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A study is made of the eRect of a constant magnetic Geld on the propagation of acoustic waves in metals.
It is shown that the velocity of sound may experience two types of oscillations as a function of the intensity
of the magnetic Geld. There exist geometric oscillations associated with the coincidences of the diameter of
the cyclotron orbits of the electrons with a half-integral or with an integral multiple of the acoustic wave-
length. There are also quantum oscillations which have the same origin as the de Haas-van Alphen eKect.

I. INTRODUCTION

"N a previous paper, ' the author has given a discussion
- ~ of the dependence of the velocity of acoustic waves
on an applied magnetic field. The analysis given in (I)
was concerned primarily with the interpretation of the
results of the experimental work of Alers and Fleury, '
and included a relatively detailed study of the effect of a
magnetic field on the velocity of acoustic waves in the
low-field limit (i.e., when co,r((1).Further, the assump-
tion was made that co7-(&1, a condition that is commonly
satisfied in actual experiments. However, (I) also con-
tains general expressions valid under a wide variety of
conditions. In particular, it is shown there that when
ql))1 and co,v-))1, the velocity of sound exhibits an
oscillatory behavior related to coincidences of the
diameter of the cyclotron orbits of the conduction elec-
trons, with a half-integral or with an integral multiple
of the acoustic wavelength' ' (geometric resonances).
The purpose of this paper is to extend the discussion in
(I) to effects that occur at low temperatures and high
magnetic fields. The notation and the model used in
this work are the same as that in (I) so that we shall
not, as a rule, define any symbols which have already
been defined there. As the title of the work indicates, we
shall deal mainly with phenomena involving oscillations
in the velocity of sound as a function of the applied
magnetic field.

Section II contains a discussion of the quantum effects
in the variation of the velocity of sound as a function of
the applied magnetic field. We assume first that the
conduction electrons within the metal behave as if they
were free and then we consider the effect of a more
general band structure (we confine our discussion to the
independent particle model, however). The result is that
the velocity of sound at low temperatures and at high
magnetic fields is an oscillatory function of the mag-
netic field. The character and origin of the oscillations

* Supported in part by the Advanced Research Projects Agency.
'S. Rodriguez, Phys. Rev. 130, 1'77'8 (1963). This paper is

referred to as (I) in', the present article. It contains references to
previous work in the field. The notation used here is the same as
that in (I). Reference to equations in (I) will be designated by the
number of the equation preceded by the Roman numeral I.

2 G. A. Alers and P. A. Fleury, Phys. Rev. 129, 2425 (1963).
'T. Kjeldaas and T. D. Holstein, Phys. Rev. Letters 2, 340

(1959).
4 M. H. Cohen, M. J.Harrison, and W. A. Harrison, Phys. Rev.
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are the same as those occurring in the de Haas-van
Alphen eftect and, as we shall see in the next section,
the eGect should be most prominent for longitudinal
waves. In Sec. III we use the free electron model to
give a discussion of the oscillations in the velocity of
sound arising from geometric resonances.

II. QUANTUM OSCILLATIONS

In this section we consider the oscillations in the
velocity of sound in metals caused by the modification
of the density of electron states by an applied magnetic
field Ss. The theory developed in (I) is still valid for the
situation in which quantum effects occur, since the
acceleration of the positive ions is certainly governed
by a classical equation of motion. There are two changes
to be made, however. The first is that Fq. I-(8) is not
strictly valid. In fact, in the evaluation of the local'
Fermi energy ri(r, f) one should use the density of energy
states appropriate to an electron gas in the presence of
the magnetic field. I et us designate this quantity, i.e.,
the number of energy levels per unit volume and per
unit energy range at e, by g(e,Bo). Now, if the concen-
tration of electrons at position r and time f is ns+rsi(r, f),
the quantity s)=si(r, f) must be such that the following
condition is satisfied:

g(,~o)f(,v)~'

Here f(e,s)) is identical to the Fermi function fs(e)
except that we have substituted p instead of the equi-
librium Fermi energy t Since rsi&(.rss we can make the
approximation

f(e r)) =fo(e)+(s) l)(r)fir)r)) =r

=fo(e) (n f)(~fol~—e) —(2)

With the aid of the relation

g(' +s)fo(e)de

' At this point we depart slightly from the notation in (I). The
local Fermi energy is designated by p(r, t), the Fermi energy in. the
absence of the acoustic wave but in the presence of 80 is called g,
and fv (mv, s/2) is th=e Fermi energy in the absence of Se. How-
ever, for all practical purposes g and fo are quite close to each other.
An expression for f in terms of go is given in the Appendix.
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we obtain

r)(r, t) =t+er g(cap)( —~fp/c) e)«

vector q, by solving the eigenvalue equation

A (=co'g

One can easily show, using the expressions for the energy
eigenvalues of an electron in a magnetic field, ' that

g(,Pp) = (kcp /4v-P)(2m/ks)sts

XQ. {e—(~+-', )&ca ) "' (5)

where cp, = —eBp/mc is the cyclotron frequency and the
sum over e extends from m=0 to the highest value of e
for which the quantity under the radical is positive. It
is possible to express g(e,Bp), in a more convenient
form, as the inverse Laplace transform of the partition
function associated with a single electron in the presence
of a magnetic field. ' One obtains, when f'p/Acp ))1,

Cc smicp (o pR„—1)(1—iP)A„=—g'+
M M7. 1—ijPo pR„

smicp (1 iP—)opR,„
Ay ———A,, = C7 7

Mr 1—iPapR

(9)

&mg 5 ASM
A „„=—q'+ +

M 3M(1+ca'r') M r

If we take c1 parallel to the y axis and Bp parallel to the
s axis of a Carteisan coordinate system, the nonvanish-
ing components of A are )these formulas are quite
quite similar to Eqs. I-(36)—I-(39) and are obtained in
the same manner from I-(13) and I-(14)j,

where

g(e, Bp)( c)fp/c)e—)de= 3rcp/mv', . (6)

and

Xi opR —1—
wp

iP(o pR, „)' (qvr)'
, (»)

1 iPa pRz~ 3(1+cosrs)

rr'kT(2fp "'-
2(—1)"

f p ~Scag 1 iPo pR„—
Cc smicp (o pR„—1)(1—iP)

A „=—q'+
M 3fr

(12)

cosL(2v.vt p/bco. )——,'v-g 1 ('Scapi '
Xpl/2 (7)

sjnh(2i v-'kT/Acp. ) 12 E 2f p)

In this equation we have kept the leading oscillatory
term and the first two monotonic contributions to the
integral in Eq. (6). Clearly, this correction is only nec-
essary for longitudinal waves since shear waves are not
accompanied by changes in the density of the material.
The second change is that instead of making use of the
classical values for the conductivity tensor one must
take their quantum mechanical expressions which may
be found, for example, in two papers by Quinn and
Rodriguez. '' We have used the expression for the
quantum mechanical conductivity tensor modified by
the introduction of a phenomenological collision time in
the same manner as it was done in Ref. 9. This assump-
tion is, perhaps, a serious limitation in the present de-
velopment, but without it little progress can be made.
It seems hardly necessary to give here the details of the
derivation. Nevertheless, for the purpose of reference,
we give the expressions for the conductivity tensor in
the Appendix.

First, we consider the case in which the direction of
propagation of the acoustic wave is at right angles to the
applied magnetic 6eld. In this geometrical arrangement
the frequencies ca and the polarizations $ of the different
acoustic modes are obtained, as a function of the wave

L. D. Landau, Z. Physik 64, 629 (1930).
7A. H. Wilson, The Theory of 3Ietuls (Cambridge University

Press, New York, 1958},2nd ed. , pp. 160—168.' J. J. Quinn and S. Rodriguez, Phys. Rev. 128, 2487 (1962).' J. J. Quinn and S. Rodriguez, Phys. Rev. 128, 2494 (1962).

Cg Smo)2
A '=—q2-

3f
(1+z Xpi)

M

A ~g =smcoXpi/2Mr,

A g„'= —smcpco. PXpr/2M,

(13)

(14)

(13)

SmMM

P'pi+P~r(1 zXpi)), —
M

(16)

Cc smq'v' 4smca'Xpi(co, r)'
~pe'= —q'+ +

M 3M(1+cd'r') M(1+ crp')

SALE) MS&
+ P(cp,r)'(1—2Xpi), (17)

N Mv

smpp 4Xpi(ca, r)'

Mr 1+co'r'

(cIv r)

3(1+cozrs)

Cg Sma)2
A ..'=—q' — (1+4Xp,),

M 3E
(19)

&.."=4smcoXp, /Mr . (2O)

We notice that the only difference b'etween these equa-
tions and the corresponding results in (I) is that, in
A», vo has been replaced by v. Expressions for the com-
ponents of the tensor R are given in (I). Now, in the
limit in which M, r(1+cpsrs) 't'))1, P«1, and qvp/cp, «1,
the approximate values of the nonvanishing compo-
nents of A are
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The quantities I, pi, and p, , are defined in the Appendix.
It turns out that in the approximation considered here
the terms in A „are negligible so that we can consider
that the acoustic waves are purely longitudinal or
purely transverse to a high degree of accuracy. In
Eqs. (13)—(20), A; and A~i" are the real and imaginary
parts of A@, respectively (i, j=x, y, s). For a wave
polarized in the i direction we have

M =(M+1M ) =A" (21)

and we can obtain both the velocity of sound s=co'/g
and the coeKcient of attenuation y, =2to"/s. If &sr«1
the relative change in the sound velocity of a longi-
tudinal acoustic wave propagating along the y axis (Bs
is taken, as always, parallel to the s axis) is given
approximately by

where E is the isothermal compressibility of the metal. "
The bulk modulus K ' is obtained from the Helmholtz
free energy Ii using the thermodynamic equation

E '= V(r)'F/BV') =E '+E (26)

eBs)"' kT 2s.
&osc= V

h ) 2 ' iaS/ak, 'i

1/2

Here E, ' is the contg. bution to the bulk modulus
arising from the short-range forces among the ion cores
and E. ' is the bulk modulus of the conduction elec-
trons. We do not expect E. to depend upon the applied
magnetic field in a significant fashion. However, K,
does. In fact, I.ifshitz and Kosevich" have shown that
the free energy of the conduction electrons has an
oscillatory contribution

hs zm 82
'8 —

Vp

s) 6' s)' 8g ps)2
(22) ~ cosL—(vhcSs/eBs) —2v.vh& sv j cos(gv vm*/2m)

xp
1=1 v"' sinhL2v-'vk T/hts, ]

The terms involving Xp, ~ can be seen to be negligible
as compared with zm(v' —vs')/6Msis. It is necessary at
this point to mention that Eq. (19) in Ref. 9 is not
quite correct. In fact, in that paper, the effect of the
magnetic field on the density of electron levels was
disregarded. If we use Eq. (18) of the present work
we obtain

sos 4Xisi(to, r)'
v.(x,x) =

Mrsi 1+co'r'

(Vvr)'
(23)

3(1+~'r')

Tl,e last term in Eq. (19) in Ref. 9 is, of course, still
correct but in the present work we have neglected
terms in P'.

The velocity of shear waves also experiences quantum
oscillations as a function of a magnetic field but the
amplitude of these oscillations is smaller than that for
longitudinal waves. Since the calculations are rather
trivial once we have Eqs. (13)—(20) we shall not write
down the results explicitly.

Alers and Swim" have recently measured the change
in the velocity of sound in Au as a function of Bp at
liquid helium temperatures and using magnetic fields

up to 10' G. They find a behavior that can be well repre-
sented by Eq. (22). If 2s'kT) h&o„we find

This result can also be obtained using a purely thermo-
dynamic argument. In fact, the velocity of longitudinal
acoustic waves propagating in an isotropic solid (when
a&r«1) is given by

s= (E'&)-i~s, (25)

'0 G. A. Alers and R. T. Swim, Phys. Rev. Letters 11,72 (1963).

4n'kT /2fs) '~'
pg~p 2~

m kh~)

Xexp( —2v'k T/ho~, ) cosL(2vrfo/hem. )—ts v 1 (24)

(27)

S(e,k,) = 27reBp(N+ 3)/h—c. (28)

Here m is a non-negative integer and 6 a phase factor
whose numerical value lies between zero and unity (for
free electrons 8= —,'). The quantity Ss is the extremal
cross-sectional area of the Fermi surface by planes
perpendicular to Ss. If more than one extremal cross
section exists, then Eq. (27) contains a sum of terms
each one arising from such an extremum. The upper
sign of -',x is taken when the extremum is a maximum
while the lower sign is used if it is a minimum.
The symbol m* stands for the cyclotron mass
m*=(h'/27r)(r)S/tie)s, where it is understood that the
derivative is evaluated for an electron moving around
the orbit for which S is an extremum. The cyclotron
frequency ts. is defined as cv, = eBs/tts*c. The qu—antity
r)sS/Bk, s is to be evaluated on the Fermi surface and
for that value of k, for which S is an extremum. The
term cos(g7rvm*/2m) owes its origin to the effect of the
magnetic field on the orientation of the intrinsic mag-
netic moment of the electrons. Here g is the spectro-

"At low temperatures the adiabatic and isothermal compres-
sibilities differ by a negligible amount. If ~~((1 it is easy to con-
vince oneself that the electronic contribution to the velocity of
sound arises from the isothermal compressibility of the conduction
electrons."I. M. Lifshitz and A. M. Kosevich, Zh. Eksperim. i Teor. Fiz.
29, "/30 (1955) /translation: Soviet Phys. —JETP 2, 636 (1956) l."L.Onsager, Phil. Mag. 43, 1006 (1952).

This expression has been obtained using a theory of
Onsager" for the description of the stationary states of a
Bloch electron in the presence of a magnetic field.
According to Onsager, the stationary states are such that
the area S(s,k,) of the orbit in k space of an electron
of energy e and having a component k, of its wave
vector k along the direction of Ss, must satisfy the
condition
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scopic splitting factor and m the free electron mass.
There is also a nonoscillatory contribution to the free
energy which contains a term equal to the free energy
in the absence of a magnetic and another proportional

to the square of Bo. Nevertheless, the latter is negligible
for fields presently available in the laboratory. Using
Eqs. (25), (26), and (27) we obtain, after making a few
obvious approximations,

hs Ns' (' Ac "' k2'm*'

s, psp[gg, }yk es,) a' [ass/ak, s
[

cosP —(vkcss/eBs) —2' 5m-,'~j cos(g~vm*/2m)
p1/2 (29)

sinhL2vr' kvT/h ru5

We have designated by g(e) the density of energy states
when 80=0. If 2m'kT)ken„ then only the first term
(v=1) in the sum on the left-hand side of Eq. (29) is

important. If Bs points along a L111jdirection of a Au

crystal we expect a large oscillatory dependence of s
with magnetic Geld. The reason for this is that in Au
we have an extremal orbit" in this direction with
m*=0.44m ("neck" orbit; for further details see Ref. 14
and other references therein). The period of the oscilla-
tions of s as a function of 80 ' is

2xe
(30)

which is identical to what one expects in the de Haas-
van Alphen effect."Alers and Swim" have observed
precisely this eGect. Using Eq. (29) and m*=0.44m at
T=4'K and Bs 10' G for Au, w——e find As/si 20X10 '
in reasonable agreement with the results of Alers and
Swim. This calculation is rather crude, however. In fact,
for lack of more precise information, we have used

~

ri'S/r)k, '
~

= 2m and we have not considered the collision
broadening of the Landau levels. Dingle" has shown
that the collision broadening would give a further re-
duction of the first term in the sum of Eq. (29) by a
factor exp( —2~/cu, v.), where r is the average relaxation
time of the electron around the extremal orbit (Dingle's
result is strictly valid only for a free electron gas).

%e now consider briefly the case in which q is parallel
to Bs. The basic equations are again I-(25) and I-(26)
with the exception that in I-(26) we must replace ss by
e and l=v07- by v7-. The results have been discussed in
some detail in previous work'~ so that we shall not
discuss this question again. It is interesting to remark
however that Eq. (29) is valid here too for the propaga-
tion of a longitudinal acoustic wave parallel to the
direction of Bs. The quadratic increase Bs'/87rpsis is not
present in this geometrical arrangement. For the case
of shear waves propagating in the direction of the
applied magnetic field there does not seem to be ap-
preciable quantum effects for fields of ordinary intensity

'4D. Shoenberg, Phil. Trans. Roy. Soc. (London) A255, 85
(1962).

"See, for example, D. Shoenberg in Progress irI, Low Tempera-
ture Physics, edited by C. J. Gorter (North-Holland Publishing
Company, Amsterdam, 1957), Vol. 2, pp. 226-265.

's R. B. Dingle, Proc. Roy. Soc. (London) A211, 51'/ (1952).
»J. J. Quinn and S. Rodriguez, Phys. Rev. Letters 9, 145

($962); see also Ref. 8.

and for acoustic frequencies that do not approach the
conditions for which cyclotron resonance absorption
occurs. This question has been discussed by Kjeldaas"
using a classical model. In this geometry we expect a
shear wave to experience a rotation of its plane of
polarization as it progresses within the material. The
angle of rotation is —mere'/2vrepsis per cm of path and
per G of applied magnetic field. The foregoing result is
applicable if q/((1 only. This angle of rotation is usually
negligible for acoustic frequencies of the order of
10 Mc/sec but it may become appreciable at much
higher frequencies.

Finally, we make two remarks about the result of
Eq. (29). The first is that this equation is not strictly
applicable to a material in which the Fermi surface
possesses pieces in several bands. %hen this is the case,
the compressions associated with the longitudinal wave
may alter the energy discontinuities across the bound-
aries of the Brillouin zone in an appreciable way. This
clearly gives rise to an additional change in the density
of electron states which manifests itself in a correspond-
ing change in the elastic constants. Price" has been
able to accout for the experimental results of Mavroides
et a/. ' in Bi considering that the change in the velocity
of sound in this semimetal as a function of Bo arises
mainly from contributions to the elastic constants
coming from transfer of electrons among the several
valleys in the energy surfaces. The electrons are trans-
ferred among the several valleys because their relative
position in energy is altered by the passage of the
acoustic wave. The second remark is that there appears
to be a contradiction between Eq. (29) which is obtained
by a thermodynamic argument and Eq. (22) which is
derived using the equation of motion for the acoustic
wave. The difference between these two equations is the
presence of the quantity Bss/Sn psi' in the latter. This
term is quite different from the one that originates in
the nonoscillatory contribution to the free energy of the
conduction electrons. In fact, the nonoscillatory part of
the free energy is Fs+F'=Fs —sr7tVBs', where 7t is the
constant part of the magnetic susceptibility (i.e., the
sum of the Pauli and the Landau susceptibilities) and
Fo is the free energy when 80=0. To establish the order

"T.Kjeldaas, Phys Rev. 1.15, 1475 (1959)."P I Price (unpublished). The author is grateful to Dr. Price
for making his work available to him.

J. G. Mavroides, B. Lax, K. J. Button, and Y. Shapira,
Phys Rev. Letters 9. , 451 (1962).
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of magnitude of this contribution to the velocity of
sound we evaluate it for a particularly simple model. We
assume a metal containing conduction electrons with
spherical energy bands of effective mass m*. The
quantity Ii' is given by

V 2~* 3i 1 2rio~'
p/ Io"'( Bo)' 1——

4+2 52 3 gm*l

relations

z~q'zo' zriooo' (ql)'
Awo q+ +

M 3M 3~ ]+oooro

Cg MZ'LM

A„=—q'+ 5„— (1+5, ),
M M&

(31)

Here p, is the intrinsic magnetic moment of the electron
and g the spectroscopic splitting factor. The relative
change in the velocity of longitudinal acoustic waves
turns out to be

As z(pBo)' 1( 2m

si 12hVst' 3Egm )
which is of the order of one part in 10" for 80=10' 6
and for a metal such as Au. Clearly, this amount is
always negligible as compared with Bo'/8m. psio. This
difFiculty can be resolved by considering the frequency
dependence of the last term in Eq. (22). At first sight it
does not depend on the frequency at all. However, it is

easy to convince oneself that if the dimensions of the
sample are smaller than half of the wavelength of the
acoustic disturbance, then Bo'/8rrpsio is absent from

Eq. (22). The reason for this can be seen if we consider
a longitudinal wave propagating along the y axis with

Bo parallel to the z axis. Since, for ordinary ultrasonic
frequencies, there is almost complete screening of the
ions by the conduction electrons, the total current
density in the y direction vanishes. However, the
Lorentz forces on the ions and. on the electrons due to
the presence of Bo have different signs so that a Hall
current density appears directed along the x axis and
proportional to 80. The magnetic field in turn interacts
with the Hall current to give rise to a force per unit
volume of material proportional to Bo'. This is the origin
of the quadratic dependence of As on 80 ~ However, if
the dimension of the sample along the direction of
propagation becomes less than half the acoustic wave-

length, a depolarizing electric field can be established
that reduces the magnitude of the Hall current. In fact,
when we let oo approach zero, we expect Bo'/8rrpsi' to
disappear from the right-hand side of Eq. (22).

III. GEOMETRIC OSCILLATIONS

The geometric oscillations in the velocity of sound
have been discussed to some extent in (I) so that our
description here will be brief. These resonances manifest
themselves when ~.v&&1 and q/&&1. The geometrical
arrangement in which the acoustic wave propagates at
right angles to the magnetic field $0 is of particular
interest. We shall, in fact, limit our study to this ge-
ometry. If we assume oo.r))1, P«1, and that oor does
not appreciably exceed unity, the nonvanishing com-
ponents of the tensor A are given by the approximate

3P SSSSM

X Sow + (1+oo r )Sxo + (Soy 1) (32)

81SSQP

A.o
= — (oo,+qooS.„),

M
(33)

C~ MERE stan
A „=—q'+ 5„—

M 3f7-
(1+5-).

3f
(34)

In these equations, the expressions for 5;, are defined in
(I) and

3(1+a&'r')
~~a'=

q2)2
(33)

zmooP(q/) 'S,„' Bo'
gf

2

M7- 4mp
(3| )
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0.16-

Pro. 1. Relative
change in the veloc-
ity of longitudinal
acoustic waves prop-
agating at right
angles to So for r =0
and ~=0.j.. The ab-
scissa is the param-
eter w= goo/~c.
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It was shown in (I) that it is possible to neglect the
contributions arising from A,„. A calculation of the
sound velocity for shear waves polarized in the x and
z directions and for longitudinal waves when (3p/oor)
X(1+to'r')«1 was described in (I). The results were
displayed in Figs. 1 and 2 of that work. However, if
qoo/oo. «1, 5 „=—oo./qzo so that as oo, -+oe the graph
displayed in Fig. 2 of (I) is not completely accurate for
extremely large magnetic field. In fact, when qvo/oo. «1,
the term involving 5,„in Eq. (32), namely
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FIG. 2. Relative
change in the veloc-
ity of longitudinal
acoustic waves prop-
agating at right
angles to B0 as a
function of m for r=1
and r =10.

maxima and minima of Lb/si occur at the same positions
for which the ultrasonic attenuation has maxima and
minima. In fact, the curve associated with r=0 in
Fig. j. is identical to the solid curve in Fig. 3 of Ref. 4.
However, when r&1 we see from Fig. 2 of the present
work that there are only minima of hs/si at the points
zv for which the graph for r=0 exhibited extrema. The
reason for this behavior is clear. The maxima and
minima of S» occur at the zeros of the function g~'(w).
However, at these points S „vanishes and, if r is
sufficiently large, S,„' in Eq. (32) dominates the be-
havior of Ds/si as a function of w.

Another case of interest occurs when ~POOR„~))1.
For this condition to be satisfied over a wide range of
values of w it is required that P itself be much larger
than unity. This may occur at suSciently high fre-
quencies. If P))1 and a&,r(1+aPr') "'))1, the approxi-
mate value of A» is

0 I I

8 IO l2 w

This is once more the quadratic increase of the velocity
of sound as a function of Bp. In Figs. 1 and 2 we give
plots of the relative change in the velocity of longi-
tudinal sound waves as a function of w=qvo/co, for
several values of the parameter

Ci smq'vo' smi~ (ql)'
-4»=—V'+ +- S»—1+

M 33f 3fr 1+(u'r' 2+5„)
sm(u' (q/) '

+—(s..+ '" ). p8)
M 1+co'r' 1+S„

Then, the relative change in the velocity of sound is

3
r = (1+Bi r )— (37)

sm(q/)'As 3S,„'
si 6M(1+(o'r') 1+S„ (39)

We do not extend our values to m=0 because in this
region the term BD'/4x. p can exceed sP and then the
velocity of sound would increase linearly with the in-
tensity of applied magnetic field. The case in which
r =0 is given as a limiting case. However, for sufficiently
high magnetic 6elds, the term in r can become of
importance.

It is interesting to notice that if r«1 (see Fig. 1) the

0.2C

This result has been displayed in Fig. 3. The curve is,
of course, identical to the dotted line in Fig. 3 of Ref. 4.
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In this Appendix we give, for the purpose of reference,
a number of results concerning the electrical conduc-
tivity tensor of a free electron gas in the presence of a dc
magnetic field. Following Ref. 8 we designate the sta-
tionary states of an electron by the quantum numbers
eke, and the corresponding energy eigenvalues by E g,,
The nonvanishing components of the electrical-con-
ductivity tensor o(q,~) for a magnetic field pointing
along the s axis and q parallel to the y axis of a Cartesian
coordinate system are

I I I

8 lO l2 w

~fn+ae),Xg ~, (A1)
ax ) n'+y' '
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&o 1
o„„= (1+peer) Q fp(E p,)

(ceer)

and
cr„=o p(1+icpr) '(1—4Xtc,) . (A12)

&( Q f„„',(A2)
a n=— ccs+yp

In these equations

t.=& ' E fp(&-p. )(N+p)", (A13)

cr*w= crw*= . (Xcrww) i
1+icer BX

and

(A3) X (k)P
t *=—2 I

—
I fp(E:.).

Q nt4wpz( q)
(A14)

&zz=

Here

Op

1+icer

4X tk q'
2 fp(&-p. )l

—
I

npwp, q

X Q fn+a, n'
a=—n Cip+yp

X= kg'/2mcp„

y= (1+icpr)/ce. r,

The quantities pj and p,, have been used in Ref. 9,
where tci=W/hcp, and tc, =W,/I'tce, In. the work of
Sec. II we require the components of the resistivity
tensor R rather than those of cr. The nonvanishing
components of R are

(A5)
O pRne = (1+iCpr) 1+-Xtci+—Xy'tci

(A6) 2 8

f, (X) (rt f/Tt~ f)1/2Xlin' —n)

Xexp( ——',X)L„'n' "'(X), (A7)

11 1—2X'tc '+—X'tcp+ —X' I, (A15)
i

if e'&n and

f- -(X)=(—1)"' "f- (X)

1

(A8)
,e„„(.)'(&+z ) ='(4', +p'4- x-p'p, —

if ti'(N. The function 1.„& '(X) is an associated Laguerre
8X'tc '—

polynomial. "
For the study of the quantum effects which is de-

veloped in Sec. II of the text the following expansions
of the components of e have been used:

1
6X'tcp ——X' I, (A16)

2

o,a=op(1+peer) ' 4Xtci+y' ——Xy'tci
2

—74—6X'tee —-X' (A9)
2

3 15
crww= crp(cear) (1+dicer) 1 Xtci p + X'y tci

2 8

5 7
+y4+ —X'tcp+ —XP, (A10)

6 7'2

5—5X'tcis+ —X'tc +—X' I, (A17)
24 i'

crpR = (1+icpr)(1+4Xt4 ) . (A18)

%e have kept O.„and R„ to order Bp ' because this is
as far as it is necessary to expand to obtain the most
important oscillatory contributions to the real and
imaginary parts of the tensor A.

In the text we have defined a quantity 0'
I
see Kq.

(7)j.We must remark that 0' is not equal 2f/m In fact, .
the Fermi energy for conduction electrons of spherical
eR'ective mass m* is

15
craw= crwn= 0 p(Goer) 1 3Xtci 'y + X'y tci t473p)l' 1 2m)' irkT Ace,)'t'

f'=go 1—
I

1——
2f'pi 3 gm*i f'p 2g'pi

5 7
+y4+—X'tcp+ —X' (A11)

2 24
(—1)"COS(girwm*/2m) SinL(24rwt p/kce, )—4iirj-xp

@=1 w' ' sinh(2ir'wk /lT' )ice

(A19)
~' A. Erddlyi, Vl. Magnus, F. Oberhettinger, and F. G. Tricomi,

Higher Trawseelcterttat FNrcetiorss (McGraw-Hill Book Company,
Inc. , New York, 1953), Vol. 2, p. 188. Here ce,= eBp mac as usuaL—


