition, but it is not necessarily the condition
used, of a perfect crystal-vacuum interface, assumed for
the theory.

In addition, the theoretical expression for the reQec-
tivity is algebraically so complicated that one loses
all intuition concerning the expected form of the re-
Qectivity. Armed with the knowledge that, in order to
compute quantitatively experimental results in any
spatial resonance dispersion experiment on excitons,
an understanding oJ the boundary condition at an actual
surface is necessary, we proceed.

state shows a very marked and unusual reQection peak.
(see Fig. 9).The good crystals also showed the sharpest
structure for the reQectivity of the x=1 state. Experi-
ments were performed both on ZnTe (cubic) and ZnTe
with a uniaxial strain. Under the uniaxial stress, the
degenerate valence band splits and becomes simple,
while the optical properties become uniaxial.

ReQection was always observed from as-grown faces
with the crystals immersed in liquid helium. CdS grown
from the vapor occurs as plates with the hexagonal c
axis in the plane of the plates. ReQection measurements
with kJ c therefore presented no problems. For k~~c
crystal were found which had grown faces perpendicular
to the c axis. These faces had a width of only 10—20 p,

so that an enlarged image of the face was arranged to
fall on the spectrograph slit. The ZnTe crystals were
grown from the vapor, ' and were stressed in an ap-
paratus similar to one already described. "

ReQectivities were normalized by using a reQectivity
calculated from the index of refraction in a spectral
region where the crystal is transparent.

The reQectivity spectrum of CdS in the vicinity of
the lowest exciton (exciton 2) at 4.2'K is given in
Fig. 5(a) for light at normal incidence in a direction
perpendicular to the c axis and also polarized perpen-
dicular to the c axis. The reQectivity of a classical oscil-
lator (width 10 ' eV, 4prop ——0.0094, ep = 8.1) is shown in
I'ig. 5(b). The two are rather similar, the difFerence
being chieQy the small reQectivity peak at 2.55445 eV
(marked by the arrow) not present in 5(b), and a quan-
titative failure to agree at energies at and slightly above
the reQectivity minimum.

Two quandaries present themselves. First, the width
of the classical dispersion oscillator which qualitatively
its the reQectivity is about 10 ' eV, whereas the width
of the exciton state involved, as inferred from trans-
mission experiments performed in other geometries,
must be less than 10 4 eV. Second, there occurs near the
reQectivity minimum a sharp peak not anticipated by
the simple classical form 5(b). It would be tempting to
explain the order of magnitude disagreement of the
reQectivity linewidth and the transmission linewidth
by assuming that the crystal is not as good, and the
lines are broader at the surface (where the reflection is
determined), rather than deep in the interior. This sup-
position is not really compatible with the observed
sharpness of the subsidiary structure, nor does it
explain this structure.

Exciton "A" in CdS is twofold degenerate, polarized
in the plane perpendicular to the c axis. For wave vector
perpendicular to the c axis (kJ c), "A" splits into a
longitudinal and a transverse exciton, at frequencies co~

and uo, respectively. The zero of the index of refraction
(of a transverse mode of propagation) occurs at energy

~ R. T. Lynch, D. G. Thomas, and R. E. Dietz, J. Appl. Phys.
34, 7O6 (&963).

' D. G. Thomas, J. Appl. Phys. 32, 2298 (1961).
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OPTICAL P ROPE RTI ES OF CRYSTALS

introduced by a transparent (lossless) surface region.
Mathematically necessary to these effects is a real part
of et, and such a real part is introduced by spatial dis-

persion. Finally, the exciton effective mass for exciton
A is 0.9 nz, for kJ c LFig. 5(a)7 and about 3—5 times
larger for k~~c LFig. 5 (c)$. A natural reason for a differ-
ence between 5(a) and 5(c) is therefore present in
spatial resonance dispersion.

Figure 7 shows the effect of spatial resonance disper-
sion without a surface barrier (I=0) LEqs. (28) and
(29)j. The es and 4trtrs chosen here are the same as in
Fig. 5(a). $A phenomenological damping term can be
added to the denominator of (9), but has no noticeable
effects on Fig. 7 for widths less than 10 ' eV. Figure 7

contains no damping. $ The finite mass has, in these
cases, an effect on the reQectivity maximum rather
like an increased damping. The main reQectivity peaks
5(a) and 5(c) do tarot therefore necessitate the supposi-
tion of a width an order of magnitude too large.

Figure 8 shows the effect of a surface barrier (finite I)
on the calculated reflectivity. The exciton mass used
was 0.9 mp. A subsidiary sharp reQectivity peak is
introduced, which falls within 10 4 eV of the k=0
longitudinal optical frequency. The general behavior
of the reactivity both above and below this peak is
also modified. It is clear that the experimental results
of Fig. 5 can be well understood in terms of the effect
of spatial dispersion with a surface barrier, if the ef-
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FIG. 9. The reflection curves for exciton A in a "good" crystal
(592) of CdS at 1.6'K. (a) refers to it~le& (b) to itJ c. The position
of the m =2 and 3 states of exciton A have been marked. The la,rge
peak marked B is the e = 1 state of exciton B.Notice the differences
for these two classically equivalent geometries (both have EJ c),
and the unusual shapes of the reflection anomalies.
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FIG. 8. The calculated reflectivity taQng spatial dispersion into
account as a, function of l. The other parameters used are m*= 0.9,
47lap=0. 125, and e0=8.0. The longitudinal and tra, nsverse exciton
energies at k =0 (the classical total reflection limits) are indicated
by the vertical dashed lines.

fective surface barrier thickness l is dependent upon the
exciton mass. As the Bohr radius of the 18 exciton in
CdS is about 27 A, the effective barrier thickness is, as
anticipated, a few Bohr radii.

This reQectivity peak is not the only one in CdS
which has a nonclassical form. Indeed, every reQectivity
peak seen in CdS for EJ c has a bizarre shape, and shows
differences between the classically equivalent geom-
etries for k~~c and kJ c. We have chosen to analyze
exciton "A" because of the knowledge of the masses,
the clarity of the experimental effect, and the fact that
this exciton state is the one in CdS most legitimately
treated as "isolated. "lt also presumably has the longest
r. The experimentally observed reaction curves of
exciton A for k J c and k~

~
c, for "good" crystals, showing

the m=1, 2, and 3 reQection anomahes are shown in
Fig. 9.

Lest the reader receive the impression that the experi-
ments and calculations are unique to CdS, experimental
measurements and calculations of re6ectivities for an
exciton peak in ZnTe are shown in Fig. 10. In order to
avoid the theoretical complications possible due to a
degenerate valence band, the experimental results
shown are for a crystal stressed in a (111) direction,
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Fro. 10. (a) The measured normal incidence reilectivity spectrum
of stressed ZnTe for light polarized parallel to the direction of
stress. (b) A calculated reilectivity curve including spatial dis-
persion, using the parameters indicated.

nr cc (co—cd~) I

t see Eq. (11)].Thus, the real part of n+ has a vertical
tangent just above ~~, while the imaginary part has a
vertical tangent immediately below co~. The same is
true of n*. The expression for the reflectivity ~R~'
therefore has the approximate form

L1 ni A (M cubi) ] +kg
(~)co&)

$1+nt+A (ce—ce()'"]'+kP

1—n( '+ k(+A co(—(o '" '( ) C ( )
(to(a)g)

(1+n$)s+t k(+A ((g$—co) ~@]s

where n& and k& and A are slowly varying real functions
of frequency. If A is positive, m&(1, and k& negative, a
sharp peak is produced very near ~~.

Damping will quickly round off the singularity of
e~. It is not surprising that the spike has nearly van-
ished in CdS when the temperature is raised to 20'K.
%hen the damping of the exciton becomes suKciently
large (comparable to the longitudinal-transverse energy
splitting) the effects of spatial dispersion on optical
properties disappear, The surface potential will not,

using light polarized parallel to this direction. (In fact,
the experimental reQectivity in this geometry is vir-
tually unaffected by the strain except for a slight
energy shift. ) No effort was made to accurately fit the
experimental reQectivity with the calculation; the ob-

ject was simply to show the qualitative agreement. The
two very similar curves bear no resemblance to the usual
classical reQectivity. The usual classical rise approaching
the resonant frequency is almost completely suppressed,
and the spike at the longitudinal frequency becomes the
reQectivity maximum.

The origin of the sharp reQectivity structure at the
longitudinal frequency has no obvious physical mean-

ing, but can be seen mathematically. In the absence of
damping, one of the indices of refraction in Eq. (29)
(let us say n&) behaves, near the longitudinal frequency
Goi, as

however, disappear and will continue to have an in-
Quence on properties such as the reQectivity. The ef-
fect of damping limits the possible observation of spatial
resonance dispersion effects to relatively strong absorp-
tion lines.

VI. CONCLUSION

The present paper has presented an array of experi-
mental reQectivity measurements which have not proved
amenable to any classical interpretation. The common
features of the observed anomalies are that exciton
states which are known to be narrow show unexpectedly
low peak reQectivities, that the reQectivity minimum
occurs at too low an energy, that a sharp additional
reQection maximum occurs very near the longitudinal
exciton energy, and the reQectivity is larger and less
rapidly varying t.han expected at energies slightly above
the longitudinal energy. These features are all predicted
for reQectivity taking spatial resonance dispersion into
account using a new boundary condition.

The new boundary condition is based upon the exist-
ence of a strong repulsive potential for the exciton near
the surface of a crystal. The calculations including
spatial resonance dispersion were made using an ideal-
ized model of the effect of such a potential. The agree-
ment between the experiment and the calculations is
sufficiently striking that one has confidence in the gen-
eral physics of the boundary condition. In order to
completely justify the model and to make interesting
experimental use of the effects, the theory of excitons
in the surface region must be completed by actually
solving the Eqs. (26) and (27).

This complication of the reQectivity spectrum does
not reduce the utility of ellipsometric and Kramers-
Kmnig determinations of optical parameters near sharp
excitons dispersion peaks. It must, however, be born
in mind that such measurements are related to effective
optical parameters only, and have only an indirect
theoretical connection to the parameters related to
optical transmission. (For example, the effective ab-
sorption constant determined from the Kramers-Kronig
relation and the reflectivity can have either sign. )

Since band gaps, exciton oscillator strengths, exciton
masses, and exciton radii are the same (within factors
of 2) for most II-VI compounds, the effects of spatial
resonance dispersion will certainly be observable in the
reQection spectrum of most II—VI compounds and prob-
ably in many other materials also. Although the present
study was restricted theoretically to very simple exciton
bands, and experimentally, chieQy to uniaxial crystals,
more complicated systems should be tractable in simple
geometries.
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