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Properties of a Thin Hollow Superconducting Cylinder
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The properties of a thin, superconducting cylindrical tube are considered by means of the Ginsburg-
Landau theory. The equations have been solved under the condition that the magnitude of the energy gap
(order parameter) is independent of position but not independent of magnetic field Hv or of fluxoid quantum
number e. This latter dependence on IIO and n, which is usually ignored, is found to lead to modification of
the expressions for the various superconducting properties. In the limit rd/X & 1, where r is the radius, d the
thickness, and X the penetration depth, the energy gap goes smoothly to zero with magnetic Geld for a fixed
m, defining a second-order phase transition. The magnetization, the current density, and the free energy also
go smoothly to zero, with the curves for different e being displaced by n times the Geld corresponding to
unit quantum. For this case the transition temperature is periodic with magnetic field with period corre-
sponding to unit quantum, which agree with the experiments of Little and Parks and the calculation of
Tinkham. In the limit rd&X, the energy gap drops discontinuously to zero at critical conditions, giving a
first-order phase transition, with a corresponding inQuence on the other properties of the superconductor;
also the possibility of a thermodynamically metastable region with respect to the normal state arises. In
order to obtain agreement with the measurements of critical persistent currents and the measurements of
Qux quantization, it must be assumed that e is a good quantum number under any conditions as long as the
system remains superconducting. This leads to metastable states which for the rd&M case includes states
which are thermodynamically metastable as well.

I. INTRODUCTION

'HE subject of flux (or fluxoid) quantization. in
superconductors has received a great deal of

interest recently. Following the theoretical predictions
of quantization by London' and Onsager, ' Deaver and
Fairbank' and Doll and Nabauer' showed experi-
mentally that the trapped Aux of a hollow superconduct-
ing cylinder was indeed quantized. These experimental
results generated a spate of theoretical activity concern-
ing the various properties of the hollow cylinder. ' "

With the exception of the work of Tinkham, "these
investigations have not considered that the energy gap
depends on the external field Ho and the Quxoid
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quantum number e; because all the various properties
depend on the energy gap, modification of the expres-
sions for these quantities is necessary. Additional
questions arise concerning under what conditions good
quantum numbers can be found, and once found how
is it possible with an external perturbation to change
the system from one quantum state to another. This
paper considers these questions.

The dependence of the energy gap on e and Ho and
its inQuence on the other properties of the hollow
cylinder are considered in a self-consistent manner via
the Ginzburg-Landau" (GL) theory. "The calculation
has been done under the condition that the magnitude
of the order parameter 4 (energy gap) is independent
of position (but not of IIzz and rt), which is equivalent to
the condition that the thickness of wall be less than the
coherence length. In this approximation, it is shown in
Sec. IIA that the energy-gap, the free-energy, and the
transition-temperature curves as functions of magnetic
field consist of a set of intersecting "parabolas, " each
one corresponding to a particular e. These "parabolas"
are displaced by the field associated with the unit
quantum, and their vertices lie on an envelope curve

"V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor.
Fiz. 20, 1064 (1950)."It is of historical interest to note that Qux quantization was
contained implicitly in the GL theory at its inception (1950).
Had a calculation for the hollow cylinder been performed, the
single-value requirement on the order parameter 8 would have
yielded quantization immediately; in addition, the magnitude
would have been given correctly if the effective charge in the
theory had been taken as 2e as certain experiments suggested.
In a later pa er A. A. Abrikosov {Zh. Eksperim. i Teor. Fiz. 32,
1442 (1957) translation: Soviet Phys. —JETP 5, 1174 (1957)g}
used the GL theory in a calculation of the magnetization of a
superconductor of the "second kind"; he found a "vortex" type
of solution for + for which the Qux through each "vortex" was
quantized.
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which is quadratic in Ho for small Hp. The magnetiza-
tion shows a similar periodicity.

A consideration of the microscopic state of the system
leads one to conclude that cylindrical symmetry is not
essential to obtaining good quantum numbers; in fact,
the only requirements for a doubly connected system is
single valuedness of +. A calculation presented in Sec.
IIB for a composite hollow cylinder consisting of two
diferent superconductors agrees with this conclusion.

A further consideration of the nature of the micro-
scopic state leads to the very plausible assumption that
changes in an external magnetic field are adiabatic,
i.e., processes in which the quantum number e remains
constant. This statement turns out to be equivalent to
London's hypothesis of "sti8 wave functions, " in
which the "canonical momentum" is invarient under a
change in magnetic field. This means that a change of
the magnetic field does not induce transitions to states
of lower energy unless the system is first brought into
the normal state. Comparison of experimental results
with the calculations in Sec.IIA shows this to be correct,
even in regions of thermodynamic metastability.

dimensionless coupling constant a are given by"

1'
x 4we*'I 0 (T,o) I'x

sp 42e*hrsH, b V2eeX'H. p

where H, b is the bulk critical field and g is a function oI

the ratio of the bulk coherence length $p to the electronic
mean free path l; x can be approximated" within an
accuracy of about 20% by y= (1+&p/t) '.

Once the equations above are solved, the properties of
the superconductor can be readily determined in terms
of A and P. The solution of these equations for the
multiply connected cylinder has been considered by a
number of jnvestjgatorsv, s, u, i4 but, with the approxima-
tion

I it I

= 1; this restricts their solutions to weak fj.elds
and small quantum numbers. For later reference some
of these expressions are written here: the magnetic
Gibbs free energy,

II. SOLUTION OF THE GL EQUATIONS FOR A THIN
HOLLOW SUPERCONDUCTING CYLINDER

A. Homogeneous Hollow Cylinder

Self Cousistemt -Solutions for A ged O' Assunhiug
Independent of Position

H, b'

QsIX QNH+
Superconductor

2)2
vp+ pA

tt(
2

IIgC

In the GL theory the order parameter 0' which can
vary with position and magnetic field is related to the
vector potential A through a pair of coupled nonlinear
differential equations. For a cylinder of arbitrary cross
section with an external held Hp parallel to the axis,
the GL equations can be expressed in the form"

8W all space

d'rI H(r) —Hp]' (7)

d'r[H(r) —Hp];
all space

the magnetic moment,

M' 'l K

v+ A Ilt+—(1—III')lt=o,
Ac )

4m.—J=vXvXA,
C

shc
vXvXA= (2)(Pv4' Ivy) A- —

2e*A,2 X'
which with the use of (2) can be written

the current density J as given from Maxwell equations,

with boundary conditions given by

(ihvf+(e*/c)QA)&=0 on both surfaces, (3)

inc
9"v~—«~")— A

2e*A,2
(10)

vXA=Hp on outer surface,

v XA=2A/r on inner surface" (4b)

~'This comes from the assumption that the Qux across the
boundary is continuous plus the fact that the Geld in the hole is
constant with position.

u L. N. Cooper, Phys. Rev. 104, 1189 (1956).

where P=%'(TA)/%(T, O), e*=2e is the charge of a
"Cooper pair. ""The penetration depth X and the

It is worth pointing out here that if the first two terms
on the right-hand side of (10) were not there, one
obtains the London relationship between the current
and the vector potential. " In a multiply connected
sample, however, these terms cannot be set equal to
zero and will be shown to be a function of the Quxoid

~'L. P. Gor'kov, Zh. Eksperim. i Teor. I'iz. Bi, 1407 (1959}
Ltranslation: Soviet Phys. —JETP 10, 998 (1959)j.

+ D. H. Douglass, Jr. , Phys. Rev. 124, 735 (1961).
"This is not strictly true because here )|t [' is a function of A

whereas the London theory implicitly assumes ~f ~'=1.
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quantum number; thus the current consists of a
quantized part and a diamagnetic part.

Equations (1) and (2) will now be solved for a
hollow circular cylinder of inner radius r& and wall
thickness d in an external magnetic field Hp as illustrated
in Fig. 1.The reduced order parameter P can be written
as

—ge
—ip

where g is the magnitude and ti the phase. In this
section it is assumed that p does not vary with position;
this approximation can be made without too great an
error as long as d is less than the coherence length $,
which is the characteristic distance over which g
changes. ' No assumption need be made concerning
whether d is greater or less than X, which is the char-
acteristic distance over which A changes. Taking
advantage of the cylindrical symmetry, it is further
assumed that: H is everywhere in the s direction and a
function only of r, which implies that A and J are only
in the 0 direction and are also only functions of r;
r)/Bz=0; and V ~ A=O. With these assumptions Eq. (2)
becomes

HO Ho

d-1 d — g'( hc Brl———(rA) =—
~

— —+A).
dr r dr X'k e*r Bg

(12)
FIG. 1. Hollow cylindrical tube.

Because the left-ha, nd side of (12) and the term in A on
the right-hand side are functions only of r so must the
remaining term be, which requires that

equation for 2', whose integration yields
\

or

t9'g
=f(~)—

ae

~= f(r)~+g(r) (14)

Assuming no radial currents, g can at most be a constant
representing an arbitrary and meaningless phase which
can be chosen equal to zero. The requirement that P be
single valued

4 (0) =li (0+2~)

where I and E are the modified Bessel functions of the
first kind. '~ The integration constants C~ and C2 are
determined from the boundary conditions (4a) and
(4b):

Hp'A

Cg= Eg n —,O.Ep o.

leads to
f=l; I=integer.

Thus, the order parameter becomes

(8)=ye '"'

and (12) reduces to

d-1 d — p' hem———(rA) =—A—
dr r dr

(16)
&& a(n, P), (20)

Hp) Ace
C2= go,'Ip o! —Ij o'. —Ip 6 o,'» 2i

e*r

where

~( P)=1o(P)L& ( )+-' &o( )]
+Kp(P) LI r (a) ——,'nI p(a) ], (22)

The substitution A'= A Acn/e~r resu—lts in Bessel's
(23)

(24)

~6 More precisely the characteristic distance in the GL theory
describing changes in ~P~s is X/s, but Gor'kov (see Ref. 23)
has shown that )=X/s.

"See A. Krddlyi, W. Magnus, F. Iberhettinger, and F.Tricomi,
Higher TrunscendentuL J Nnctions, (McGraw-Hill Book Company,
Inc. , New York, 1953), Vol. 2, p. 9.
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The magnetic field is given by curl A and is

H(r) =—
t CiIp(rg/X) CpEp(rg/X) j.

Equations (30) and (31) are now used to evaluate all
the other properties of system. The reduced "gap"

(25)
becomes

It is interesting at this point to evaluate the flux in the
hole for the case Hp ——0 using (25), (20), and (21):

hc
xf] Hg

d2

+(l)o+(1+vV)»i} + . .
3f]

hc 2P'.-—e 1+
d((r1 P rdg'

(27)

If qP is set equal to 1, Eq. (27) will be recognized as the
expression for the quantized Aux for a thin ring given
by Bardeen, ' Kellers and Zumino, ' and others ' ""
This expression, however, is not exactly the magnetic
moment, the quantity measured experimentally. In
addition to the error of neglecting the Aux in the super-
conductor, which is a small term of the order of d/r, the
order parameter p as it will be shown depends on ri

(and Ho).
Next, a self-consistent solution for p is obtained

directly from (1),

X/~ri4'=1- (1)p—~)',
1+27'

(35)

which are spaced with period 1 as e takes on its integral
values. The maxima of these "parabolas" are located on
a quadratic envelope given by

It is noted for later reference that the last term on the
right is the first term in d/r which does not contain
(t)o—»i) as a factor. If $p—e«1, y'»id/r«1, the order
parameter on the right-hand side of (34) can be re-
placed by 1, and one obtains for P in this limit as a
function of 1)p a set of intersecting "parabolas, "

$2 —1 g2 (28) (36)

where an average over the superconductor has been
substituted for the spatially varying terms: The evaluation of the Gibbs free energy (7) using

(30) and (31) yields

(29)

where (tj), represents the spatial average of tj and is
defined as

F1+I

d (l)o —m)'
+

rye 1+y'qP/2

where the reduced function A has been introduced:

(37)

(O)..= r e(r)dr.
(ri+ d)' ri'—

Soln6oes im the Limit d(&X

In the limit of d«X, Eqs. (19) and (25) become

hc
~ (r) = f pri($o —ri)+ p(» —ri) D)o+ (1+7'0')&j)/

e*xrg2
X (1+-'vv) (30)

QSH gNH
A=

(H, po/8pr) 2or»id
(38)

In the same limit for which (35) and (36) are valid
the g versus I)p curves are also a set of intersecting
"parabolas, "

g = —1+ L2 (X/gri)'(1+ iy') '$(tjp —~)' (39)

hc f r r iy'qP—
H(r) =

I
1+ f)o

e*~r' & d 2

whose minima lie on a quadratic envelope

g = —1+-,' (1+-'y') (ld/curio)'I)p'. (40)

( r ri)—
+-'~'y'~ 1—

I d i
Neglecting terms of the order d/X, evaluation of (8)

( +» ~ ) ~ (3 ) for the magnetic moment gives

where f)p is the reduced external field measured in units
of the 6eld associated with one Qux quantum,

1 iy'gP hc
oR=— —(e—fjp) .

4m 1+-',y'y' e~
(41)

I)p
——(e*m rio/hc) H p,

and y2 is a dimensionless ratio,

y'= rid/)P .

(32)

(33)

In the region where qP can be replaced by 1, this expres-
sion is equivalent to that given by others. ~ "' In a
similar manner the average current density is found
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from (10) to be

1 -', y'y' hc—(I—I)p) .
wriPd 1+-'7'@' e~

(42)

Equations (41) and (42) show that persistent currents
in the absence of a magnetic Geld differ in nature
from the currents associated with the Meissner effect.
The Meissner eGect represented by the last term gives
the usual diamagnetism, whereas the persistent current
represented by the Grst term is quantized and "para-
magnetic. "

It is seen that, in general, the various properties
above depend on I and I)p in a complex way. They
cannot readily be expressed in terms of I and I)p fol'

arbitrary values of the parameters because (34) is at
least a cubic equation in &t

P.

0.4—

0.2-
8

0

o -0.2-
tD
hl
C7

E p4—
OX

I I l I

r &rr rr r~

-O,S-

I.O
0 0.2 Q4 0.6 p p 0.8

(Narmalized Order Parameter)

FIG. 2. Reduced Gibbs free energy versus reduced order
parameter for various y',

Critical Cordi ti Ons

The critical conditions are obtained by examining
the properties of the Gibbs free energy, which will be
done now. Except when n=I)p the inequality I

I I)pI—
))(d/ri) IIjp+(1+y'g')NI will be satisfied if e and Ijp

are not too large. In this case (34) can be approximated
by

occurring at

0 -'=
p (1—1/v')

The value of
I I)p —e

I
at this point is

II)p —&
I

= Cip(2+&') 3'"(1/v) («i/~)

(50)

(51)
4'=1—9/«i)'(I)p —~)'/(1+-'v'4')' (43)

Combining this with (37), the free energy can be
expressed in terms of P' and p' only, which will allow
certain statements to be made independent of n or I)p.

O= -~'I:1-v'(1-~')3. (44)

Examination of this equation shows that there are
two regions of interest corresponding to y2&1 and
~2) ]

Case l. y2&I. For this case /=0 has only the root
&=0. Assuming I to be 6xed, the critical condition is
obtained by setting @=0in (43)

I Ijp—~ I.=«i/~.

Case Z. y2&1. In addition to the above root of the
g=0 equation, there is another given by

(46)

:(-')"'y'(«i/X) .
v')& &

(52)

The region between g and the second root de6nes a
thermodynamically metastable region and (51) gives
the critical conditions at the extreme metastable limit.

Equation (44) for g has been plotted in Fig. 2 for
various values of y'. It is seen that for y'(1, A and p
approach 0 together, de6ning a second-order phase
transition; whereas for y2&1, g becomes 0 at a 6nite
value of @, defining a first-order phase transition. Figure
3 shows on a @'—y' plot this same information, where
the thermodynamic regions of stability, metastability,
and instability are quite evident. These curves are very
similar to, and have the same qualitative features as,

from which with (43) the following critical condition is
obtained

Ik,— I.= I (1+v)/2v](" /~)

: -', y(«i/X) .
v')& &

(47)

(4g)

It is clear that this latter root corresponds to the
equilibrium thermodynamic phase transition because,
under an external agent, qP starting from 1 will reach

g '= 1—1/y' before it will reach @ '=0
Also for this case g is positive between the two roots

and has a maximum of

g =y„P(2—3y„')-'

.8
OJ

4&

D
0

p
OP

0

.2

P I ll
LO

I"Ig. 3. Critical qP versus y .
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Fio. 4. Magnetization, order parameter, and Gibbs free energy
versus magnetic field for p'= yp.

the solutions of the singly connected film" "with the
ratio d/X corresponding to ys. Plots of the magnetiza-
tion, order parameter, and free energy versus l)p fol
various e illustrating the two cases y'& 1 and y2& 1 are
shown in Figs. 4 and 5, respectively. Discussion of how
to relate these curves to physical processes is deferred
until the next section.

Periodk city of the Transition Temperature

Uery near the transition temperature y2&1 so that
the phase transition is second order, which means that
g and @ approach zero together. For this particular
calculation, no assumption is necessary concerning the
magnitude of n and 1)p. The critical temperature is
determined implicitly by setting &=0 in Eq. (34),

(zri s d ds
= (I)p—n)'+ (I)P—n') —+ (I)p+n)' +, (53)

r, 3rP

where the temperature dependence is contained in I(:

and X. Using the usual temperature dependences z(t)
=z(0) (1+ts) ' and X'(t) =X'(0) (1—t4) ', where t= T/T„
one obtains

1—P I(:Osg '

Fzo. 5. Magnetization, order parameter, and Gibbs free energy
versus magnetic field for y'=3.

fj =(1 + + )N.
fy 3f]

(55)

Using (55), Eq. (53) can be put into the following form:

p ]

(l)p —I)-)'+I)-' d '
+ — —+ . . (56)

3

The first term on the right-hand side of (56) gives the
periodic term for the transition temperature,

p
— ' 57

This equation represents a set of intersecting "para-
bolas" in the 1)p

—t plane whose vertices lie on a "quad-
ratic" envelope. In this case because the system is at
the phase boundary between the superconducting and
normal state, it is correct to assume that the quantum
number car change at points of intersections of various
curves. The value of the field I)„for which the tempera-
ture is a local maximum is found by solving dt/dI) p

0——
for

cl d2
= (l)p —n)'+ (l)p' —n') —+ (I) +n)' + (54)

g] 31]
"V.L. Ginzburg, Doklady Akad. Nauk SSSR 83, 385 (1952).
~ V. L. Ginzburg, Zh. Eksperhn. i Teor. Fiz. 34, 113 (1958)

Ltranslation: Soviet Phys. —JETP 7, 78 (1958)7.
s' D. H. Douglass, Jr., Phys. Rev. Letters 6, 346 (1961).

and the envelope curve going through the maxima is
obtained by setting I)p ——I)

(58)
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Equations (57) and (58) are identical to similar expres-
sions given by Tinkham" when a from (6) is put into
them and describe adequately the Ineasurements of
Little and Parks" on the variation of the transition
temperature with 6eld. Putting z into (58) and re-
arranging, one obtains for the envelope curve

c and b are

@
2

b2= 1—

(62)

A,
'

H, '=24 — H, b', (5g) and the free energy is

which wiH be recognized immediately as the critical
field curve given by the GL theory for a singly connected
61m.~s

1 y'/2 bc
5K= —(e—flo),

4z. 1+y'/2 e*
(60)

where y'= (rd)/X'. Here X is a weighted average between
X and Xb,

-e )~ '+(2~—0 )) ss-'~s

(61)

Thus, it is seen that if p &)1, which is the usual case,
the magnetization and Quxoid quantization is un-
changed by making the cylinder composite. In a similar
way the order parameters in superconducting sections

"W. A. Little and R. D. Parks, Phys. Rev. Letters 9, 9 (1962).
"The main difference between the present case and the homo-

geneous hollow cylinder is that the phase s of Eq. (11) instead of
satisfying Eq. (14), (16), is given by a more complicated function
s(e) such that rl(e+2s) =s(ti)+2sN In the limit .r))p, s can be
approximated by a series of linear segments with two different
slopes in the regions of superconductors u and b

B. The Composite Hollow Cylinder

Consider a composite superconducting hollow cylinder
consisting of superconductor a over an angular region
0, and superconductor b over angular region 2'—8,.
Analysis of this problem proceeds in a straightforward
way. First, one can find good quantum numbers e.
This comes solely from the fact that the sample is
multiply connected plus the condition of single-valued-
ness, 4(8) =4(8+2z.), of the order parameter. " The
only inQuence that variations in the parameters of the
superconductor or deviations of the cross section from
circular symmetry have is to distort the various curves
in the g

—l)s plane while keeping the "topology" intact;
a di6'erent way of saying this is the circular hollow
cylinder can be changed or deformed adiabatically to
any particular doubly connected configuration keeping
the quantum number constant. For weak fields and for
r&)$s, r&&X, and d(&X, one obtains expressions which
are quite similar to those of the previous section. The
magnetization is the same

gsrr g~rr-

2%f]I
0 H' 2m —tI H'

( 2~:-+~.')+ ( 2~ '+-~ ')
2m Sm. 2m. Sx

~1 2Y 2fvcm '
+ Hs ———,(64)

16s-d 1+-'y' e*rrs

where H and Hb are the bulk critical fields for super-
conductors e and b, respectively.

III. DISCUSSION

The results derived in the previous section made use
of the assumption that the Quxoid quantum number e
remains constant as the external Geld is changed, as
long as the sample is in the superconducting state. This
assumption is consistent with London's idea of "stiff
wave functions" or that the "canonical momentum"
should remain invariant under a change in the magnetic
Geld; the evaluation of the "canonical momentum"
shows that it is proportional to e.

From a microscopic point of view, ""in the absence
of a magnetic field the state characterized by the
Quxoid quantum number m corresponds to every
"Cooper pair" having m units of angular momentum;
a state of different e corresponds to a complete re-
pairing of all the electrons so that each of the new pairs
have the angular momentum corresponding to the new
e. This means that any Qucutation or perturbation
capable of changing e would have to supply or take
from each pair the same number of units of angular
momentum simultaneously. " The fact that states of
different e diBer by macroscopic amounts of angular
momentum means that matrix elements connecting
diGerent states are vanishingly small. In addition to
implying nearly infinite lifetimes for metastable states,
this result says that the degeneracy at certain points
will not be removed and the g versus I)s curves will not
break up into bands. Thus, the only likely perturbation
capable of changing e is one for which the pairs make
mechanical contact with the lattice (i.e., to go into
"Gregor Wentzel, Proc. Natl. Acad. Sci. U. S. (to be published)."All of the pairs changing simultaneously is not essential as is

sometimes assumed. A more probable process is for a Quctuation
or a perturbation to nucleate a new state over a coherence length
at a "weak" spot; if energetically favorable the new state will
gr ow.
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the normal state) which must be energetically fav-
orable. The most convincing evidence that e is
constant under change of the magnetic Geld is that the
experiments'»' have shown that the metastable persist-
ent current states can be reached by turning off a
magnetic Geld; if e were not constant and were allowed
to change during this process then it would be quite
likely that the system would always end up in the n=0
states of no current.

In regard to the other assumption that the system
remains superconducting to the extreme thermodynamic
metastable limit, there are no theoretical reasons at
present" for this. However, from the discussion of the
previous paragraph it is hard to see how the matrix
elements or transition probabilities could be effected by
having the initial state in the thermodynamic meta-
stable region; the arguments concerning re-pairing and
exchange of macroscopic amounts of angular momentum
should be the same. Using these assumptions it is now
possible to interpret the g versus 'f)s curves in Figs. 4
and 5.

For the ys(1 case (chosen as tro for an illustrative
example) consider a specimen which is initially in the
n= 0 state; in I'ig. 4 the system is in the state character-
ized by the intersection of the e=0 curve with the g
axis. As the magnetic field is increased the system will

follow along the m=0 curve. When point a is reached
the m=0 state is degenerate with the e=1 state; with
the previous assumption, the system remains in the
m=0 state and passes successively through points a
and b until point c is reached. At this point, because
g=&=0, the system will go momentarily into the
normal state. Depending on the rate of change of the
system at c and on various fluctuations, either 1 or 2

flux quanta will leak into the hole of the sample allowing
the system to become superconducting again with the
Gnal state being either at d or e. There is no way of
knowing from thermodynamics alone what the final

state will be; full knowledge of the kinetics must be
in hand. Upon further increase of the external Geld,

the system will move along the new curve of constant
n until again &=0 and more lux quanta leak into the
hole; this process will repeat again and again until the
point is reached vhere the envelope curve intersects
the g=0 line.

It is now evident what a state of persistent current is
and how to generate it. The persistent current states
are represented by the intersection of the various curves
with the negative g axis; in this case there are only
three such states corresponding to m=0, ~1. These
states may be produced by removing a magnetic field
from the specimen; as the field is reduced the system
will "ride" the curves of constant n in the opposite
direction and flux quanta will leak out at the extremities

'sBloch and Rorschach (see Ref. 1'I) have found for the
charged Bose-Einstein gas similar regions of metastability. Their
calculations show that the lifetime is essentially in6nite.

where 0=0. Depending on which state the system has
fallen into as I)s-+ 0, the system v(ill end up in a partic-
ular current carrying state (which includes the 0
current state). If it is desired to put the system into the
m=1 current carrying state, for example, one could
achieve this by turning on a fiel Ijs to any value
between 0.5 and 1.5 while the specimen is in the
normal state. Then the temperature is lowered below
the transition temperature T, of the sample. As the
sample first becomes superconducting near T, the curves
in the A

—$s plane are "truncated parabolas" situated
at l)s equal to an integer (i.e., system is superconducting
near $s=integer and normal near f)s=half-integer).
As the temperature is lowered the superconducting
"region" near each integer increases toward the half-
integers; at some temperature one would expect that
the sample would drop into the m=1 state and remain
there upon further lowering of the temperature. "Upon
removal of the field the system will be in the v=1
current carrying state. It is clear that the critical
persistent current corresponds to the highest state on
the negative %It

axis.
For the ys& 1 case shown in Fig. 5 (y' has been chosen

equal to 3 for an illustrative example) most of the
previous discussion for the y'(1 case carries over. One
difference has to do with thermodynamic metastability
region. Starting with ss=$s ——0 and assuming e to be
constant, the system will move as a function of $s
along the v=0 curve until a point is reached at which

point g=0; the sample may go into the normal state
but the arguments presented earlier lead one to believe
that the system remains superconducting. It is assumed
here that the system does remain superconducting until
the extreme metastable limit (point e on the rs=0
curve); at this point one, two, or three flux quanta,
depending on conditions, will leak in, and the process
repeats again and again as the field is increased as
before. If the system remains superconducting to the
metastable limit, the critical conditions will be given

by (51) and not (47). Also the critical persistent current
as generated by removal of a magnetic field will corre-
spond to the highest state on the g axis which will

occur for positiM g. The critica/ persistent current
density is obtained directly by putting (50) and (51)
into (42):

4s. 1( hc imari 1 2

,)(
—')(v -~) —(~+—,), (6~)

which is good when y'&1; when y'&1, J„;&——0. The
state corresponding to the maximum persistent current
is computed by finding the ss such that dJ/drs=0;
this calculation yields qP=-ss corresponding to that ts.

'sIn the experiment reported by Deaver and Fairbank (see
Ref. 3), one case out of about 50 is reported for which the system
ended in the n =0 state instead of the n =1 state after lowering the
temperature.
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Using this along with (43) and (42) yields

(66)

which is good. for all p'. The ratio is found to be

showing that J &J„;~.In addition to describing the
persistent current state f)s=0, (65), (66), and (67) are
valid for the current state in a magnetic field as well.
Recently, Mecere au and Hunt" have measured
critical persistent currents in hollow thin samples by a
rather interesting technique. In these experiments
y'&)1, which makes the comparison of their results with
the current implied by Eq. (48) for the thermodynamic
phase transition and Eq. (52) or (65) for the extreme
metastable limit quite unambiguous. First, the temper-
ature dependences are different; near t 1, the thermo-
dynamic transition yields J~ dt whereas the extreme
metastable transition implies J~ (Af)'~'. The measure-
ments show clearly that J~ (b,t)'~' corresponding to
the latter case. Secondly, the experimental measure-
ments with a not unreasonable X(0) agree in magnitude
with the current at the metastable transition which is
larger than the current corresponding to the thermo-
dynamic transition by a factor of p.

It should be pointed out that the calculations in the
preceding section yield the result that the various
properties of the hollow cylinders are strictly periodic
in the field with a period corresponding to unit quan-
tum; the nonlinear "mixing" terms in the theory fail
to generate any "harmonics. "This is of interest in view
of the fact that Little and Parks" have observed
"harmonic" structure on certain samples under special
conditions in their measurements of the periodicity of
the transition temperature with magnetic field. They
found periods which they suggested could "be indicative
of the existence of multiple pairs" corresponding to e~

equal to 4e and Se.39

3' J. E. Mecereau and T. K. Hunt, Phys. Rev. Letters S,
243 (1962).' W. A. Little and R. D. Park. s, in Proceedings of the Eighth
International Conference on Low Temperature Physics (to be
published),

"An alternative and plausible but less exciting explanation is
possible. Using the results of the previous section for the critical
Geld for a Gxed n and plausible assumptions concerning the nature
of the particular sample, the appearance, the shape, and the
sequence of periods versus current of these "harmonics" can be
accounted for. This possible explanation has to do with the fact
that this structure is only observed when operating on the low-
temperature end of the resistance "tail." Under these conditions
only a small portion of the sample has a transition temperature

In summary, the properties of a thin, hollow super-
conducting cylinder have been considered without
making the approximation that the energy gap (order
parameter) does not change with magnetic field or
Quxoid quantum number.

When rdlX'&1, and for a fixed ti, the energy gap goes
smoothly to zero with magnetic field, a second-order
phase transition, with the magnetic moment, the
current, and the free energy being affected accordingly.
Also for this limit the transition temperature is periodic
with Geld as shown experimentally by Little and Parks"
and agrees with the calculation of Tinkham. "

In the limit rd&'A', and for a fixed e, the energy gap
drops discontinuously to zero at the critical point, a
first-order phase transition, again with inQuence on the
other properties of the superconductor.

In either case arguments are given for assuming that
e is constant under a change of magnetic field as long
as the system remains superconducting. This leads to
metastable states which for the rd&X' case includes
states which are thermodynamically metastable as well.
The experiments on fiux quantization'' and critical
persistent currents" can be explained by making such
an assumption.
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this low; most of the sample has a higher transition temperature.
The observed voltage is a superposition of the effect of the magnetic
Qeld on these two different regions. The magnetic Geld produces a
voltage with the expected periodicity on that portion of the
sample having a transition temperature equal to the operating
temperature. I"or the portion of the sample having a transition
temperature greater than the operating temperature the system
follows on a g

—flo plot the curves of constant I going through the
"saw-tooth" sequence producing a voltage of the same shape:
"right-handed teeth" for increasing Geld and "left-handed teeth"
for decreasing Geld. If y'& j., which was the case, then the change
in Aux at the edge of the "teeth" would correspond to only one
quanta; from this it is easy to see that the voltage would have
unit period but with a variable phase determined by the intercept
of the n =0 curve with the g =0 axis. This intercept can be varied
continuously, either by changing the temperature or the monitor-
ing current; for particular values of the phase the superposition
of these various voltages can give the observed "harmonics. "


