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Gallium. Solid gallium shows a slight smearing of the
maximum k cutoff which is probably due to anisotropy
of the Fermi surface and accompanying higher momen-
tum components of the electron wave functions. The
results for liquid gallium show a very large "blurring"
of the Fermi cutoff, which could imply an electron
mean free path of /=1 —4 A. It is known that the
crystal structure of Ga consists of pairs of ions in the
lattice. ' If these pairs were much more tightly bound
in the liquid, the molecular orbital electrons doing the
binding wouM have a momentum distribution some-
what like the observed data. There would certainly be
no Fermi cutoff. Knight, Berger, and Heine, ~ and
Pashaev' have noted many other anomalies in the
behavior of liquid and solid Ga.

Indium. The sharpness of the momentum cutoff in
indium changes somewhat as the solid is heated from
room temperature to about 130'C and does not change
much more upon melting. If the increase in smearing
above room temperature is interpreted to yield an

' H. Hendus, Z. Naturforsch. 2a, 505 (194'7).' W. D. Knight, A. G. Berger, and V. Heine, Ann. Phys. (N.Y.)
8, 173 (1959).
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electron mean free path, /=4 1—0 A is obtained for
the solid and liquid near the melting point.

Tin. The results for tin show a slight change in the
sharpness of the cutoG in heating the metal from room
temperature to about 200 C. The mean free path
obtained from the change in sharpness is /=25 A.
Melting further decreases this to a value in the range
/=3 —6 A.

The mean free paths for In and Sn are approximately
in accord with simple estimates from the conductivity, '
although it is a little surprising that the thermal scat-
tering in In appears in large part before melting. The
expected mean free path for liquid gallium (=17 A)
is not observed and it is possible that the measured
momentum distribution cannot be usefully character-
ized by a Fermi cutoff and a mean free path.

We are indebted to J. J. Donaghy and J. B. Shand
of this laboratory for invaluable assistance and to
Dr. Philip Taylor for helpful discussions regarding
positron velocities in metals. Dr. A. MacIntosh has
kindly sent us a preprint of his recent measurements
in liquid and solid mercury and we are indebted to
Dr. N. E. Cusack for an advance copy of his review
of the properties of liquid metals.
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The incoherent scattering of electromagnetic waves from electron-plasma oscillations in a thermal plasma
is investigated. In particular, the effect of collisions on the shape of the isolated peak in the scattered in-
tensity at a frequency displaced from the incident frequency by the plasma frequency is discussed making use
of Nyquist's theorem and recent conductivity calculations.
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' 'N recent years considerable attention has been di-
~ - rected to the problem of the incoherent scattering of
electromagnetic waves due to electron density Quctua-
tions in a fully ionized plasma. ' ' It is well established
that most of the scattering arises from the low frequency
Quctuations whose origin is due to the coupling of the
electrons to the thermal motion of the ions. In addition

to this dominant effect, there is a very sharp resonance
in the vicinity of the electron plasma frequency. (See
Fig. 2, Ref. 1.) For the scattering produced by long
wavelength fluctuations the frequency width of this
contribution is very small. It is the theoretical problem
of the determination of the structure of latter isolated
peak, for an equilibrium plasma, to which we turn our
attention, since recently developed experimental tech-
niques suggest this peak is resolvable. '

Now the expression for the differential scattering
cross section is

o.d()der = (e'/mc'-)'L1 —sin'0 cos'(g —gp) )
XS(k—kp, a& —(up)dQd(u, (1)

%'e are indebted to Dr. E. A. Frieman for pointing this fact
out to us.
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where the spectrum of electron density Quctuations
5(k,«p) is given by

In (1) and (2), kp and. «pp are the wave vector and fre-
quency of the incident wave, r is the average power
scattered into the direction k at frequency «p per unit
solid angle per unit incident power per unit volume per
unit angular frequency, 0 is the angle between kp and k,
P and Pp are azimuthal angles locating k and the incident
electric vector. The scattering volume is denoted by V.

Now the density Quctuations may be related to the
dissipation' by Nyquist's theorem to obtain

ek2
5(k,«p) = Re{Z. «

—'(k, «p)),
me'oP

(3)

where 6 is the temperature in energy units and Z, & is
the impedance of the system to an external electric
field, Z, «(k «p)j(k, «p) =E,„«(k,«p).

All previous calculations of Shave been equivalent to
computing Z, ~ from the Vlasov description. That is, the
only dissipative mechanism considered is Landau
damping. While these calculations are valid for the low-

frequency regime, they are inadequate to describe the
structure of the isolated spike occurring in the vicinity
of the electron plasma frequency, ~«p

—
«pp~ —M~, when

~

k—kp~&&KD, where KD is the Debye wave number
KD ——(4slee'/e)'l'. As pointed by Salpeter' this structure
must be determined by the collisional contribution to
Z, & since the Landau damping is negligibly small by
comparison in this regime.

In order to describe the structure of this isolated
spike near the plasma frequency we rewrite (3) in the
form

pres«p' X'+R'
(4)

where Z,„« iX+R. Near «p„—d—efined by X(«p„)=0,
R(«p) is a small slowly varying function of «p. Hence, 5
has the Lorentzian shape
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where e(«p„) =R/
~
BX(«p,)/8«p

~

. Note that the integrated
power over the spike is independent of the absorption
mechanism. For the case of small collisional damping
we may write

«p '= «p 'L1+3k'/KD'+O(k'/KD') j. (12)

I(«p) is given in Refs. 7 and g and is well approximated
for a hydrogenic plasma, when or co„, by

I(~) = (-,'a-)" K Dill(km, x/2KD). (13)

Note that when k&0.1KD, RJ&&R& for most typical
plasmas and may be neglected.

Thus, the width is given by

&y KD kmax
e= (2sr)'" ln

24m' n 2KD
(14)

and the height is given by
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The peak although much broader and lower than that
given by Landau damping is still very sharp. The above
results apply for infinitely sharp spectral resolving
power and uniform average plasma density. Average
density nonuniformities and the 6nite resolving power
of instruments in both k and cv will add to the width of
the observed line and must be seriously taken into
account in any measurement of this effect.
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and in Res. 7 and 8 the impedance calculated relates the current
to the net average Geld in the plasma. These impedances are
Simply related by Z,x&=2;n&+471.&/~.

independent of the nature of the collisions. Recently, the
collisional impedance' ' for long-wavelength plasma
oscillations has been systematically derived for a fully
ionized plasma. If we make use of these results we have
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