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By direct calculation of the electron energy of a metal crystal as a function of elastic strain and tempera-
ture, it is shown that the elastic constants can exhibit a P dependence at low temperatures. This tempera-
ture dependence arises from the displacement of the Fermi surface during strain and the simultaneous transfer
of electrons across Brillouin zone boundaries. The results for face-centered cubic and body-centered cubic
metals are obtained in terms of the energies of symmetry points in the Brillouin zone and the electron
density of states and its 6rst and second derivatives with respect to energy. The magnitude and algebraic
sign of the temperature dependence are shown to depend critically on the shape of the Fermi surface and
the electron density distribution. It is also shown that the form of the electron contribution to the tempera-
ture dependence of the elastic constants is directly analogous to that derived for the thermal variation of
the paramagnetic susceptibility of metals at low temperatures.

c. INTRODUCTION
' ~HE problem of the calculation of the elastic con-

stants of solids has proceeded largely from the
studies of Born and co-workers. ' In this approach, a
model of generalized forces between atoms is used to
obtain interrelations between the atomic force constants
at absolute zero and the macroscopic elastic constants.
The temperature dependence of the elastic constants
consequently arises from the variation of the lattice
potential energy due to anharmonicity, or alternatively
the temperature dependence of the elastic constants is
described in terms of the phonon-phonon interactions
due to the anharmonicity of the lattice vibrational
frequencies. '

The Born approach, while a good approximation for
insulators and perhaps semiconductors, is inadequate
for Inetals. The total electron energy of a metal crystal
arises from the interaction of the valence electrons with
each other and with the ion-cores of the metal atoms.
This interaction determines the phonon vibrational
frequencies at absolute zero and, hence, the velocity of
sound waves in the crystal. ' 4 The ela, stic constants are
obtained directly from the density of the Inetal and the
sound velocities. ' An alternative approach has been to
obtain the elastic constants by the direct calculation of
the electron energy as a function of strain. This ap-
proach is discussed by Wigner and Seitz, '" Fuchs, '
Leigh, and others. "

The thermal variation of the elastic constants of
metals thus arises from the temperature dependence
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of the electron energy due to the Fermi-Dirac distribu-
tion of electrons, and the temperature dependence of
the lattice energy due to the anharmonicity of the
crystal lattice vibrations.

Recent theoretical calculations by von Roos' " on
the plasma theory of electron-phonon interactions in
metals have shown that the electrons contribute to the
temperature dependence of the renormalized longitudi-
nal sound frequencies. Thus, the temperature depend-
ence of ultrasonic sound velocities, and hence the elastic
constants, may be expected to arise phenomenologically
from the temperature dependence of the renormalized
sound frequencies due to the electrons. Alers and
Waldorf, " using a very sensitive ultrasonic technique,
have found that in a,ddition to a term in T4 due to
lattice anharmonicity, the elastic constants of vanadium
and niobium exhibited a T' dependence at temperatures
in the liquid-helium range. Alers" further calculated
that the estimated contributions from lattice anhar-
monicity were too small to be experimentally observed
in the temperature range at which the T' dependence
was found.

It is the purpose of this article to investiga, te the
nature of the electron contribution to the temperature
dependence of the elastic constants of cubic metals. It
would perhaps be preferable to perform the calculations
of the thermal variation on the basis of the plasma
theory of electron-phonon interactions in order to pre-
serve a logical progression of phenomenological effects.
The limitations of a plasma theory and the present
inability to treat shear distortions by this approach
have directed our attention to calculating the electron
energy of a metal crystal as a function of temperature
and strain. ' ' As a result of these calculations we have
found that the elastic constants can exhibit a I' de-
pendence at low temperatures due to the electrons. The

' O. von Roos, Phys. Rev. 120, 1641 (1960)."O. von Roos, Jet Propulsion Laboratory Report, TR-32-106,
1961 (unpublished).
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(1961).

"G.A. Alers (private communication).
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magnitude and algebraic sign of the temperature de-
pendence were found to depend critically on the shape
of the Fermi surface and the electron density distribu-
tion. A model for the temperature dependence of the
elastic shear constants of cubic metals is derived in
Sec. 2. A derivation of the temperature dependence of
the elastic bulk modulus for both isothermal and
adiabatic strains is presented in Sec. 3. In Sec. 4 it is
shown that the form of the temperature dependence of
the elastic constants is directly analogous to that de-
rived for the thermal variation of the paramagnetic
susceptibility of metals at low temperatures. Fina1ly,
in Sec. 5, the results of the article are summarized and
conclusions drawn.

2. ELECTRON CONTRIBUTION TO THE ELASTIC
SHEAR CONSTANTS AT LOW TEMPERATURES

A. The Elastic Shear Constants

In this section, we consider the two elastic shear con-
stants of cubic crystals, C and O'. The shear constant
C= C44 may be represented by volume conserving
strains which change the crystal symmetry by extension
in the (111)direction accompanied by that contraction.
in the perpendicular plane necessary to keep the volume
constant. The shear constant C'=-', (Crr —Crs) repre-
sents volume conserving strains which change the
crystal symmetry by extension in the (001) direction
accompanied by that contraction in the perpendicular
plane necessary for volume conservation during shear.
The shear constants C and C' correspond to strains
which do not change the volume of a crystal during
deformation, and, hence, are not dependent on whether
the deformation is isothermal or adiabatic.

The internal energy of the electrons in a metal at low
temperatures is given by the relation'4

U(T) = U(0)+1VV(T)-'p(s-kT)'g(8p). (1)

In Eq. (1), U(0) is the internal energy at absolute zero,
E is Avogadro's number, k is the Boltzmann constant,
and V is the atomic volume. The parameter g(8p) is
the total number of electron states per unit energy per
unit volume, evaluated at the Fermi level 80 at absolute
zero. The spin factor of 2 is included in the expression
for g(8p). The result of Eq. (1) is independent of any
assumed model for the energy dependence of the density
of states. "It is for this reason that we have expressed
the internal energy in the form given by Eq. (1) rather
than assuming spheroidal energy surfaces and applying
the Fermi-Dirac integral'4 to obtain the temperature
dependence. Since the adiabatic elastic shear constants
are second derivatives of the internal energy with re-
spect to strain, at constant entropy, the absence of
volume change during shear considerably simplifies the
differentiation of Eq. (1). If we let M represent C or
C' and X an arbitrary strain parameter corresponding

'4R. H. Fowler, Statistical Mechanics (Cambridge University
Press, London, England, 1936), 2nd ed.

to C or C', the temperature dependence of the elastic
shear constants is expressed directly as second deriva-
tives of the total density of states at the Fermi level
with respect to strain. This is given by the relation:

where the subscript zero indicates that the derivative
is evaluated at zero strain.

B. Shear Distortion and the Electron
Distribution

The calculations in this section and in Sec. 3 are con-
sidered for the case in which the deformation takes
place slowly with respect to the electron relaxation
time. As a consequence, the electron-phonon scattering
processes have time to keep the electrons in equilibrium
on the Fermi surface during strain. When a metal is
sheared at constant volume the distortion of the lattice
in real space causes a distortion of the Brillouin zone
in reciprocal space. For those metals for which the
Fermi surface is presumed to be a sphere lying wholly
within the erst Brillouin zone, the eGect on the Fermi
surface of movements of the bounding planes of the
zone is small. As a consequence, the corresponding con-
tribution to the elastic shear constants is negligible. '
For other metals the distortion of Brillouin zone bound-
aries, particularly in the case of electron overlap across
or contact with zone boundaries, has an appreciable
e6ect. ' '

The Brillouin zones for the body-centered cubic and
face-centered cubic lattices, with points of symmetry
designated, are shown in Figs. 1 and 2, respectively.
During shear there is a shift of the electron energy sur-
faces near the Fermi surface, accompanied by electron
transfer from certain positions on the Brillouin zone to
others, in order that the electrons can occupy states of
lower energy and maintain an equilibrium con6gura-

Fn. 1. Brillouin zone for the body-centered cubic lattice
with points of symmetry shown.
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Fzo. 2. Brillouin zone for the face-centered cubic lattice
with points of symmetry shown,

and

rdg'( ) dg'(/))

~ dX p dp )p dX)p
(3)

Zg, p dg; p, 4p, dg;p cPp

where X represents a shear strain parameter corre-
sponding to C or O'. We must now evaluate the 6rst
and second derivatives of the energies E;; and 80 in
order to use Eq. (4) to solve for the second derivative of
the total density of states at the Fermi level with re-
spect to strain, as given in Eq. (2) and, hence, obtain
the temperature dependence of C and C'.

C. Strain Dependence of the Electron Energies

tion. In addition, the curvature of the energy surfaces
may change in order that the gradient of the energy
vanishes at a point of symmetry in the sheared state.
This corresponds to a change in the electron effective
mass during shear.

We now make the assumption, as a first approxima-
tion, that during shear the energy at each overlap or
hole symmetry point moves rigidly with the Brillouin
zone boundary and that the electron eGective mass is
not a function of strain. ~ ' Let us now consider the case
where electron overlap across zone boundaries or con-
tact with zone boundaries is present. We de6.ne by
g;(p) the contribution to the total density of states at
the Fermi level, g(8O), from those overlap or hole states
with energy E;,, i refers to the symmetry point of the
zone and j refers to the number of equivalent pairs in
the sheared state. We thus obtain the relations

equation

W =Wo+$C» (e.'+e„'+e,')+C~2 (e.e,+e,e.+e.e„)
+2C44(vP+v2'+y3'), (5)

where e, e„,e, are the diagonal components of the
strain tensor and the y's are the oA-diagonal terms
representing changes in angles between the principal
axes of the crystal. For convenience in calculating con-
tributions to the strain energy of the solid under the
appropriate shear, it is expedient to write the lattice
vectors in terms of a strain parameter X=), g.

For the body-centered cubic lattice, the direct and
reciprocal lattice vectors for the shear corresponding to
C may be written in terms of a strain parameter p as

with B=~(3g ' —
r/ '+2). The shear constant C is

then given by
C= 3 (d'W/dn') o, (7)

where at zero strain g=1. For C', the direct and recip-
rocal lattice vectors for the body-centered cubic lattice
are written in terms of a strain parameter $ as

~~=k~F" (—1, 1, V),
ag ———,'uP/3(1) —1, & ')

g —Lg(1/3 (1 1 t—1)

bg
———,'a(2s/a)P/s(0, 1, $),

b =(2~/u)$ '"(1,0, $),
b2 (2~/a) &

—"'(1,——1, 0) .

The shear constant C' is then given by
C'= —,

' (d'W/dp) 0,

where at zero strain $= 1.
The direct and reciprocal lattice vectors for the face-

centered cubic lattice for shears corresponding to C and
C' will not be tabulated here as they have already been
given by Leigh. ~

The reciprocal lattice vectors in the sheared state
are used to determine (dE,;/dX) p and (d'E;;/dX')0 for
C and C' for both the body-centered cubic and face-
centered cubic lattices. Thus, one obtains

In order to evaluate the strain dependence of the
E;; and 80 we must consider how the reciprocal lattice,
and hence the Brillouin zone, changes as the metal
undergoes shear. The strain energy, per unit volume,
of a cubic lattice is given in terms of the three inde-
pendent elastic constants, C», C», and C44, by the

(dE;,i fdE,; dE;; i
kdX)0 EdEg O dX /0

(10)
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where E;; is a reciprocal lattice vector from the origin and summation over all ij gives the relations
of the 8rillouin zone to the point of syrronetry. For
both the body-centered cubic and face-centered cubic
lattices, it was found that dX, ' dX, '~ dx 0

Pg(dE;;/dX) p= 0 (12)

dg'(~) t+&
di ip dx &p

~

~
P;; (dE@/dX) p 0. —— (13)

In addition, from symmetry arguments, "

for all i. The vanishing of the sum of (dE;;/dX)p for
all p follows from the s~nrnetry of the sheat distortion p '

I
=g g,.(&)~

—g g, (~)
for C and O'. As a consequence of Eq. (12) it is found 'i dX'Jp ' ~dX' p *i dX' p

that

(da/dX) p= 0.

Thus, it is found that

Z*(dg'(i )/dX) o= o

(14) From Eq. (18) one obtains

and that there is no change to 6rst order in the total
density of states at the Fermi level.

In order to evaluate the second derivative of the
Fermi level, 80, with respect to strain, we make use of
the relation for the number of overlap electrons or
holes per unit volume, n;;, in the sheared state. This
relation is given by

t O-&'2

nv g'(n)«, (16)

where n =E—E;;, the plus refers to overlap electrons,
and the minus to holes. Since the total number of
overlap electrons minus the total number of holes is a
constant, independent of the state of strain of the
crystal, differentiation of Eq. (16) with respect to X

D. Temyerattlre Dependence of C and C'

We can now evaluate the sum of the t-d'g;Q)/dX']p
of Eq. (4) by means of Eqs. (10)—(19). In order to
simplify the discussion to be given in Sec. 4, we will

assume that the first and second derivatives of E;; are
proportional to E;;, the constant of proportionality
being determined uniquely by the geometry of the
Brillouin zone. The expressions for the temperature
dependence of the elastic shear constants of the body-
centered cubic lattice may now be expressed in terms
of the energies of the symmetry points shown in Fig.
as follows:

V(o) &(~k2')' r.' 2&;g'( ') (dg'(~')
C(T)=C(0)

V(T) 18 P, g;(p') * E dp'

and

(dg'(&) ) (d2g~(i ) ) 1 (dg~(v ) ) (dg'(u ) )
I +&~

)p 4 AN' )p Q~g~(p)E dye )p i ( dp )p

(A~(u') i 1 dgp(~') i (dg'(~') it+:~. I
„

I

dye" &p P g(y) du~' &p ' & dp' &p
(20)

V(0) X(rrkT)' Q; 2E,g;(p')
( ' (T)=C'(0)

V(&) 18 Z' '4 ')

(dg'(~') )

g
' ( dp

where now p!=Pp-E~.
'p A. B.Pippard, Proc Roy. Soc. (London) .A257, 165 (1960).

(dg'(~') ), (d g~( ')
& 1 (dg~(~') i (dg'(~) &

I +p~~
dp' )p -I, dye' Pp P g'(I )& dp~ )p ' d& Jp-

(d g~(i )& 1 (dg~(~))+2~1 I I
-

I I & I I), P;g, (p)E dp lo & di" ~p-
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Similarly the expressions for the temperature dependence of C and C' for the face-centered cubic lattice may now
be expressed in terms of the energies of the symmetry points shown in Fig. 2, as follows:

V(0) E(n-kT)'
c=c(o) — 2z,

V(T) 18

g~(» ) 4'(» )) (4'i(» )

-2''a'(i) &~ &o & &~i ~o-

(22)

&(O) N(»T)' g (v) &Rr(P)) (&C'(a) Rx(P) dk(P) &Fx(V))c =c (o) — 2z,
~

—
~

— +2m~
V(T) 18 g g, (p) d»» )& k d»&, & g;g, (»») ~ dp 0 dp~

(23)

where again p'= po—L';.

3. ELECTRON CONTRIBUTION TO THE ELASTIC
BULK MODULUS AT LOW TEMPERATURES

A. The Elastic Bulk Modulus

In this section we consider the elastic bulk modulus of
cubic crystals, B=3(c~~+2C~2). The bulk modulus cor-
responds to dilatational strains which leave the crystal
symmetry unchanged. The isothermal bulk modulus is
obtained by differentiation of the Helmholtz free en-
ergy, A, of a solid with respect to volume at constant
temperature. The electron contribution to the Helm-
holtz free energy at low temperatures is given by"

2 (T)= U(0) —EV(T)-', ( kT)'g(80), (24)

Brillouin zone. This arises from the volume change
accompanying dilatation with corresponding 6rst-order
changes in the total density of states and the Fermi
level, as well as second-order eGects. We will consider
in this section the situations in which the Fermi surface
is a sphere lying within the first Brillouin zone as well
as the case of electron overlap across zone boundaries
or contact with zone boundaries.

We proceed in a manner similar to that used in Sec.
2, obtaining the relations analogous to Eqs. (3) and (4):

Jg, p, dg; p dp,

(&g'(v)) (A'(v')) (d&') (dc'(v')) &&v')
Br V(8'A/a V') r. ——

and
where the notation is the same as that used in Eq. (1).
The isothermal bulk modulus is given by

The adiabatic bulk modulus, Bg, can be obtained by
differentiation of Eq. (1) and is given by

Bs= V (O'U/BV') s (26)

B. Bilatational Distortion and the
Electron Distribution

Contrary to the situation discussed in Sec. 2, dila=
tational distortion gives rise to an electron contribution
to the elastic bulk modulus and its temperature depend-
ence even for those metals for which the Fermi surface
is presumed to be a sphere lying wholly within the erst

(28)

where for the case of electron overlap across zone bound-
aries or contact with zone boundaries, »»'=Po —8; andi
refers to the symmetry point of the zone. For the case
of a spherical Fermi surface, »» =Pp and i has no sig-
nificance. In order to evaluate the erst and second de-
rivatives of the Fermi level, Po, with respect to volume
we make use of analogous relations to Eq. (16) to Qnd
for the ca,se of electron overlap

t d)tea 1 -
dE;q 1

, Z g'(»')
I

—2'~' (29)
kdV 0 Q g(p') ' dV Jo V'
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stant entropy. The equation for the electron entropy,
S, is given by"

S=XV(T)T-', (mk)'g(Po).

By differentiation of Eq. (1), we obtain

x dpo) dg;(p')) dE;)

dp &o dV&o

+r, (';, )(„'i+—', r. ', oN

(cjU) c)U(0)
+&X(m kr)'

EBV& s c)v

(dg(po) ) 2 (ar )—
x g(Po)+ vl I + g(P—o) I I (36)(dv&, r &av&,

(dg(Po) y
I

= —r —+
kavi, v g(p, ) E dy &

(dPo) I 1

kd Vi o V' g (Po)

where m; are the number of electrons or holes related to
synunetry points of type i Fo.r the case of a spherical Differentiation of Eq. (35) gives the relation
Fermi surface:

(d'Po) 2n 1 e 1 dg (Po))
(32)

kdv'&o V' g(Po) V' Cg(po)7 dPo &o

where e is the total number of electrons in the Fermi
sphere.

C. The Isothermal Bulk Modulus

The temperature dependence of the isothermal bulk
modulus due to the electrons is obtained from Eqs.
(24) and (25) as

V(T)
Br=B(0) —1VV(T)-', (x kT)'

V(0)
—(dg(P.)3, (d'g(po)i-

I +o V(r)I, I (33)
&dy(0)& o &dv(0)'& o-

where B(0) is the bulk modulus at absolute zero. For
the simple case of a spherical Fermi surface we obtain,
using Eqs. (27), (28), (31), and (32),

V(T) E ( I
B,=B(o)

v(0) v(r)' &5 (po)]&

, (d'g(po)1
x-.(~~r)'

~ I
—

I I (34)
dpoo & o g(po) ( dpo & o

The temperature dependence of Bp for the case of elec-
tron overlap may be obtained by suitable substitution
of Eqs. (27)—(30) into Eq. (33).

D. The Adiabatic Bulk Modulus

The derivation of the temperature dependence of the
adiabatic bulk modulus, 88, due to the electrons is
somewhat more complicated than the straightforward
method for the isothermal bulk modulus. This arises
from the variation of temperature with volume at con-

Successive differentiation of Eq. (36), using the result
of Eq. (37), yields the electron contribution to the tem-
perature dependence of the adiabatic bulk modulus as

V(r), , 1 (dg(Po) iB.=B(o) +xv , ( I r) -g(p.)+ ~

y(0) V(r) &d V(0) & o

V(r) (dg(po) ~ ', (d'g(po) )+
g(po) q dy &, Edy'(0)&

For the simple case of a spherical Fermi surface we ob-

tain, using Eqs. (27), (28), (31), and (32),

V (T) 2N
Bs=B(0) +o&(7r7or)' g(Po)—

V(0) V(T)

1 (dg(Po) ) 1 ( n,
x

g(po) E dpo &o 2(v(r)g(po)

(d'g(po) q 3 (dg(po) q
'-

x I

-& dPo' &o g(Po) & dP

The temperature dependence of B~ for the case of elec-
tron overlap may be obtained by suitable substitution
of Eqs. (27)—(30) into Eq. (38).

4. RELATION TO THE PARAMAGNETIC
SUSCEPTIBILITY AND THE

FERMI SURFACE

A. Temperature Dependence of the
Paramagnetic Susceptibility

The temperature dependence of the paramagnetic
susceptibility, g, of metals at lovr temperatures has
been derived by Stoner" as

d'g(po) 1 dg(po) '
„=x(o)+g(&ur)'& — — . (4o)

- dPo' g(Po) dPo

"E.C. Stoner, Proc. Roy. Soc. (London) A154, 656 (1936).
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In Eq. (40), 7t(0) is the paramagnetic susceptibility at
absolute zero, p is the Bohr magneton, and the other
terms are identical to those used in Eq. (1). Attention
is now called to the striking similarity of Eq. (40) to
Eqs. (20)—(23), (34), and (39). The term in square
brackets in Eq. (40) is identical to the equivalent term
in Eq. (34), and with the exception of numerical fac-
tors, to that in Eq. (39). In addition, the dominant
terms of Eqs. (20)—(23) are those arising from electron
transfer during shear distortion and are represented by
the square of the energy of a point of symmetry. This
term is modified by a factor equivalent to the term in
square brackets of Eq. (40).

On the basis of the above discussion, it is seen that
the sign and magnitude of the electron contribution to
the temperature dependence of the elastic constants,
similar to the paramagnetic susceptibility, is deter-
mined by the first and second derivatives of the elec-
tronic density of states with energy, evaluated at the
Fermi level. The temperature dependence of the elastic
constants may exhibit positive or negative coefficients
dependent upon whether the Fermi level is at a mini-
mum or maximum of the electron density of states,
respectively. Kriesmann and Callen'~ have interpreted
the positive temperature coefficient of the paramagnetic
susceptibility of chromium on the basis of the Fermi
level lying near a minimum of the theoretical density of
states curve.

Kith the exception of the case of a spherical Fermi
surface, one would not expect an exact correlation be-
tween the paramagnetic susceptibility, which is a
second-rank tensor property, and the elastic constants,
which are fourth-rank tensor properties. This is obvious
from an investigation of the relations for C, C', Bz, and
Bq for the case in which contact with zone boundaries
or electron overlap across zone boundaries is present.
In this case it is seen that the shape of the Fermi surface
may inhuence the sign and magnitude of the tempera-
ture dependence of the elastic constants.

B. Elements with Spherical Fermi
Surfaces: Sodium

As an example of an element for which it is assumed
that the Fermi surface is spherical we take the case of
sodium. Since we assume a spherical Fermi surface,
there is no contribution from the electrons to the tem-
perature dependence of C and C' and the electrons con-
tribute only to the temperature dependence of the
elastic bulk modulus. We obtain g(Pp) from electron
specific heat data" as 0.764 eV—' per atom and a value
for 80 of 3.5 eV from measurements of the soft x-ray
emission spectra by Skinner. " A value of B(0) of
5.32X10ts dyn/cm' is obtained from the experimental

"C. J. Kriessman and H. B. Callen, Phys. Rev. 94, 837 (1954).
' J. G. Daunt, Progress irI, Lo7gJ Temperatgre Physics, edited by

C. J. Corter (North-Holland Publishing Company, Amsterdam,
1955), Chap. XI.

"H.W. B.Skinner, Trans. Roy. Soc. (London) A239, 95 (1940).

TMLE I. Electron contribution to the temperature dependence
of the elastic constants of sodium, copper, aluminum, and
vanadium.

Element

Na

CU

Al

V

Modulus

BT
&s
C
C'
Bg
~$
C
Cl
C
C'
C
Cl

Calculated

-4.98X10-1o
—9.94X10~

0
0—3.97X10-»

—4.84X 10-1o
1.04X 10-Io
0—6.15X10 '

—2.90X10~
~10-e
~10—e

n ('K~)
Experimental'

~ ~

1 03X10-e
0.46X10-e

a See Ref. 12.

measurements of Quimby and SiegeP' at 80'K ex-
trapolated by Stern' to absolute zero. A parabolic
density of states versus energy distribution of the form

g (g) —r ~2 (2~/iss) 3/2+1/2 (41)

is assumed in order to calculate the first and second
derivatives of g(E) with respect to E. The results were
calculated in the form

M(T) =M(0) (1—nT'), (42)

where 3f represents an elastic constant. The results for
sodium are tabulated in Table I.

C. Contact with Zone Boundaries: Copper

There has been extensive study of the Fermi surface
of copper by galvanornagnetic and magnetoacoustic
measurements. "A model of the Fermi surface of copper
is shown in Fig. 3. As seen from Fig. 3, the Fermi sur-
face contacts the Brillouin zone boundary at the hex-
agonal faces of the Brillouin zone. Thus, there are no
contributions to the total density of states at the
Fermi level from syn..retry points equivalent to points
X and S' of Fig. 2. Consequently, we may omit all
terms in X and lV in consideration of the elastic shear
constants C and C' of Eqs. (22) and (23), respectively.
Investigation of Eq. (23) shows that there is no con-
tribution to the temperature dependence of C' from the
conduction electrons. For the shear constant C there is
a contribution to the temperature dependence arising
from the term in Ers in Eq. (22). We obtain g(Pp) from
electron specific heat data" as 0.320 eV ' per atom and
a value of Pp of 6.8 eV from the x-ray emission spectra
results of Skinner. " A value of C(0) of 8.17X10"
dyn/cm' is obtained from the experimental measure-
ments of Overton and GaGney. ~ In addition, we assume

"S. L. Qnimby and S. Siegel, Phys. Rev. 65, 293 (1938).
~' D. Shoenberg, The Fermi Surface, edited by W. A. Harrison

and M. B. Webb (John Wiley 8r Sons, Inc. , New York, 1960),
pp. 74-83.

ss H. W. B. Skinner, Phil. Mag. (7) 45, 1070 (1954).
~ W. C. Overton, Jr., and J. Ga6ney, Phys. Rev. 98, 969 (1955).
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FIG. 3. The Fermi surface
of copper.

that Er, lies so close to Ps that we may approximate En
by assuming that Er, =Ps. In a manner analogous to
that used for sodium, we estimate the temperature de-
pendence of Bp and Bq using the available experi-
mental data' " and the value of B(0) of 14.1X10"
dyn/crn' obtained by Overton and Gaffney. " The re-
sults are tabulated in Table I.

D. Overlap Across Zone Boundaries: Aluminum

Theoretical calculation of the electronic contribution
to the elastic shear constants of aluminum have been
performed by Leigh. ' Leigh assumed electron overlap
across the hexagonal and square faces of the Brillouin
zone of Fig. 2 and the absence of holes at the corner
points, 8". On the basis of the number of approxima-
tions involved in the calculations of Leigh, it is quite
dificult to place much confidence in the relative con-
tributions to the elastic shear constants and to the
Fermi surface obtained from this treatment. ' We,
therefore, use the calculations of Leigh solely to obtain
an estimate of the order of magnitude of the electron
contribution to the temperature dependence of the
elastic shear constants. The elastic constants, C and C'
at O'K are obtained from the work of Sutton, "as 3.09
X10"and 2.60X10" dyn/cm', respectively; the other
parameters in Eqs. (22) and (23) being obtained from
the work of Leigh. The results of these calculations are
tabulated in Table I.

E. Comparison with Experiment: Vanadium

Since no information is available at present about
the Fermi surface of vanadium, it is quite dificult to
calculate the electron contribution to the temperature
dependence of the elastic constants. We can show, how-

ever, that the order of magnitude of the T dependence
of vanadium can be predicted on the basis of experi-
mental evidence. A curve of the energy dependence of
the electron density of states for bcc transition metals

~ P. M. Sutton, Phys. Rev. 91, 816 (1953).

has been obtained by Cheng et al."ss from measure-
ments of the electron specific heat of transition metal
alloys. From the results of Cheng and co-workers we

estimate the slope and curvature of the electron density
of states at the Fermi level as 7.7 and 33 eV 3per atom,
respectively. The density of states for vanadium at the
Fermi level is also given by Cheng" as 3.908 eV ' per
atom. We obtain Ps once again from the experimental
results of Skinner as 7.74 eV and for purposes of quali-
tative calculation assume E~, E~, and EI are approxi-
mately equal to Ps. The values of the elastic shear
constants C and C' at absolute zero are obtained from
the data of Alers and Waldorf, " as 4.60)&10" and
5.65 X10"dyn/cm respectively.

5. SUMMARY AND CONCLUSIONS

It is shown that the electrons contribute a term in T'
to the temperature dependence of the elastic constants
of metals at low temperatures. The algebraic sign and
order of magnitude of this temperature dependence are
determined critically by the electron density distribu-
tion and the shape of the Fermi surface. Representative
calculations are performed for sodium, copper, alumi-

num, and vanadium. In aB these calculations it has been
assumed that V(T) is equal to V(0) over the tempera-
ture range considered. This assumption seems justified
by the results of White" which show that the thermal-

expansion coefFicient for vanadium and most other
metals investigated is approximately 10 deg ' in the

temperature range considered in this work.
The experimental measurements of Alers and Wal-

dorf" have a sensitivity of one part in 10'. From the
results of Table I it is doubtful that the T' dependence

may be observed in copper, but possibly may be ob-
served in sodium and aluminum. From the results for
vanadium it is probable that the effect will be most
pronounced for transition metals. It becomes clear that
measurements such as those performed by Alers and
Waldorf are valuable for checking the results of energy
band calculations, or conversely, for providing informa-

tion about the Fermi surface.
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