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The influence of an electric field on the second moment a(t) of an exciton wave packet is calculated. The
following formula is derived: t/. (t)=(2tl/it' )!t/+2Xq(Bq+Cq)gt', where Xq is the (uniform) strength of the
field along the linear chain molecule and the term B&+C& depends on the parameters of the system. The
gradient of the electric field does not contribute to A(t). It is also shown that both the exciton electric dipole
moment and B&+C& vanish unless either some states of the units making up the chain (monomers) are parity
mixtures (as in molecules), or the coupling potential between monomers is not symmetric with respect to
the parity operators of pairs of adjacent monomers. It must also be required that the monomers have zero

static dipole moment for the state corresponding to the exciton.

INTRODUCTION

' 'N a previous paper, herein referred to as (A), the
- - author' has derived an expression for the acceleration
of an exciton wave packet due to an external electric
6eld. The acceleration was shown to be proportional to
the gradient of the electric field, the proportionality con-
stant being, therefore, interpretable as the exciton
electric dipole moment. In the present paper, we extend
the analysis by (a) investigating the effect of the electric
field on the rate of spreading of the wave packet, i.e., on
the second moment of the exciton distribution function,
and (b) carrying out a brief evaluation of some of the
derived physical constants of the theory, including the
exciton dipole moment. All assumptions of the first
paper are preserved.

' A, Bierman, Phys. Rev. 130, 2266 (1963).

THE SECOND MOMENT OF THE EXCITON
WAVE PACKET

We define the second moment by

A(t) =Z. ~.'*~.'L& —(x)O'=Z. &'~.'*~.'-(x)'. (1)

The average position (x) can be trivially calculated from
Eqs. (17) and (71) of (A). Since the wave packet moves
with constant acceleration a, and the initial velocity eo is
given by

1
eo= —P IIs~(&—&)Ps*(O)g~(o)

$Z It„l

1=—P (&—&)&~i4o~io=O, (2)
$z I, i

we find

(x)=-,'at'.



ARTHUR 8 IERMAN

Butaisproportional tolls&, theelectricfieldgradient. To for all r, with g„(0)=0. It is easy to show that $„ is

Grst order in X, then, properly normalized, since Re (P, $„*it„)=0. The solu-
tion of (13) is given by the following:

Theorem:

~.'(t) = ~.(t)+~~.(t),

where $i(t) is the zero-field exciton amplitude; hence,

iPi(t) = (xp')+2l~ Re P„k'rt kgb, *, (4)
where Xhr+n —2y, m P„(r) (t r) "dr—. (14)

(*p')=Pi h'5~6".

(i) Calculation of (xp')

(5)
Proof: Define two operators E„,F, such that, for any

function Q„,

%e now use an identity given by Magee and
Funabashi '

Epr =fr+i,
FA.=4.-i.

&~(t) = e '"""(—i) ~'~~ii((2Pt/~) (6) Obviously E„and F„commute. Using Eq. (12) of (A)
in (13) results in

for a very long chain where JtI,
~

is a Bessel function of
order ~k~; Eq. (6) can also be proved from Eqs. (11)
and (13) of (A) by using the relation,

t3
(E„+F—„)r—t, = Ph, P

—.
A$ A$

(16)

00 This Grst-order, nonhomogeneous differential equation
P( & sPP) = P(&)+ ~ Jm(&) sm&( 'i) ( ) can be solved by the usual methods, treating E„+F„as

a constant coefficient in (16). The formal solution is

We shall use (6) from here on, with n set equal to zero,
without loss of generality.

Hence, from (5) and (6),

t

rt, (t)=— dr P g (t)
@$0

(xp')= P O'J~i~(p)=2 P O'Ji, (y),

(b) kv'A i@+i=kv'A'- xJi'(x)dx,

where y = 2Pt/h. Repeated application of

hA(v) =kvP. i+A+i],
(9)

where

w,+F,).= r, ")p,.-~,
y=o

(18)

)&expL(—i/h)P(E, +F,)(t—r)]h, . (17)
Now

expL —(i/h)P (E„+F,) (t—r)j
=x(„') '

(p.+p,).,

leads Gnally to
(happ) = —;y'. (10)

Since E„" 'F„i'h„m=h, 2~„,m, Eq. (14) results im-

mediately.

(ii) Formula for rti

To find the differential equation for pA. , we use Eqs.
(36) and (41) of (A):

Q e„„'(p„+@&„)=hi(a/at)(g,+x&,),
+rm Ifrm+lihrm q

(12)

with the conclusion that

H,.„v„+P„h,.„& = &i(Bv„/Bt) (13)
' J.L. Magee and K. Funabashi, J. Chem, Phys, B4, 1715 (1961).

Equation (10) follows from the assumption that the
chain is essentially infinite, i.e., Jo(&)=0 for all finite

p (or t), where Q is the index of the chain ends. This
result. was also given in Magee and Funabashi. Hence,

A(t) = (2p'tp/h') 12K Re Qi, h'rti$i, *. (11)

(iii) Evaluation of the 2, part of rti,

To evaluate (14), we turn to Eq. (58) of (A) which

gives the h, in terms of certain coeS.cients A, 8, and
C. In particular, the dependence on the A~ part of the
electric Geld is given by

~lh lilj'4 Ai++i+ ('4m+i+~ i)+I) (19)

Consider now Grst the contribution of A~.
Theorem: The contribution of Ai to h(t) is zero.
Proof: The A i term of (19),when placed into Eq. (14)

yields

g„+„p„(t r) "dr (20)— .
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is we realize t~ ~
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hat for any e

df th-negative in gte er less than';

( )s, . Th' enables us now to rew
'

lsl+2, . is e
follows:

t

dr(t r) "P (r)—. (21

t

$.+.( )( —t)"d (27

ste s of two only. If we write"means sum in steps o wow ere

that =2"; Eq. (21) be-Now use the relation that

comes then

, one gets nowout
&-,'e——,'s

'

n "'(t)=
Ai

-pL —(2'P/A)(t —)] 2 ~-(r dr. (22)

~ "I(t)= k.+.(t)

z (t r) dr—. —(28)—/t

I I
(-'e —-'s) I(-'N+-', s)! A

6 leads toEq. .
' =0 and remembering Eq.Eq. (7). Setting y= an r

lim P P„(r)= exp( —2iPr/A) . (23)

can be easily evaluated fromThe sum lim P $ (r can e e
1 ip00

(t r—)——
~~

(-' —-'s)! rt+ ,s .--.(.
(—1) p-

=—(—i)' p

0 and set q= —,'e——,'s; hence,Now consider s&0, an se =
~

—-' ence,

(29)

Hence, in (22),

„i'i (t) = (XiCi/Ai)t exp[ —(2'/A)t] .

tohe contribution of X181(b,~i
here called g, i'i (t). Fromq„, here ca e

r t) [h.+ 2~ i(t)+—E.+ 2m+—1--
zp00 ——(t—r)

(-', e——,'s)!(-', ri+-,'s)! A

-2a+t &I(—1)=(—t)I' Z
v (~

= —' I IJI.I[(p/A) (t—r)] (30)

o nized tobe just29) can now be recognizIn this form Eq. o niz

Si il ly id &0, nd l t q=-,

s. 8 and (12) of (A), this becomesBy virtue of Eqs. (8) and o, '
mes

=0 the series is jusustws that for s=Inspection shows
J.l(P/A)(t —)] H -,

~,i"(t)=(~ ~/p) 2 (—j) I r+sl+I ~IJI

(26)(r—t)" dr
8

br dr, (31)X [b(t—r)]—JI,+, I
(br

47

rom the limits of p and m,

What ls itsider a given $„+,'.—~&s&+ ~. onsi e

we have used Eq. (6).
n let t =bt, and Z=br;To simp i y u1 f further discussion, et
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using the well-known relations for Jk'(s), (31) becomes Q

The C2 term vanishes because Q m$ =0 by sym-

n.")(t)=(~» /2P) 2 (—i)(r+rl+(r(J(,
(

(40)q„(»(t) =rD(t)

e=—00 0 metry. The contribution of C2* vanishes in 6 (t), because,
from (39),X (&

—s)P(.+ (-1—~(.+ (+13«(32)
To evaluate (32), consider separately the terms for and therefore,
which s is less than or equal to —r, the terms for which
s is between —r and 0, and the terms with 0(s. It
follows immediately that

Q

P r2~„(»(t)t„*(t)=0,
r=—Q

~1~1
v.")(t)= (—')"

2 0

—J 0 —&)J ++ 1(&)]) (33)

again by symmetry.
We will now prove that the contribution of the 82

terms to A(t) is also zero. We start with an 2t, (o) (t) by
introducing the 82 and 82* terms of (36) into (14), with
the result,

Now use the SchlaAi formula,

~-.(s+t) = Z (—1)"~--.(t)~-(s),

which results Anally in
l(, 181d$„

rt„(2) (t) = t
dt

(35)

X [t)r 2p+n, m+1+—t)r 2p+nm ——1],
X[m82+(r —2P+n)82*j dr(t r)"P . (42—)

(iv) Evaluation of the 22 part of rto

The ) 2 part of the electric field contributes to h, the
terms

l(, 2h, =X2[8mAB, +mC2+sC2*

+ ((),~,+(), 1) (m82+s82*)]. (36)

We can neglect the 3& contribution because it yields
only an imaginary 2t, (')(t)$„*(t) by the same argument
as before.

Now consider the contribution of the term mC2+sC2*.
Its evaluation is greatly simplified by going back to
Eq. (18) and noting that one could have written

This leads immediately to

r"'(o , 2(=—
) —,(

X (.—2p+n)(8, +8,*)

X (t r) ($r 2p+n 1+$r 2p+—n+1)— —

+82 dr(t &) ($r 2p+n+1 $r 2p+n 1) —(43)— —

li2(82+82 )I(t)+X282II(t) ~ (44)

This enables us now to rewrite (14)

1 s
n. (t)=(1/2») 2 2 2( 2P/I)"—

m=—Q n=o p=o n! p

X [Itr 2p+n, m+&rg2p n, m j— —

(37)
COnSider I(t). We again replaCe $r—2p+n —1+$r—2~n+1 by
(hi/P) j, 2~„and then change variables from (n,P) to
(n, s) where s n 2p T—=he —argu. ment is here identical to
that in Eqs. (26) to (31).We therefore find

1 t

I(t) =— P (r+s) g„+,$,dr

X (t—)"5-( )d (38)
Its contribution to A(t) will, therefore, have the form

S
~."'(t)=—.2 2 2(—'~/~)= (mC.+«*)

AZ m=Q ~=0 x=0 n!p,
~- 2' 2 "(+)r,*

r=Q e=o0
(46)

It is clear from inspection that t4 is of the form g, , P„
(t r)np (r)dr (39) where P r,= Fr, ; (46) is, therefo—re, zero.

Now consider II(t). We rewrite it by using part (a) of
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Eq. (9), with &=2Pr/h O.ne can then easily show that hence,

p~-+i(r) k—. pm+--i(r)
1 d 2P'P 2P'

Re Q Pp*gpk'= ——
Ie 2 dt O2 A2

(55)

Hence,

A=—(—&)(r+ri 2p—)$,~ p„(r). (47) from (10). Combining now (51) and (55) with (50)
Pr leads to

2PPtP Cl 2Pt
+ (t) +2Xi Re t e—xp —(2iPt/A)i exp (2iPt/ii)

A.2 hi

t d'~

X —(~—r) ~,+. ». (48)

Again change from (N,p) to (N, s), with the result that ~(&)= [p+'Ai2(B, +Ci)].
(48) becomes

A2

pp

+2—t—&, (56)
I2

(57)

00 t

II(~)- 2 (r+~) (49)

But, by the same argument as in (46), its contribution
to h(t) vanishes.

We, therefore, conclude that the P 2 part of the electric
field does not contribute to A(t).

Ke can then conclude that the ) 1 part of the electric
field does modify the second moment of the exciton
wave packet. The specific manner in which it does so,
depends on the value of Bi+Ci.

Ke now turn to a partial evaluation of the coefFicients,

so far derived in the theory.

+2Xi Re Q k'$p*
tt2 a

THE PHYSICAL CONSTANTS OF THE THEORY

(v) Calculation of x(t) In (A) it was shown that the exciton dipole moment is

proportional to Bp+Cp, here we have shown that the
We now calculate the contributions of (24) and (35) ~ff~~t of the ~i~et~, c field on the ~p~~ad, ng rate

to 6, t . We have on Bi+C,. These coefficients are defined through Eqs.

2P'P (47), (49), (55), and (5"I) of (A). Inspection of these

~(&)= reveals some information about these constants.
From the defining relations, we have

Bi Ak
X t exp —(2—iPt/A)+ —t . (50)

Ai P dt

Xi(Bi+Ci)= —eXi2 Re( Q Z.iP. (pi —p.) '
o+0, 1

+ZpiVp(pi —pp)
—'}, (58)

The following theorem is helpful:
Theorem:

5'([)—=g„k'$„*=i(2Pt/ii) exp(2iPt/A) . (51)

where

P.=(p (~)lvl&. (~+1) II' &p(i)&
jgs+1

Vo= (y (~) I Vlx. (~+1) II' & (i))
(59)

proof: Consider Eq. (7) and differentiate twice with

respect to q. The result is

iy exp( —iy cosy) (cosy+i' sinp &p)

= —2 P (—i) J (y)m'cosmic. (52)

jgs+1

Hence, Vp ——Pp, and (58) can be simplified to read

Xi(Bi+Ci)= —2elii Re Q Z, iP (pi —p ) '. (60)

Similarly,

Now set q
—=0 and take the complex conjugate of the ~p(B'+C') =~' ~ ~"I '

resulting equation. We 6nd

ice'"=2 P (—i)~m'J (p).

This proves the theorem.
Further consider

(53)
= —2ekp Re g Z.,P.(pi —p.)

—'E, (61)

so that Bp+Cp and Bi+Ci are proportional to each
other by the factor (Xp/Xi)R, where R is the distance
between successive unit centers.

Now, from Eq. (54),

1=--g happ *t
2dt &

r
z = 2 { ( ) lZ-'l1( )),

m=1
(62)
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where m is the index labeling the r electrons of the
atomic or molecular units making up the chain, 0 (s)
refers to the state cr of the sth unit and Z ' is the Z
coordinate of the mth electron relative to its nucleus.
Furthermore, from (59) and from Eqs. (3) and (4) of (A)

P.=(X (s)II X (~) I VlX-(s+1) II' Xo(i))
jQs+1

=(Xi(s)Xo(s+1) i V(s, s+1) [Xo(s+1)Xo(s)& (63)

if a- is not zero, and, for 0-=0,

go=2(X, (s)Xo(s+1) i V(s, s-+1) iX,(s+1)X,(s)). (64)

The factor 2 in (64) arises because both V(s, s+1) and
V(s, s—1) yield a nonzero matrix element. It follows
then from (61), (62), and (63) that Bq+C~ and Bo+Co
consist of sums of products of the form

X (Xq(s)Xo(s+1) ~ V(s, s+ 1)
~
X (s+1)Xo(s))

&& (oi—o,)
—'. (65)

The following theorem can now be easily proved:
Theorem: If (a) all states of a given monomer (atom

or molecule making up the chain) are eigenstates of
parity about the x, y plane passing through the monomer
origin, i.e., (P&,&~a. (s)&= (&1)~o-(s)&, and if (b) the
coupling potential V(s, s+1) is a symmetric operator
with respect to P&,&6',+& /where (P~, &

is the parity
operator with respect to the origin of the sth monomer
and (P,+q with respect to the origin of the (s+1)th
monomerj, i.e., (P, '6',+~ 'V(P, (P,+~

——V, then G,—:0.
I'roof: From the assumptions of the theorem, we have

( (s) IZ.'I1(s)&= —( (s) I6',-Z„'6', I1(s)&
= —((P,o.(s) iZ 'i(P, 1(s)). (66)

To be nonzero,
j

o.(s)) and
~
1(s))have opposite parity.

Now'.

(Xi(s)Xo(s+1) i V(s, s+1)
i
X,(s+1)Xo(s))

=(X,(s)Xo(s+ 1)
~

6;~6,+,-&Vn, n,+, ~
X.(s+1)X,(s))

= (O', X~(s)(P,+&Xo(s+ 1)
~

V
~

6',+,X (s+1)O',Xo(s))
= ((P Xy(s)Xo(s+ 1) I

V
I

6' +~X.(s+ 1)Xo(s))
(K(s)Xo(s+1) I

V
I
X.(s+1)Xo(s)&

thus proving the theorem.
Since all isolated atomic states are eigenstates of

parity, we can conclude for systems of identical atoms
coupled by a parity-symmetric V, that an electric field
will not infiuence exciton wave packets in the manner
considered. But, if the units or monomers making up
the crystal or giant molecule are molecules with struc-
ture, so that their stationary states are not eigenstates
of parity, or if U is not the specified symmetry operator,
then an effect can be anticipated. If the monomer states
are not eigenstates of parity, the static monomer dipole
moment may not vanish. On the other hand, as shown
in Eq. (33) of (A), the particular state for which an
exciton arises, say the first excited state, must have a
zero, or vanishingly small static dipole moment. Other-
wise the coupling of this moment to the gradient of the
electric 6eld produces an energy difference between
different monomers of the chain, thus destroying the
identity of the units. In view of the previous paragraph,
the absence of this particular static dipole moment now
becomes a separate requirement.

These conclusions folio~ immediately from the con-
sideration that we are looking at an effect which depends
both on the electric field and the exciton, but is pro-
portional to X to the 6rst power only. The exciton
property therefore, e.g. , the dipole moment, if it is to
have a spatially preferred direction, must derive this
from an asymmetry inherent in the monomer structure.
This requires the monomer state to be a parity mixture,
for otherwise such a preferred direction would not exist.
More specific information about these coefficients prob-
ably depends strongly on the model assumed.

ACKNOWLEDGMENT

I would like to thank Dr. D. Pandres for useful
dlscusslons.


