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The problem of making an exact theory of the scattering of particles from composite targets is attacked
by introducing elementary particles to represent the composite systems. It is shown that if the only couplings
are those between the particle representing the compound and its constituents, soluble linear integral
equations, reducible to the Lippmann-Schwinger equation, can be written for the scattering of one of the
constituents of the composite system. As examples, an exactly soluble three-dimensional three-body problem
based on nucleon-deuteron scattering and an exactly soluble three-dimensional model of deuteron stripping
are presented. Each can be reduced to exact optical models. It is proven that these equations have solutions
even when the singular limit which corresponds to an exact resemblance between the elementary and
composite system is taken. The method for extending the equations to three-body problems with local
interactions and the relation of the equations presented here to high-energy diffraction properties of ampli-
tudes is discussed.

I. INTRODUCTION the nonrelativistic problem of two-body scattering
reactions in which one of the incoming particles is
compound. The recent development on which we shall
lean most heavily is the substitution of "elementary"
particles for composite systems. ' ' This substitution
gets us immediately over the nonadiabatic nature of the
composite system by introducing it, or its equivalent
elementary particle, into the theory from the beginning
for all strength of interaction. What we shall see is that
if no more interactions among particles are introduced
than those required to couple the elementary particle to
the other particles, soluble linear integral equations can
be derived for the scattering amplitudes. The solutions
of these equations represent exact three-dimensional
soluble models of scattering and reactions involving
production or break-up. In the limit in which the
elementary particle represents a bound state, they yield
an exact model of three-body scattering problems such
as stripping. These equations can be cast into the form
of Lippmann-Schwinger equations" or equivalent
Schrodinger equations and, hence, are an exact optical
model. We shall concentrate on deriving equations of
this type, which involve amplitudes o8 the energy shell
rather than the more fashionable equations involving on
the energy-shell amplitudes only" since the latter in-
volve unitarity and, hence, nonlinear conditions whereas
the former are linear. Of course, the amplitudes we
obtain will be unitary, as they are exact amplitudes. We
wish only to point out that the price of staying on the
energy shell is nonlinear relations.

The approach is to take some scattering or reaction
amplitude involving compound systems and to intro-
duce an elementary particle for each compound system.

ITH the exception of a few special cases, scatter-
ing experiments are usually performed with

compound systems. That is, at least one of the particles
involved in the scattering is a system capable of splitting
into other particles either via a production mechanism
or bound-state break-up. In spite of the vast body of
experimental information assembled on these scatterings
and reactions, the theory of them is rudimentarybecause
any analysis goes immediately and essentially beyond
the two-body problem. It is true that many ingenious
approximate methods have been developed for treating
the problem, for example the impulse approximation, '
the optical model, ' the distorted-wave Born approxi-
mation, ' the strip approximation, 4 Regge poles, ' and
many others; and it is true than many of these methods
work very well in some cases, but their range of validity
can only be determined empjrically at best and often
their connection with more fundamental theory is
unclear. The problem is that our inability to solve the
three-body problem makes the finding of soluble
examples difficult and the nonadiabatic nature of
composite systems makes perturbation theory useless. '
These two difhculties combine to make "exact"
numerical computation impossible; that is, no one
knows how to give a numerical program, the step by
step execution of which can be made to come arbitrarily
close to the exact amplitudes.

Some recent theoretical developments offer hope of
surmounting some of these problems and this paper is
a first foray in that direction. Ke shall concentrate on
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The minimum couplings between these particles and
the others in the system are then introduced to make
the reaction under study occur, but no extra interactions
or couplings are allowed. This corresponds to construct-
ing an elementary-particle theory which has the same
Born approximation as the composite theory. The
scattering integral equations are then derived for the
simplified theory. They are not solved in this paper, but
it is proven that they possess a solution even in the
bound-state limit. Since they are no more complicated
than the usual integral equations of ordinary potential
scattering, the technique for their solution is straight-
forward. At this stage, the theory is a soluble example of
scattering and reactions from compound systems with
only the minimum couplings essential to the process. To
go further than this requires the introduction into the
theory of the interactions and couplings not directly
responsible for the composite system but certainly
present in physical problems. Since these "residual
interactions" do not have bound states, and since all
the composite, nonadiabatic effects are accounted for
in our solution, it may be possible to treat these inter-
actions as perturbations on the model solution pre-
sented here and, hence, develop a consistent, systematic
approach to the three-body problem and more complex
problems in quantum mechanics. "We hope to make an
analysis of this possibility in a subsequent paper. In
this one we present only the method of obtaining
soluble, model three-body problems.

In Sec. II we present a model of nucleon-deuteron
scattering which has the same Born approximation as
ordinary nucleon-deuteron scattering. We show there
how treating the deuteron as elementary allows us to
write down a perturbation expansion for the amplitude
and then sum that expansion into an integral equation.
This equation is cast into an exact optical model for the
scattering. In Sec. III it is proved that, in the singular
bound-state limit, the equation derived in II has a solu-
tion. Those with faith may omit Sec. III. Section IV
treats a model of deuteron stripping by the methods
of Sec. II. Soluble equations are obtained for elastic
deuteron-nucleus scattering and for stripping. It should
be noted that all these models are full three-dimensional
models producing scattering in all partial waves. Section
V discusses the results and points to a number of
questions left open. In particular, it discusses further
the question of the eBect of the residual interactions
and of the connection of these results with questions of
analyticity of amplitudes and, in particular, of diGrac-
tion scattering at high energy. The derivation of some
Green's functions is presented in Appendix I and a
singular model for which the bound-state limit is
difficult to take is presented in Appendix II.

"The idea of treating separately the nonadiabatic features
and the rest in perturbation seems erst to have been stressed by
S. Tani, Phys. Rev. 117, 252 (1960). This is also stressed by
Keinberg, Ref. 9.

where we have taken units in which h= 2m (m is the n
particle mass) = 1.E is the total energy variable, it being
recalled that we are, in general, allowing amplitudes to
be off the energy shell. The vertex function f(q') is
related to the Fourier transform of the D bound-state
wave function @(q') by

&of(q') = (2q'+ )4(q'), (2)

where e is the D particle binding energy. f is normalized
so that f(q'= —e/2) =1, then —,'y02 is the residue of (1)
at the pole of the denominator on the energy shell. &0

corresponds to the invariant strength or reduced width
or coupling constant of the process D —+ 2e. The factor
of ~~ is kinematical.

The program is now to 6nd a theory simple enough to
be handled that has (1) as its first Born approximation.
If we treat D as elementary, that is introduce an
independent G.eld for it, then a candidate for this simple
model is one which contains only an interaction per-
mitting D ~~2m. A discussion of the method for making
this substitution and as much of its justification as is
known has been given elsewhere. "So far it has been

In'

FiG. 1. The Born
approximation to
N-D scattering. The
broken lines repre-
sent the n particles
and the full lines the
D's. The vector
labels indicated mo-
menta,

II. FORMULATION OF A SIMPLE EXAMPLE:
NUCLEON-DEUTERON SCATTERIN

As a simple example, we consider the scattering of a
spinless particle by a composite of two such particles.
One can think of this as a very simplified version of
nucleon-deuteron scattering with only one sort of
nucleon, assumed to be a spinless boson. Fermions
could also be treated, but they would require the
introduction of spin and the accompanying kinematical
complications. In accordance with the resemblance, we
call the particle e and the bound state D. Of course, if
the n-e interaction is an ordinary local potential in
which D is a bound state, we cannot reduce the equation
for m-D scattering to simple form. The goal is to find a
theory that can be handled exactly and the first
approximation to which agrees with the first approxima-
tion of the local potential theory. This approximation,
the first Born approximation for e-D scattering, is
represented graphically in Fig. 1. It carries with it an
amplitude

yo' j((n'+n/2)') j((n+n'/2)')

E—n' —n"—(n+ n')'
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proven that. this substitution can be made equivalent
to an ordinary potential only for the m-e scatteririg
channel. "However, the arguments given in VAA lead
us to hope that the elementary-particle theory and
bound-state theory are equivalent in all channels. We
shall proceed on that assumption. It is most convenient
to proceed in a second-quantized formalism. For the n
particles we introduce momentum space field operators
+„obeying the canonical boson commutation relations.
For the D "particle" we introduce a renormalized
momentum space field CD which obeys the commutation
relations
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where Z is the wave function renormalization of the D
particle. We assume its bare mass is always chosen so
that its renormalized mass gives the proper D binding
energy. Ke assume the fields are normalized in a unit
box, but will later pass to the continuous limit. As an
interaction Hamiltonian we take

//n —n' '~
II C.+- +.'+"'+C.+""+.+"J (4)

2 n, n ( ( 2 J

p is the renormalized coupling constant of the theory
and the -', comes in because we take the convention

1
ie,e')= —e.'im'),

v2

so that states are properly normalized. This interaction
gives (1) as a Born approximation for n Dscattering, -

except that y replaces 70. As outlined in VAA, the
theory defined by (4) has meaning for all p between 0
and po. In the singular limit p =70, the theory yields the
same predictions as a theory in which the D is a pure
bound state in a potential between m particles separable
in momentum space. ' That is a theory in which the e-m

potential gives the D bound state exactly but gives m-e

scattering in 5 states only. In that limit we have Z=O.
The point is not whether such a theory is a good approxi-
mation to actual nucleon-nucleon scattering, but rather
whether we can solve e-D scattering in this model. 0
one wishes to study a local e-e potential, it is necessary
to add to (4) the difference between this local potential
and the separable potential. Since this difference has
no bound state, it may be possible to develop a con-
sistent perturbation expansion for e-D scattering in

"This equivalence is proven in general in the Appendix of VAA.
It is also the content of the equivalence theorem of Weinberg,
Ref. 9.

"The fact that some three-body problems, particularly station-
ary state problems, are soluble with separable potentials has been
exploited by A. N. Mitra, Nucl. Phys. 32, 529 (1962); Phys. Rev,
127, 1342 (1962).

FIG. 2. The sum of graphs for n-D scattering, broken lines for
n's and full lines for D. The external lines are indicated only to
show what comes in and goes out, but are not included in the
definition of the amplitude.

powers of that difference using the solutions with (4)
alone as an unperturbed basis. We will discuss this
point further in Sec. V, but the first order of business,
either towards that end, or simply toward the goal of a
soluble model, is the solution of m-D scattering with
the interaction (4).

The dispersion methods used previously' can be used
here to derive integral equation for the m-D scattering
amplitude, but a direct derivation, via a diagrammatic
perturbation expansion is simpler. Such a derivation in
the bound-state limit is highly suspect, but the assump-
tion is that p in (4) can be made arbitrarily small, so
that an expansion is valid and then, when the series is
resummed to give an integral equation, y can be made
large. The first Born approximation for the amplitude
is represented graphically in Fig. (1). Further approxi-
mations can easily be written down recalling that all
that can happen in this theory is D ~ 2e, so that any
internal D line must first split into two e's. One of these
n's can go across and form a D with the third e, giving
a "rung" in a "ladder" graph, or the e can recombine
with the original e, giving a "bubble" in the D propa-
gator. With this in mind, we may write for the n-D
amplitude the sum of graphs shown in Fig. 2. The top
line of the figure represents the sum of all ladder-type
interactions, under each of which we indicate the sum
of all possible bubble-type insertions on internal D
lines. These bubbles can be summed into a full D
propagator represented by a heavy line as in Fig. 3.
Putting this into Fig. 2 we get just a standard sum of
ladders, with each internal D propagator represented by
a heavy line. This can be summed to a standard integral
equation, which is a kind of exact Bethe-Salpeter"
equation for e-D scattering, as in Fig. 4. This figure

+ i j + +

FiG. 3. The sum of "bubbles" for the full D propagator.

"E.E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 {1951).
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FIG. 4. The integral equation for the n-D amplitude,
represented by the cross-hatched "black box."

(E—~"2—D„-)-~S(E—~"2—D„.,) =G,S, (6)

where 5 is the known effect of the bubbles and is
normalized so that S(0)= 1. Its precise form is derived
in Appendix I. The energy E is understood to have a
small imaginary part of the appropriate sign. Translated
to these terms, the diagrammatic equation of Fig. 4
becomes

(n'I &(E) ln) = (n'I B(E)ln)+
(2m)'

d'~" (n'I B(E)In")S(E—~'"—D--) (n"
I ~(E) In)

E—e'"—D "
(7)

which is a linear integral equation for ] very similar to
the Lippmann-Schwinger equation. " In fact, we may
transform it to that equation. Let us write the equation
formally as

I =B+BGpSt.

Since Go and 5 commute, we may write

~
—B+BS1/2G Sl/2~

represents a simple linear integral equation for the
amplitude. It is linear since we are allowing the ampli-
tude to go o6 the energy shell.

The form of the equation is made more substantial if
we call the scattering amplitude in the center of mass
(n'~t(E) ~n) and the Born term (1), (n'~B(E) ~n). The
propagator we need is for an e particle of momentum n"
and energy m'" and for a D, with its bubbles, of momen-
tum —n" and energy D„.This propagator we write as

Equation (12), or the corresponding Schrodinger
equation into which it can be cast, may be thought of as
the exact optical model for e-D scattering. It is an
optical model since e-D collisions can lead to D break-
up, or to production in the language of an elementary D,
and this is exactly taken account in the equation. 8 is
purely real, but 5 becomes complex at the production
threshold. This is to be expected since the production
possibility comes from the virtual D —+2m process,
which is summed in 5. The potential 8' is nonlocal and
energy-dependent and, hence, the solution of the
Lippmann-Schwinger equation, or of the corresponding
Schrodinger equation is not simple, but it can be found
by standard methods, particularly as 8' is spherically
symmetric, so that a partial-wave decomposition is
permitted. That is it can be found provided it exists. It
is easy to see that it does for the elementary particle
case, but since S(~)=1/Z, closer attention must be
paid to the convergence of integrals, etc. , in the bound-
state limit for which Z=O. The next section is devoted
to that problem.

III. THE PROPAGATORS AND SOLUTIONS
OF THE EQUATION

We wish to discuss as much as we can of the several
properties of the solutions of (7) and, in particular, the
question of the existence of these solutions in the bound-
state limit. This latter question is most easily studied
for the standard equation (7), symmetrization of the
kernel, as in Eq. (12), or turning the problem to a
differential Schrodinger equation, neither affects nor
sheds much new light on this question. From the
standard theory of integral equations, we know that we
may apply the Fredholm method to (7) and, hence,
obtain a solution, so long as the kernel of the equation
is square integrable. "The kernel of (7) is

(n'
~
E(E)

~

n") = (n'
~

B(E) (
n")S(E e'" D,")/— —

(E r/," D,"), (13)— —

with (n'~ B(E)
~

n") given in (1) but yp' replaced by &'

and

If we now define

and

we have

5i/~~5I/2

g ~ —51/2+51/2

/ =B+BGp/

(10)

(12)

d'nf'(e')7'x ——1

S(x)= 1—— (14)
2 (2x)' (c+2m')'(x —p —2e')

as we show in Appendix I. In discussing the bounded-
ness and square integrability of the kernel we need not
be concerned with the pole of the propagator since we
can give E a finite imaginary part and push the pole o6
the integration path. Since the kernel then is bounded
for all finite argument, the question of square integra-

which is just the Lippmann-Schwinger equation with
B' playing the role of the potential. Since S(0)= 1, /,

'= t
on the energy shell.

'6 See R. Couran, t and D. Hilbert, Methods of Mathematical
Physics (Interscience Publishing Company, New York, 1953),
1st English ed. , pp. 112—153.
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bility comes down to the question of the behavior of the
kernel for large argument. This would correspond, in
the Schrodinger equation formulation, to a study of the
singularity of the potential for small distances in con-
figuration space. Since S( oo) = 1/Z, the behavior of the
kernel for large argument will be very diferent for an
"elementary" D(Z&0) and in the bound-state limit
(Z= 0). So long as ZWO and f is bounded at infinity, it
is easy to see that the kernel is square integrable. Hence,
the question is only whether the equation has a solution
in the singular limit.

To study this we shall need to know more about the
behavior of f for large argument. As we have seen, if
we wish D to represent an S-wave bound state with
wave function in momentum space Q(q'), the appro-
priate choice for f is given by Eq. (2). The behavior of

f for large argument will depend on P(r), the bound-
state wave function in configuration space, for small r.
If the bound state is a state in a potential V(r); and if
rV(r) is analytic near r=0, then it follows from the
general theory of differential equations that g(r) r'
s=O, —1 near r=O."s= —1 is ruled out as being too
singular. "Thus, g(r) tends to a constant as r —+ 0, and,
of course, decays exponentially for large r. For the
Fourier transform we have

where c, rr', and P' are constants. For our purposes (16)
is sufficiently strong. It implies for f that

f(q') =C/q'+&, rl&~0, q large.

In order to study the kernel at large argument, we
must discover the rate at which Z ~ 0. In the bound-
state limit we can write

+p d'ri f'(e')
s-t(x) =-

2(27r)' (e+2rP) (s—e 2B'—)
(18)

For large x this will go like C/g if f decreases sufficiently
rapidly so that

d'ri f'(ri')/(e+2tP)

and the fact that p(q') is a function of q' only we can
get that g(q') is of order 1/q' for large q'. An example of
this is the Hulthen wave function" which has Fourier
transform

0(q') = /(q'+ ') (q'+0'),

4m.

Q(q') =— rdr Q(r) sinqr
p

4()
dr p(r) cosqr+ rdr cosqr, (15)

0(q')=C/q"", ~&0 (16)

for large q, C a constant. For a Yukawa potential, this
result can be proved more directly using the representa-
tion for the bound-state wave function in a Yukawa
potential given by Blankenbecler and Cook."

In general, g(q'-) will have a branch point at infinity
and (16) is the strongest result we can obtain. If in some
special case p(q') is analytic at infinity, then from (16)

"See E. T. Whittaker and G. N. Watson, Modern Analysis
(The Macmillan Company, New York, 1948), American ed. ,
pp. 194—200.

' See P. A. M. Dirac, The Principles of QNantgm Mechanics
(Oxford University Press, Oxford, England, 1958), 4th ed. ,
pp. 155—156."See Ref. 17, pp. 172-174.

~ R. Blankenbecler and L. F. Cook, Phys. Rev. 119, 1745
(1960).

where we have integrated once by parts and used
rg(r) ~o"=0. If we assume J~"p(r)dr exists and that
g(r) and dg/dr have bounded variation, it follows from
the Riemann-Lebesgue lemma" that the integrals in
the second line of (15) are at least of order 1/q for large
q. Hence, we have that

exists. The bound given in (17) is sufficient to make (19)
exist even with ted=0. Hence, for large argument 5(x)
tends to Cx. The kernel, for large n', n" then tends to
C(n'

~

8
~

n"), which because of (17) is square integrable
even with ri=O. This establishes that Eq. (7) has
meaningful solutions even in the bound-state limit, and
that they can be discovered, for example, by use of
Fredholm methods. It is clear that if the kernel of (7) is
sufficiently regular to admit the usual solutions, the
potential in the corresponding Schrodinger equation
derivable from (12) will also be sufficiently regular All.
of this depends on the large argument behavior of the
source function. A singular example where we put
f(x) = 1 all x, is discussed in Appendix II.

IV. STRIPPING EXAMPLE

In the previous sections we discussed a simple
example of a three-body problem and a method for its
analysis. In this section we take our example from a
more complex situation —deuteron stripping. Once
again, we shall use the real names of the particles, even
though they appear in the theory as mere shadows of
their true selves.

We consider a typical stripping reaction on a complex
nucleus A, d+A -+ p+B.The Born approximation may
be represented graphically as in Fig. 5. As before, our
method is to treat all particles as elementary and intro-

"L. Hulthen and M. Sugawara, in Encyclopedia of Physics,
edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 34.
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FIG. 5. The Born
approximation for
a (d,p)a.

HE(zz )f(((n 0)/2]')

E P' zzz —«— — (20)

where we have put 2m„=2m„=k= 1, and where e@ is
the energy of nucleus A. It should be noted that we

duce only those interactions among fields necessary for
Fig. 5 to occur. These clearly are a coupling which
allows 8+~ zz+A and one which allows d+~ n+p Wit. h
the former we associate a renormalized coupling con-
stant I' and source function F(zzz) and with the latter a
renormalized coupling constant y and source function
f(zz'). For kinematical clarity we assume 8 and A to be
fixed at the origin; it is simple to relax that requirement.
In terms of these quantities, the amplitude associated
with Fig. 5 is

assume no p-A coupling. Introduction of such a coupling
seems to complicate the problem to a point where it is
no longer possible to write a Schrodinger or Lippmann-
Schwinger-like equation for the amplitudes. It should,
however, be possible to introduce the p-A interaction
in some perturbation sense in a more refined theory so
long as there is no p-A bound state. As before, we remind
the reader that the point is not to make a good theory
of deuteron stripping, or at least not yet; but rather to
make an exact theory which has the essential Born
approximation of stripping.

We may now write down the equations for the strip-
ping amplitude. The arguments proceed just as Sec. II,
and are again most easily presented graphically. The
analogy of Fig. 4 in this case is Fig. 6(a). We see that
it is not an integral equation for stripping, but rather
relates the stripping amplitude to the elastic d-A

scattering amplitude. Studying this elastic amplitude
in the same way leads to Fig. 6(b). This relates elastic
d-A scattering back to stripping. We may eliminate one
for the other and get Fig. 7(a) for the stripping ampli-
tude or Fig. 7 (b) for elastic d-A scattering. Both can be
combined in a "matrix equation" as shown in Fig. 7 (c).

As a specific example we take the elastic scattering
amplitude. Given this amplitude, the stripping ampli-
tude may be computed as an integral over it by use of
the equation implicit in Fig. 6(a). Figure 7(b) may be
writ. ten

1
(k

i
T (E) i

k') = (k
i
I(E) i

k')+
(2~)'

d'~"(k II(E) Ik")~.(E—«—D' )(k"
I T(E) Ik')

(21)

where k and h' are the momenta of the in and outgoing deuterons, D), is the energy of a deuteron of momentum k,
&& the energy of A, and E the total energy variable. S& is the sum of bubbles for the deuteron and is given by

7" d'zz f'(zz')
Sd(x) = 1—

(2zr)' (o„+2zz')'(~—2zzz —o„)
(22)

where o& is the deuteron binding energy. The expression (22) may be derived by the methods in Appendix I. The
inhomogeneous term (k~ I(E&~

~

k') is given by

E p

d'p f((p —k/2)')f((1z —k'/2)')E((k —v)')F((k' —p)') ~B(E—p' —oB)
(k

i

I(E) i
k') =

(2zr)p (E—pz —(k—p)z —«)(E—pz —(k' —p)z —o )
(23)

where e~ is the energy of a 8 particle and 5& is the sum of bubbles for a 8 particle. The appropriate form in this
case is

d'zzI'(n')
SB(X)=

(2zl) (pB «zz ) (x zz +oB «)—
(24)

We may write (21) formally as

T=I+IGp5d, T,

Schwi11ger equation by de fii1 jng T' =Sgv TSrj ai1d

(25)
Z'= 5&'u'JSd'f' giving

which can again be cast into the form of a Lippmann- T' = I'+I'Go T'. (26)
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In this example now I' plays the role of the exact
optical potential for the theory. It is more complicated
than the corresponding potential in the e-D example.
In particular, the richness of channels is reQected by the
fact that I' can go complex in many more ways; by the
possibility of stripping reRected in the propagator in I,
by the possibility of 8 —+ ts+A reflected in Sii in I, and
by the possibility of d —+ fs+ p reflected in Sz in I . The
appropriate thresholds may be read off of (23), (24),
and (22). Of course, the potential defined by (23) is
nonlocal and energy-dependent, but it is spherically
symmetric. The proof that solutions of (21) exist even
in the bound-state limit follows as in Sec. III and again
depends on the large argument behavior of the source
functions f and F.

8 A

A 8

(o)

(b)

8 A

A 8 A

V. DISCUSSION

Ke have seen that by treating composite systems as
elementary, we are able to derive linear integral equa, -
tions for the scattering of particles off these systems,
which equations have solutions, even in the singular
limit in which the e1ementary particle represents the
composite system exactly. These equations can be cast
into the form of a two-body Schrodinger equation in
which the three-body effects are exactly taken into
account in a nonlocal, but spherically symmetric,
optical potential. In this model, in which the only
interactions are those which are needed to form the
composite systems, the equations allow an exact
solution of a three-dimensional three-body problem
and as such are a useful model of a number of physical
situations.

The success of the method Des essentially in the fact
that by introducing an elementary particle for the
composite system, we are explicitly taking account of
the nonadiabatic eRects of the interaction. These non-
adiabatic eRects are seen most clearly in an attempt to

d p

(b)

FIG. 6. (a) The relation between the stripping amplitude,
represented by the round "black box," and elastic d-A scattering,
the square "black box." (b) The relation of d-A scattering back
to stripping. The thick lines represent the full d and B propagators
including bubbles.

p d

/
A

d p

8 A A

A. B

(c)

Fio. 7. The integral equation for (a) stripping, and (b) elastic scat-
tering, (c) a combined "matrix" equation for the amplitudes.

apply ordinary perturbation theory to the problem. The
existence of an expansion in powers of the potential for
the scattering amplitude means that the amplitude
changes smoothly (is analytic) as the potential is
"turned off."This clearly is not the case if one of the
incident particles is a bound state in that potential and
hence the Born series must fail. This nonadiabatic
behavior of the amplitude is avoided by treating the
composite system separately and exactly. One me-
chanism for doing this is to introduce an elementary
particle to substitute for it. The remaining interactions
then are the difference between the full interaction and
the separable potential responsible for the composite
system. This difference has no point spectrum and,
hence, may perhaps be legitimately treated adiabatic-
ally, that is as a perturbation on a zero-order nuclear
state which takes the composite system into account
exactly. We only indicate how to solve the later part of
that program in this paper, namely the 6nding of the
exact solution for zero-residual interaction. This solu-
tion may be viewed as a model, as an approximation to
the actual world, or as a 6rst and necessary step to
including the residual interaction. We hope to investi-
gate its inclusion in a later paper. The idea of splitting
the interaction into a bound-state part and residual part
was presented previously by Tani using projection
operators. " It is clear that the difference between the
two-body interaction and the separable potential which
has the same bound state is a projection operator off
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the bound-state manifold. Tani argues, but does not
prove, that this can be treated as a perturbation so long
as the projection on the bound state is treated exactly
but does not show how to construct the operators. The
introduction of an elementary partic1e gives an explicit
construction of the projection operators. It is not clear
what leeway one has in constructing them, nor is it
proven that they in fact represent the bound state in all
channels, although this seems intuitively clear.

In our derivations, discussion, and nomenclature we
have concentrated on the problem of the scattering
from composite systems which we represent by ele-
mentary particles. It is clear that the method works just
as well, if not better, if we are interested in the scatter-
ing from a "real" elementary particle coupled to the
other particles as in (4). The method presented here will

allow that problem also to be reduced to an exact optical
model taking production, etc. into account. In fact, it
makes observable predictions about the difference
between the elementary particle case (ZWO) and the
composite particle Z =0. Because of the fact that
S( ~)= 1/Z, the high-energy behavior of the amplitudes
satisfying the equations should be quite different if
Z/0 or if Z=O. For example, in the large E limit in
the n-D case, the potential 8' defined by (11) tends to
8/Z which is the unrenormalized Born approximation.
Hence, in the high-energy limit when Z/0, the potential
tends to zero like 1/E, and probably the first Born
approximation, that is the inhomogeneous term in (7)
dominates. This term does not contain the factor of 1/Z
since 5= 1 on the energy shell. If this is true, the scatter-
ing from an elementary D particle will tend to the
renormalized Born approximation at high energy, even
though the potential tends to the unrenormalized Born
approximation, but both tend to zero. In the Z=O
limit however, the situation is quite different. The first
Born approximation on the energy shell still decreases
like 1/E, but the potential does not vanish, since S E
for large E when Z= 0. It is not fair to assume, however,
that the potential now approaches

limL'S(E —n' —D„)ji"(n~B(E)~n')LS(E —n"—D )]'~'

=Cf((n —sn')')f((n' —sn)'), (27)

where C is a constant, since m" and e' are not necessarily
small compared with E in the kernel. The precise high-
energy 1imit of the amplitude remains to be elucidated,
but it is dear that this limit will be strikingly different
if Z= 0 from the Z/0 case. In the Z&0 case, the ampli-
tude almost certainly goes to zero at high energies, just
as well-behaved potential scattering amplitudes are
expected to do. If Z=O, however, things are quite
different and it is tempting to suppose that some sort of
diffraction behavior will set in. The fact that the poten-
tial in momentum space does not go to zero at high
energy opens the possibility that there may be no

shrinking of the diffraction peak."The singular example
discussed in Appendix II is an even better candidate for
this behavior. Unfortunately, the nonlocal nature of the
potential makes straightforward application of the
eikonal method dificult, but we hope, in a subsequent
paper, to study the high-energy behavior formally or
numerically or both. It has been suggested from many
points of view that the "fundamental" particles all
have Z=0, or are in some sense purely composite. "This
is, in fact, the simplest interpretation one can give to the
idea of interaction of maximal strength. '4 It is tempting
to hope that light can be cast on the high-energy
behavior of the scattering amplitudes of these particles
from the analysis presented here.

Another possible extension of these methods lies in
the study of the scattering from unstable particles. For
example, suppose one wishes to study m-p scattering
and uses as a model the theory in which the only
coupling is one allowing p ~~ 2m. This is essentially the
e-D theory of Sec. II. One can study the equations
derived there and analytically continue the mass of
the p above the 2+ threshold so as to make the p un-
stable. Finally, one could study the differences in the
m.-p system for an elementary, unstable p and a corn-

posite, unstable p.
It is not dificult to see that many more questions are

opened by the equations presented here. For example,
one can ask about the analyticity of the amplitudes
derived here. Do they, for example, satisfy a Mandel-
stam representation?" What is the status of subtrac-
tionsP One can ask about iterative expansions. The Born
series presumably does not converge, ' although a full
proof of that is still absent, but perhaps the Neumann
series for (7) will converge now that the nonadiabatic
effects are summed in the propagators, or at least it
might converge for large enough energies. For low

energies it probably mill be necessary to insert three-
particle bound states as well if they exist. The question
of their existence can of course be studied by the meth-
ods presented here. There is also the question of the con-
vergence of the expansion in the residual interactions
already alluded to. If that expansion converges, we will

have a systematic approximation scheme for calculation
of the three-body problem. Since we have an exact
multichannel model, we can also analyze these analyti-
city questions in the multichannel framework, in
particular, with respect to multichannel generalizations
of I-evinson's theorem and questions relevant to the
usefulness of eigenamplitudes, etc. Since we have here .

an exact model of multiparticle events, we also have the
chance to check and comment on approximation

~ Y. Nambu and M. Sugawara, Phys. Rev. Letters 10, 304
1963).

"This was apparently Grst suggested privately by h. . Feynman
to G. F. Chew. See Chew and Frautschi, Ref. 5.

"G.F. Chew and S. C. Frautschi, Phys. Rev. 125, 1478 (1961).
See also note in proof of VAA."S.Mandelstain. Phys. Rev. 112, 1344 (1958).
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schemes. In direct interactions such as stripping, for
example, we may be able to explain the amazing success
of the distorted-wave Born approximation' and to
discover the theoretical limits of its applicability.
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APPENDIX I. CALCULATION OF PROPAGATORS

We wish to derive (14) for the sum of bubbles. We
shall do so in a straightforward, if inelegant, manner by
summing the perturbation expansion for the propaga-
tion of a D and an e represented graphically in Fig. 8.
The unrenormalized propagator for this sum is

FIG. 8. The sum of graphs for the propagation of an e of momen-
tum n and a D of momentum —n including bubbles.

where we have de oned the re normalized coupling
constant by y2=p'")2Z. From the condition that the
residue be 4, we get

p("&= +
E—D„"'—e' E—D„"'—s' E—D„"'—iz'

f'(n")d'n'
Z=1

2(2n-)' (e+2n")'
(A6)

I
E—D„"—e' E—D &o) —g'

This condition and the condition 0&Z&1 place the
allowable limits on y. Substituting (A6) into (AS) and
noting that S(x) is defined by

X' +, (Ai)
D„(o) P'"'(x) = (1/x)S(x), (A7)

where we assume that E has an appropriate imaginary
part and where D„&" is the bare energy of a D of
momentum n. In terms of the bare "binding energy"
6&"' it is given by D„"'=-,'e' —~(".The integral I is

~(u)2
I=

d'n' f'(n")
(A2)

2(2m)' E—n' —(n' ——',n)' —(n'+ —,'n)'

P' '= (E—D„"&—n' —I)—', (A3)

2the condition that P'"& have a pole at E=n+D„=n
+-'n' e that —is at the physical D with renormalized2+
binding energy e, gives for &(0'

d'n' f'(n")

2(2')' e+2n"

where y& ) is the unrenormalized coupling constant.
Summing (A1) we have

we get (14). It also follows from this that S(~)= 1/Z.

APPENDIX II. SINGULAR EXAMPLE

We have seen in Sec. III that the existence of solu-
tions of (7) depends on the behavior of the source
f t'on for large argument, In this Appendix, we wishunc i
to explore the observation that even if we put f= , t e-
integrals defining the D particle propagator (14) do not
diverge. This is different from the case in relativistic
theories or in theories with relativistic kinematics such

th Lee modeP' in which the local limit, f= 1, is
hdivergent. The difference arises from the fact that t e

energy goes like the momentum squared nonrelativistic-
ally but is linear in the momentum for large momentum
relativistically.

The integral for S in (14) is easily done for f= 1, and-
we get

( 2e 2e x
Ls(*)j—'=1—r~ 1——+—1——,(As)

x x

The renormalized propagator must have unct resiuue
at that pole. From the commutation relation (3) we see
that the renormalized propagator P&"' is related to P&"'

by P&'&=P&"&/Z. Combining (A3) and (A4), we may
write

'zP"= (E—-,'nz+e)i Z——
2(2m)'

d'n' f'(n")

(e+2n")(E—D —nz —e—2n,")J

S(x)= —,'L1+(1—x/g)'&') (A9)

and the kernel (13) goes to

1+L1—(E—n"—D„)/ej'"
(A10)

LE—n' —n"—(n+n')'](E —n"—D„)

"T.D. Lee~ Ph&s Rev 95) 1329 (1954).

~here we have defined r=p'/32~(2e)'" in terms of
which the limit Z —+ 0 is F ~ 1. In this limit S becomes
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which is easily seen not to be square integrable. Of
course, if we had not taken the Z=O limit it would be.
Thus, when Z/0, a solution by Fredholm method is
possible, whereas when Z=O, it is not. Just what the
status of the integral equation and its solution is in that
limit is unclear. It would seem "physically" that a
scattering amplitude should exist in the bound-state
limit, but it may be that the only way to solve (7) with
this kernel is to solve the equation with Z/0 and then
take the limit Z —+ 0 in the solution. This point may
not be relevant to the ordinary nonrelativistic applica-
tions of the theory because of the results of Sec. III,
but it may be relevant to more singular applications in
relativistic Geld theory.

Another way of stating the problem of the singularity
is in terms of the optical potential defined in (11).When
Z&0 the potential is perfectly well-behaved, but in the
limit Z~0 with the form (A9) for S, the potential
becomes singular. That is, it is possible to find a class

of normalizable wave functions for which the expecta-
tion of the Hamiltonian becomes negatively infinite.
This arises from the divergence of the momentum space
integrals over the potential and corresponds to a
potential that is too singular at short distances. This is
the case so long as the energy variable which occurs in
the potential is finite. It is seen from (A9) and (11),
however, that for very large values of this variable, the
potential goes like E ' '. Since the potential depends
on E, solutions of the problem must be self-consistent.
The E in the potential must be the same as the "eigen-
value" of the Hamiltonian. A negatively unbounded E
does not satisfy this criterion and, hence, may be ex-
cluded, but just how is unclear.
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