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the present theory would be required to overcome this
shortcoming.

V. CONCLUSION

Low-energy photoproduction of x+ and x mesons
seems internally consistent and in agreement with
theoretical predictions of dispersion relations, partic-
ularly if the analysis is made for constant nucleon
momentum transfer, equal to that occurring at thresh-
old. The introduction of a bi-pion interaction and a
correction to the isoscalar amplitudes for the I=—,

' phase
shifts gives A/e=+0. 50+0.25. For large angles, a
better knowledge of the isovector amplitudes seems
neccessary before drawing detailed conclusions. Never-
theless, on the basis of the present interpretation, the

constant, A/e, is certainly not negative and not greater
than +e.
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An exact non-Markofkan equation is derived for the evolution of an infinite homogeneous system. This
equation —which may be viewed as a time-dependent analog of the equilibrium virial expansion —may be
readily applied when the forces between particles include infinite repulsions. The derivation of this equation
from Liouville's equation is analogous to Mayer's derivation of the virial expansion from the partition
function. In this way the formal development of nonequilibrium statistical mechanics is placed on a similar
footing to that of equilibrium statistical mechanics, and a many-body problem is reduced to understanding
the dynamics of isolated groups of particles. Fourier expansions and expansions in powers of the interaction
potential are avoided by dealing with s-body Green functions (propagators) which are always convergent
functions of the interaction potential. These functions correspond to multiplet collisions in ordinary con-
figuration space between s isolated particles and are time-dependent analogs of the irreducible clusters well
known in equilibrium statistical mechanics. The kernel (memory) of the equation of evolution consists of a
linear sum of the time-dependent irreducible clusters. The non-Markoffian behavior of the equation of evo-
lution is, thus, directly given by the time dependence of these clusters, and is explicitly related to incom-
pleted collisions. The equation of evolution is solved in the asymptotic limit of long times. In this limit it
is found (because the kernel rapidly vanishes) that the equation reduces to a Markoffian master equation
involving a scattering operator for both completed and incompleted collisions in configuration space.

I. INTRODUCTION
'

q VER since Van Hove' derived an exact non-
~ Markof5an equation for the irreversible evolution

of a many-body system there has been an increased
activity in the field of none quilibrium statistical
mechanics. This activity was inspired by Van Hove's
demonstration that, with sufhcient determination, it is
possible to obtain exact (if formal) solutions of dificult
statistical mechanical problems.

More recently, Prigogine and co-workers' have
obtained exact equations for all the Fourier components

' L. Van Hove, Physics 23, 441 (195/).
~I. Prigogine and P. Balescu, Physica 27, 629 (1961). This

paper refers to earlier related work.

of the distribution function and for a wide class of initial
states.

The methods used by Van Hove and Prigogine are
necessarily characterized by their excessive complexity
and their use of topological notions whose physical con-
tent is somewhat obscure. Their results are corre-
spondingly complicated and dificult to apply —except
in certain limiting cases (weak interactions, low density).

Another characteristic of these equations is that they
are not directly applicable to interaction potentials with
infinite repulsions (hard cores). This is because the
kernels of these equations are expressed as expansions
in the interaction potential. Hence, in order to rigorously

apply these equations to hard-core interactions one
must first sum higher Born approximations (sum
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ladder diagrams). To perform these summations to all
orders in the density is no easy task and would only
serve to further complicate matters.

An important question which previous investigations
have not fully answered concerns th, e details of the
evolution of a large system for long times. For example,
it is not rigorously proven, to all orders, that the
equations of evolution eventually reduce to MarkoKan
equations as the time becomes asymptotically large.
Prigogine presents a sufhcient condition for this to
happen —namely, that the Laplace transform of the
kernel (memory) of the equation of evolution be
regular (throughout the complex transform plane)
except for simple poles not at the origin. This condition,
however, is certainly not satisfied in general. To
determine the long time behavior of the equations of
evolution —including the characteristic times after
which they become MarkoQian and the precise manner
in which this is inQuenced by the range of the potential-
it is necessary to know the explicit behavior of the
kernel, or its transform, in considerable detail.

The purpose of the article, then, is (1) to obtain a
simplified derivation of an exact equation for the
evolution of a large classical homogeneous system in
such a form that it may be readily applied when the
density is not necessarily small and when the forces
between particles include infinite repulsions; and (2)
to study, in detail, the behavior of this equation for
long times.

The method of derivation that we shall follow is in
the spirit of Prigogine and Van Hove in that we seek
the solution of Liouville's equation in the form of an
initial value problem. The details of this solution,
however, are diRerent and simpler. For example, we
do not deal with expansions in powers of the interaction
potential —which correspond to "virtual collisions" in
Fourier transform space. Such expansions are avoided
by dealing with Green functions (propagators) which
correspond directly to collisions in ordinary configura-
tion space, and which are always convergent functions
of the interaction potential.

Our derivation of a generalized master equation from
Liouville s equation is, in many respects, similar to
Mayer's derivation of the virial expansion from the
partition function. We shall take advantage of the
analogies which exist between the equilibrium and
nonequilibrium problems in order to simplify the
derivation and its physical interpretation, and we shall
deal with mathematical objects which are clear analogs
of those already well known in equilibrium theory. '

In Sec. II A we write the "binary collision expansion"
of the formal Green function (exponential operator,

s M. S. Green, Physica 24, 393 (1958). LM. S. Green and R. A.
Piccerelli have since made extensive use of the analogies between
equilibrium and nonequilibrium theory to derive a generalized
Soltzmann equation which is valid to all orders in the density.
(This work was reported at the Conference on Statistical
Mechanics at Brown University, 1962).g

propagator) solution of Liouville's equation. This
expansion is entirely analogous to the Mayer f;;
expansion of the partition function. Indeed, the
"binary collision" operators are a time-dependent
analog of the Mayer f;,'s and shall be henceforth
referred to as "time-dependent f; s "I.n Sec. II II we
define clusters of these time-dependent f;,'s which are
analogous to Mayer clusters, and in Sec. II C we de6ne
"irreducible clusters" of time-dependent f;,'s which are
time-dependent analogs of Mayer's irreducible clusters
(Husimi functions), and which correspond to multiplet
collisions in conhguration space. In Secs. IID and
IIE the binary collision expansion is regrouped in
terms of these time-dependent irreducible clusters, and
the result is integrated over all initial configuration
space to yield an exact equation (non-MarkoKan
master equation) for the monotonic evolution of
momentum functions —in the limit of an infinite system.
This equation, whose kernel is a sum of time-dependent
irreducible cluster integrals, is a time-dependent analog
of the equilibrium virial expansion.

In Sec. III the equation of evolution is solved for
asymptotically long times. In this limit it is found
(because the memory "dies off" rapidly) that the
equation reduces to a Markman master equation
involving a scattering operator for "completed" and
"incompleted" collisions in configuration space. The
contributions to this scattering operator which are due
to binary and ternary collisions, and which are of 6rst
and second order in the density are discussed further.

IL EXACT EQUATION FOR THE EVOLUTION OF ii

A. Binary Collision Exyansion

We wish to study the evolution in time of any
function of the momenta of the particles of a classical
system of jest-pair interacting particles. If {P(t)}and
{R(t)} denote the jV-vector momenta and N-vector
positions of the particles at time t then the evolution of
any function Fsr(t) of the form

F~(t) =Fiv({R(t)},{P(t)})

is determined by'

dFa (t)/dt=sL~Fst (t),
4 Equation (1) is simply the equation of motion for a system

with a time-independent Hamiltonian. It is not quite the same as
Liouville's equation, given by

BF~(t)/st =rlF~—(t)
Strictly speaking, then, F~(t) is a function of the phase

(R(t)},(P(t)}—not a probability density. The important point
to be born in mind, however, is that the details and results of
this work are valid for Liouville's equation as well as for (1)
so that for all intents and purposes F~(t) may be regarded as a
probability density as well as a hase function. The reason we
have chosen to deal with Eq. 1) instead of with Liouville's
equation is that the propagators associated with Eq. (1) project
phase points forward in time and are less confusing than the
propagators associated with Liouville's equation. The latter
propagators project phase points backward in time.
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where the Liouville operator I.N is dered by

I.v = i——P m-'Ps 8/BRs —i P Fg,
1 ~&k~&s~& N

[8/DPI, 8—/BP, 7
=&~'+ Q I-s. .

1~&k~&s~&N

Here, Rs and Ps are the initial vector position
and momentum of particle k, Fs, =F (Rs—R,)
= —LB/8(Rs —R,)7V(Rs—R,) is the initial force be-
tween particles k and s, and V(Rs —R,) is the inter-
action potential between particles k and s. Ke note
that V(Rs —R,) need not be centrally symmetric, nor
have any symmetry whatsoever in all that follows.

Equation (1) has the formal solution

F~(t) = s'"~F~(0)—=G~(t)F~(0),

where G~(t) is the 1V-particle propagator (Green's
function) which has the property of displacing a phase
point along its path in phase space from its position
at time zero to its position at time t.

Ke shall obtain an exact equation for the evolution
of the momentum function g(t) defined (providing it
converges) by

interactions and, hence, move freely. The propagator
G„(t) thus involves the solution of an e-body problem.
LThe momentum of each of the (X—I) free particles
is, of course, constant. )

The binary collision expansion involves two special
cases of G (t) given by

G (t)
—eitLsTs

G . . (t)=e~&(mr'+r~r)
(4b)

Ct„G., (t,)il.,G.,(ts—t,) "

The "free-particle" propagator Gs(t) is the (trivial)
solution of Liouville's equation for a system of F
noninteracting particles (free particles). The binary
collision propagator Gt;, l (t) is the solution of Liouville s

equation for a system of S particles in which there is an
interaction between the two particlesi and j, while the
remaining (E—2) particles are noninteracting and
move freely. The binary collision propagator G;;(t)
merely involves the solution of a two-body problem.

In terms of these propagators the binary collision
expansion of e"~& is given exactly (for any pair inter-
a,ction) by'

N

Gg(t) =e"~&=Gs(t)+ Q p Ctr Cts
n I (al o g)

y(t) =V~ C—{R)F~(t)= V ~ C{R}s"~s'F~(0)

G„(t)=exp)it(l. ~s+ p I.g„)7.
1~&k~&s&~n

(4a)

The propagator G„(t) is the formal solution of Liouville's
equation for a system of E particles in which the subset
of n particles 1, 2, ~, n are interacting with each other
whereas the remaining (S—I) particles have no

' A. J.F. Siegert and Ei Teramoto, Phys. Rev. 110, 1232 (1958);
T. D. Lee and C. N. Yang, ibid. 113, 1165 (1959};J. Keinstock,
ibid 126, 341 (1962).. )The analogy between the time-dependent
f;; and the Mayer f,;, as well as the analogy between the binary
collision expansion and the Mayer f~; expansion, is discussed here.
%'e shall not make use of these results however, since they are
only exact for the special case ot rigid sphere interactions. j

=y({P),t) =y({P(t)))
where F~(0)=F~({P)), V is the total volume of the
system, and J'C{R) denotes the integral over the
initial configurations of all the particles.

The equation for @(t) shall be obtained by evaluating
the integral in (3) in a manner resembling the evaluation.
of the analogous configuration integral of the classical
partition function (p. f.). The exponential operator
e"~~ has a formal resemblence to the classical equi-
librium distribution function and, indeed, the operator
e"~N may be expanded in terms of time-dependent

f, s in analogy with the expansion of the classical
p. f. in terms of Mayer f, s.

This expansion of e"~&, which is called the binary
collision expansion, ' involves propagators of the form

XG „(t„—t t)iL„„Gs(t—t„), (5)

where the single "binary" index o~ denotes the pair of
particles indices i&j&, with iJ, &jI„and the summation,

N N N
~ ~ ~

ag O'P an(0'gga~g)

denotes the sum of each of the binary indices o.&, o;2,
~ ~ „oveor all the rsS(X—1) Possible Pairs of Particle
indices with the restriction that

(1&k&n 1), —

i.e., that no adjacent pair of 0.'s have the same two-
particle indices. (This sum does include terms in which

adjacent o.'s have at most one-particle index in common,
and terms in which nonadjacent o, 's have both particle
indices in common. )

The time-dependent notation in Eq. (5) is rather
cumbersome. For this reason we shall simply denote the
time-dependent integral operators which appear in (5)
by f, as follows:

CtsG, (ts —ts r)il. „(6)
which is a time-dependent analog of the Mayer f;;, so
that the binary collision expansion of e"~&, Eq. (5),
may be written in the convenient and suggestive form

G~(t)=—e'""=Go+2 Z f-" f- Go
n 1
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where now in this new notation

f~, f~„GP= —dtrG~, (tr)iI ~, ~ ~

0

df„G.„(t.—t,)iI..„G,(t—&.) .
&25-1

Upon substitution of (7) into (3) we obtain

to N

4 (t)=—I' " d{R}C.Go+ 2 Z f- .f-.GsÃ~(0)
n~1 fa)

= V ~ d(R)Gtv(t)Ptv(0),

which bears a formal resemblance to the Mayer
expansion of the classical p. f.' The analogies which
exist between (8) and the Mayer expansion are more
than formal, and we shall make use of these analogies
in order to derive an equation for the evolution of p(t)
involving time-dependent irreducible cluster integrals.

The derivation of this equation of evolution from
(8) is based upon the fact, as we shall see, that the right
side of (8) becomes a linear function of 4f in the limit
of an infinite system. Hence', we shall regroup the terms
(fproducts) in (8) in such a way that the linear relation
between p and the right side of (8) is transparent, and
then we shall let the system become infinite.

This regrouping is obtained by expressing the terms
in (8) as a linear sum of time-dependent irreducible
clusters which are a simple analog of Mayer's clusters.
To obtain these clusters we must first introduce the
Mayer notion of "connectedness" to the products of
time-dependent f;,'s in (8). The irreducible clusters
may then be defined by a recursion relation involving
connected products of f's.

B. Time-Deyendent Clusters

As the 6rst step in the derivation of a closed equation
for g from (8), we shall define clusters of f's by intro-
ducing a notion of connectedness related to that in
Mayer's equilibrium theory. Accordingly, for any
product of f's,

al a2 egn 7

6 This method departs somewhat from the analogous standard
derivation of the equilibrium virial expansion. One can, however,
derive the equation of evolution in complete analogy with the
derivation of the virial expansion as follows. One Grst de6nes
"irreducible" clusters of time-dependent f~ s The binary collisi. on
expansion may then be expressed as a sum of "at most singly
connected" ordered products of these irreducible clusters (sums
of products of star trees). This can then be integrated over all
initial conf1guration space to obtain a sum of products of ir-
reducible cluster t'ategrals (the configuration integral of a product
of time-dependent clusters is equal to the product of the integrals
of the clusters —just as in equilibrium theory}. Finally, the
products of time-dependent irreducible cluster integrals are
summed in the limit of an infinite system to obtain an exact
equation of evolution which is a time-dependent analog of the
virial expansion. Instead of following this standard method,
however, we shall take a short cut which avoids complicated
cluster summations.

which appears in (8) we imagine drawing a point in
space for each particle index which appears in this
product so that if there are k different particle indices
there will be k points in space just as in Mayer's theory.
%e then imagine drawing e distinct line segments
through each of the m pairs of particle indices n», 0.2,
~ tr„s othat to each f „ in this product there corre-
sponds a distinct line segment connecting the pair of
particles ~I,.

It may then happen that a group of line segments
connect a group of particles together, directly or
indirectly, so that through each pair of particles in this
group there passes a continuous line. The f's which
correspond to such a connected group of line segments
are said to form a "connected product" or "cluster"
of f's, and the particles which are so connected by this
group of line segments are said to be connected to each
other in a cluster —just as in Mayer's theory. ~

In this way we see that all the particles which appear
in a given product of f's may be grouped into disjoint
clusters (two clusters are said to be disjoint if they have
no particles in common). This, too, is completely
analogous to equilibrium theory.

As examples, we see that in the f product

12

particles 1 and 2 are connected to each other in a cluster,
and in both f products

f12f45fls and f12f45flsf12

the particles 1, 2, and 3 are connected to each other in
one cluster while the particles 4 and 5 are connected
to each other in another cluster —the two clusters being
dlsj oint.

%e may now de6ne the propagator

[Gtt(wi ris i,+,)—Gs]G5-'

to be the sum of all permissible f products that can be

formed from X particle indi-ces such that, in these f
products, no pair of particle indices from among

i», i2, ~, i,+1 are corrected to ecch other ie a cluster.
LWe wish to emphasize that the indicesi1, is i,+1 will

appear in some f products of Gst(/iris i,~ )burt that
these indices must not be connected to each other in a
cluster. ]The propagator G~(Nit i,+1) is very similar
to G~ itself. The binary collision expansions of these
two propagators differ only in that Gtr(&it i,+1)
does not have the particles i ~, i 2, , i,+~ connected to

7 This definition of a connected product, or cluster, of f's makes
no reference to the order in which the f's appear. Hence, any
permutation of the f's in a given connected product of f's is also
a connected product of f's. It is also to be noted that the connected
product of f'2 defined here may contain the same f more than
once—such as f&2 in the connected product f&sf&4f&2 Products of.
f's which contain the same f more than once appear in the binary
collision expansion given by Kct. (7) but do not appear in the
Mayer I;; expansion. This is one of two formal differences between
the two ex ansions. The other difference is that the time-
dependent; s do not commute, whereas the Mayer f~ s do
commute.



458 JEROME WEINSTOCK

each other in any of its f products. )The operator Gp ',
above, is de6ned by the identity Go(—y)GO(y)=—1,
Gob') '—=Go(—X) 3

It will prove useful to define GN(Aii i,+1) in a
way that emphasizes its relationship to Gz. Thus, if we
define CN(ii .i,~ )1by CN(ii . i,+1)Go ' t—=he sum
of all permissible f products (from S-particle indices)
in which two or more of the particles i1, i2, ~, i,+1 are
connected to each other in a cluster, then, since
(GN —Gp)Gp ' is the sum of (sll permissible f products
F-q. (7)3,

GN(«1' '38+1)=GN CN(31' —'l,+1) .

A property of GN(Wii i,+1) that will be useful
later on is given by

by solving (11) for successively increasing values of 33.

As examples, we shall find Vi and Vs from (11) by
setting e equal to 2 and then 3, respectively. Thus, we
set 33 equal to 2 in (11) and obtain

Vi(1 2)=G2(]) Gp
—ptt(LN +Lit) gttLN

=—G(is) (t) —Go(/) =—Vi(1,2; t), (12)

which only involves the solution of a two body problem.
The integral of Vi(1,2; t) over (Ri—Rs), for large t,
yields the well-known binary collision scattering
operator which is related to the Boltzmann collision
integral.

To obtain Vi(12) in terms of f's we refer back to
(5) and (6) and note that

GN(/si. 3N) —Gp ——0. (9)
G(12) (/) Go p) — (f/1 G(12) (/1) L312G (0t $1)=f12Go t

This follows from the fact that LGN (W 1,2, ,1V)—Gol
is the sum of all f products in which there are no
particles connected to each other. Equation (9) simply
states that there are no such f products.

so that (12) may be written in terms of f's by

V (12)—=G, , (t) —Go(t)= f Go. (13)

G-((') =Go+ 2
8 I 1 ~& j1 & ~ ~ ~ &j,+1&&~

V, (31 .i,+1)

XG G.(~is .',+,), (10)

where the irreducible cluster V, (ii i,+,) is to be
determined so as to satisfy (10) for all integral values
of I greater than 1. Equation (10) (for all I) is, thus,
to be viewed as a de6nition of the function V, (ii i,~ )1
LEquation (10) actually plays a dual role in this work
since, for 33=iV, Eq. (10) provides an expression for
GN(t) which, as we shall see, can be readily integrated
over configuration space to yield an integral equation
for P.j

To determine V„(ii . i„~i) from (10) we substitute
(9) into (10) so that (10) may be written as follows:
for all m:

V„ 1(1,2 . 33)

C. Time-Dependent "Irreducible" Clusters-
(Husimi Functions)

Ke shall next dehne "irreducible clusters" by means
of a recursion relation involving the propagator
GN(Wii i,+1) )The.se irreducible clusters, which we
denote by VB(ii i,+1), play a central role in this work,
and in all that follows we shall 6nd it unnecessary to
de6ne any other quantities. $ This de6ning relation is
given, for all e&1, by

To obtain Vs(1,2,3) we set ts equal to 3 in (11) and
obtain

Vs (123)=—Gs (t)—Go

1&~i1&is&~3
Vi(3132)GO 'Gs(«1,32) (14)

From the definition of pGN(Nii i,~i) Go] —we see
tllat. LG3 (W 1,2)—Gpj is the sum of all the f products
that can be formed from the indices 1, 2, and 3 such
that 1 and 2 are not connected. %e thus have, since
1 and 2 are connected in fisGO, fisfssGp, etc. ,

Gs (W 12)—Go—=fisGO+ fssGO,

so that (14) becomes, after using (13),

V2(123) =GO(~) —Go —Vi(12)GO '(Go+ fisGo+ fssGO)
—Vi(13)Go '(Go+ fisGO+ f23Go)

—Vi(23)G( '(Go+ fisGo+ fisGo)
=—Gs(&) —Go —(fis+ fis+ fso)Go

12 18 12 28 13 12 13 23

+f23f12+f23fis)GO (15)

The explicit time dependence of the f's in (15) may be
determined by referring back to (4a) and (6). We then
find, with (13),

Vs(123)=—Gs(t)+2GO(/) —G(12) (/) —G(13) (/) G(23) (/)

G„(t) Go— —
1 1~&F1&~ ~ ~ &ie+1~&e

V, (ii ~ i,+1)
123

+1M2 p

Ch, dts G., (&,)iI...G.,(ts —&,)

XGO 'G~(Wii i,~ ). 1(11)
Xil,GO (t—'

ts)

—= Vs(123; t), (16)
Equation (11) is a recursion relation for the V„'s.

That is, we may solve (11), recursively, for all the V„'s where the sum means that (31 and ns each take on the
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indices (12), (13), and (23) providing that iiiWas. We
see from (16) that Vs(123) involves the solution of a
three-body problem. [An integral of (16) over a region
of phase space occurs as the "triple collision" term in
the Boltzmann equation derived by Green. ~ This triple
collision term constitutes the second-order (density)
correction to the ordinary Boltzmann equation —for a
spatially homogeneous system. $

By repeating the preceding calculation with e taken
equal to 4, 5, 6, etc., we see that the recursion relation
(11) may be solved, uniquely, for all n. This would
give V„ i as a function of G„(t),G i(t), and Gp(t) so
that V 1 involves the solution of an n-body problem.

The functions V„are a time-dependent analog of the
equilibrium Husimi functionss (equilibrium irreducible
cluster sums). In fact, the binary collision expansion
of V„back into f's yields "irreducible clusters" of
time-dependent f s analogous to equilibrium irreducible
clusters of f's [Physi. cally, V„corresponds to a collision
between (n+1) particles. That is, V„ is nonzero for
only those regions of initial conlguration space for
which (n+1) particles are aimed to collide at some time
between time zero and time t. This is indeed analogous
to the equilibrium irreducible clusters of (n+1) particle
which, one may say, is nonzero for only those regions
of configuration space for which the (n+1) particles
are "initially" in contact. ]

Equation (11) serves to generate all the V„'s, and in
all that follows we shall consider V„ to be a known
function. It is evident, from (11),that V„(1,2, ,n+ 1)
involves the solution of no more than an (n+1) body
problem, and that V„(1,2, ,n+1) contains pair
interactions (I.; s) between particles 1, 2, , (n+1)
and no other particles.

Step (1):

V—~ d(R}V, (zi z,+i)Gp-'G~(Nzi z,+i)F~ (0)

=V— dR;„, . dR;„,+, V, (z, z,+i)Gp—

X V d(R}G~(/zi z«+i)F~(0), (18)

step (2):

V ~ d(R}G~(uzi i, +i) Pii(0)

where

= V ~ d(R}GipF~(0)+sO(V—')

=tt+sO(V '), (0(s(X),
~ ~ ~

The proofs of these two
somewhat lengthy. These
Appendixes A and B.

Strictly speaking, step (1)
volume. It, is step (2) that
restrictions in this work:

equations are formal and
proofs will be found in

does not require an infinite
necessitates the following

(1) that the volume of the system be infinite, and
(2) that the total scattering cross sections be finite.

To obtain a closed equation for P we merely substi-
tute step (2) into step (1), and then substitute step (1)
into (17).We then have

D. An Exact Equation for P 4(t)=4(0)+ Z V ' dR;„, dR,„.„,
In this section we shall integrate Gip(t) over initial

con6guration space to obtain a closed equation for
@(t) in terms of the irreducible clusters of the previous
section. For this purpose we shall use Eq. (10) which
expresses G&(t) in a form that can be readily inte-
grated. We thus substitute (10), with n=lV, into (8)
and obtain P(t) in the convenient form

a~1 i1& ~ ~ &itr+I

X V.(z, '.„)G;[y+so(V-')], (20)

where we have used the fact that F~(0) is independent
of positions to obtain

V ~ d(R}GpF~(0)= V ~ d{R}F~(0)=y(0) .

N—1

@(t)= V-s' dfR}[Gp+ p
tt~1 i1& ~ ~ «&ia+j

V.(zi z.+i)

XGp 'Ger(&zi. z«qi)]Pg(0). (17)

' K. Husimi, J. Chem. Phys. 18, 682 (1950).

The integration of (17) may be divided into two
steps, and these steps may be stated in the form of two
equations as follows:

If P~(0) is independent of positions then as the
volume V of the system approaches infinity we must

P, (X,V)—=
1 &~ i1 & ~ ~ ~ &is+1~& N

P«(zi' ' 'z«+1)

&1& ~ ~ &&tt+1

V dR«i«z dR«1««+i

X V, (ii z,+i), (21)

Since the configuration integral of the irreducible
cluster V, is a time-dependent analog of the irreducible
cluster integrals of the equilibrium virial expansion, we
shall make use of equilibrium notation and denote the
time-dependent integrals by P, according to the
definition
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so that (20) becomes

4(t)=4(0)+P P, (V, V)G 4

+t. r, ~P.P;V)Go 'jo(V ') (22)

where

Pg(y): lllll g V dRj~jg' ' 'dRjgj&+i

XV,(ii .i,+i, y).

—= lim Q P, (ii ~',+i, y)
&I( &s+1

(26)

P,=—P, (1V/V) =—hm P, (P, V) .

It can be shown that in the limit of an infinite system
(1V, V —+ ~, E/V = finite constant) the cluster integrals
all converge to a function of (1V/U). We may, thus,
define

(23)

and V, (ii i,+i,' y) is defined by the recursion relation
in (11).

Substituting (25) into (24) then yields an equation
for the evolution of the momentum function g(t):

Hence, within the radius of convergence of the
expansion

- ~P.b)
4(t)=4(o)+ ~y( Z )4(t—y)

e 1
(27)

s=1
S1

4(t)=4(0)+EP.G '4
e=l

(24)

Equation (24) is a closed equation for 4, and it is to
be understood that it is exact only in the limit of an
infinite system.

LIn the limit of an infinite system the dynamical
recurrence time is also infinite and, hence, there will be
no such recurrence. This means that the solution of
(24) for 4 (t) will not exhibit Poincare cycles. It will,
instead, approach a state of equilibrium for all time t.
(The "source" of the dynamical recurrence„although
we have not explicitly included it in the Hamiltonian,
is provided by the walls of the system. In going to the
limit of an in6nite system we have "removed" the walls

by placing them at infinity. )$
Equation (24) is not yet complete because we have

not explicitly stated the time dependence of P,GO '4.
We shall do this in the next section.

E. Explicit Time Dependence —The Exact
Non-MarkofFian Equation for P (t)

The reader will recall that, for convenience of
notation, we have suppressed explicit time dependences
in thepreceding derivation. This was donebyintroducing
the symbol f„ in (6) so that (5) could be written in the
form of (7).

To regain this time dependence in (24) we must,
essentially, expand (24) back into f products and then
refer back to (5) where we shall find the explicit time
dependence of these f products are given. This is done
in Appendix C where it is found that the time-dependent
function of which P,GO '4 is a symbol is exactly given by

~P. (y)
P*Go '4 = i' 4 (t—y)

o

(25)

Eq. (22) for 4 becomes, as the size of the system
approaches infinity,

This equation for 4(t) is exact in the limit of an
infinite system. )It is interesting to note that this
equation takes the form of an integral equation, and,
hence, has the initial conditions built into it. Conse-
quently, (27) may be seen to satisfy the initial value
of 4(t). This, of course, is to be expected since (27)
is exact for all time t.j

To cast (27) into the usual form of an integro-
differential equation (generalized master equation) we

simply change the variable of integration in (27) from

y to (t—y) and then differentiate (27) with respect to t

We then obtain, with primes denoting derivatives with
respect to arguments:

+( Z P'(0))4 (t). (2g)
e~l

&4(t)
~y( 2 P"(t—y)}4(y). (29)

Equation (29) is an exact, non-MarkoKan master
equation for the evolution of the momentum function

4 (t). It is an exact equation for all time t and for all
interaction potentials (whether or not they have any
symmetry) providing (1) the system is infinite, (2) the
scattering cross sections are finite, and (3) there are no
initial spatial correlations.

The time-dependent cluster integral P, (t—y) which

appears in the kernel of this equation, involves the
solution of a well-de6ned (s+1) body problem in
ordinary configuration space, and is a time-dependent
generalization of the equilibrium irreducible cluster
integral (virial coeflicient). We thus see that the non-
Markof&an equation for the spatially homogeneous
case may be viewed as a formal time-dependent analog
of the equilibrium virial expansion. The time-dependent

But jt js proven in Appendix D that LP P,'(0)] is equal
to zero so that the above equation becomes
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irreducible cluster P.(t), unlike the equilibrium ir-
reducible clusters, involve the solution of a dynamical
(s+1)-body problem and cannot be readily calculated
in great detail. One can, however, set up a systematic
approximation scheme for the calculation of P, (t), by
means of the binary collision expansion, which is
directly applicable to interaction potentials with hard
cores. One can also determine the time dependence of
P, (t) with little difficulty. This will be discussed in the
following article. '

A distinctive feature of the generalized master
equation in (29) is that it is directly applicable to
interaction potentials with infinite repulsions (hard
cores) since P,"(t) is a convergent function of such
potentials.

Another feature of Eq. (29) is that its kernel
(memory) is explicitly expressed in terms of Green
functions which correspond to collisions in configuration
space —not to virtual collisions in Fourier transform
space. The relationship between the memory and the
finite duration of a collision is thus direct and
meaningful.

Equation (29) is equivalent to the Prigogine and
Resibois' non-MarkoKan equation when there are no
initial spatial correlations. The kernel of the latter
equation is expressed in terms of diagrams and corre-
sponds to an expansion in powers of the interaction
potential, whereas the kernel of the former is expressed
in terms of the dynamics of isolated groups of particles
P, (t) and corresponds to an expansion in powers of the
density.

It is rather easy to understand the significance of the
diagrams in the theory of Prigogine and Resibois in
terms of the irreducible clusters P,"(t). The relationship
between these diagrams and P,"(t) is as follows: The
expansion of the Laplace transform of P,"(t) in powers
of the interaction potential is equal to the sum of all
irreducible diagonal fragments which can be formed
from groups of (s+1) particles.

III. SOLUTION OF THE NON-MARKOFPIAN EQUATION
FOR LARGE TIMES—MARKOFFIAN

MASTER EQUATION

A. Solution for Large t

%e wish to show that for large enough times t the
non-MarkoKan terms in (29) "die off," resulting in a
MarkoKan master equation. To accomplish this, we
will solve (29) for p(t) by Laplace transforms in the
asymptotic limit of large t.

Thus, if we define P(t) by

(3o)

and if we define A{E) to be the Laplace transform of

' J. Weinstock, following paper, Phys. Rev. 182, 470 (1963).

0"(I):

A(E)= —dt e ~'P" (I), (31)

then the solution of (29), obtained by the Laplace
transform method, is

0(t)=(2~s) '
a+ioo

dE)E A(E) j—'ee'y (0—), (32)
a—i00

where a may be any real number which (in the complex
E plane) lies to the right of all singular points of the
integrand in (32).

To determine the behavior of P(t) at large t from (32)
we must investigate the singularities of LE—A. (E)j ',
and this means that we must know the time dependence
of P(t)."The time dependence of P (t) can be determined
when t is large and, indeed, it can be shown that if t is
large compared to r, (the duration of a binary collision),
then

P"(t)d (0)-et—' -"+"" '4 (0) (33)

where A is a positive number the precise value of which
is not of present interest, and E* is negative and is
defined as that solution of the equation

LE-A(E)3~(0) =0 (34)

"While it is true that the detailed nature of P(t) will depend
upon the details of the pair potential V(R;;), it can be shown that
for time scales greater than the duration of a binary collision the
essential dependence of P (t) upon t can be determined independent
of the form of V(R;;)—providing it is repulsive. This is fortunate
since it so happens that one need only know the behavior of P(t)
at large t in order to determine the behavior of @(t) at large t.
The time dependence of P, (t) is more complicated when the pair
interactions include attractive parts and, hence, when bound
states will occur. In such a case, V, (t) will oscillate with t, and the
frequency of oscillation will depend upon the initial conditions;
i.e., the frequency of oscillation will depend upon )Rg. This is
not necessarily fatal, however, since Dn P, (t)g V, (t) is integrated
over PRg and, hence, the oscillating part of V, (t) will be integrated
over the "frequency of oscillation. " Consequently, one may well
expect that the oscillatory part of P, (t) will be damped and rela-
tively small when t is large.

which, in the complex E plane, lies furthest to the right
of any other solution of this equation LE*, in general,
will be a function of g(0) so that (33) need not imply
that P (0) is an eigenfunction of A. (E)$.

The proof (33) is lengthy and shall not be presented
here. A procedure for calculating the time dependence
of P, (t) is presented in the following article. s There we
calculate Pi"(t) and P&"(t) for t)r, /Although P. i"(t)
and Ps" (t) converge in the limit of in6nite t, it so happens
that P,"(t) does not so converge when. s is a large
number. Nevertheless, it turns out that the infinite
sum P, i,

"P,"(t)=P"(t) does converge as is indicated
by (33) 3

We may use (33) and (34) to establish three im-
portant properties of A(E) and PE—A(E)j '. These
properties provide sufFicient information to determine
p(t) at large t and are stated as follows:



462 JEROME WEINSTOCK

(1). A(E)p(0) is analytic in that part of the complex
E plane which lies to the right of (1+A)E* fthe
singularity of h. (E)p(0) at E equal to (1+A)Ea will be
a logarithmic branch point).

(2). fE—A(E)] 'g(0) is analytic to the right of
(1+A)E* except for isolated poles at the zeros of
fE-&(E)]~

(3). The singularity of fE—h. (E)] 'P(0) which lies
furthest to the right of the complex E plane is anisolated
pole at E=E*.

Property (1) is a consequence of the fact that the
Laplace transform which defines A (E) in (31) converges
to a continuous function of E when the real part of E
is greater than (1+A)E*. The convergence of this
Laplace transform follows from (33) and (34).

Property (2) is an immediate consequence of
property (1).

As for property (3) we note that the singularity of

fE—h(E)] 'p(0) atE=E*lies to the right of (1+A)E*
fE* is negative and A is positive; hence E*)(1+A)E*]
and, hence, this singularity must be an isolated pole
fa consequence of property (2)]. That this singularity
of fE—A. (E)] 'P(0) is the one which lies furthest to
the right of the complex E plane then follows from the
definition of E*.

Property (3) states that fE—A(E)] 'P(0) is analytic
when the real part of E is equal to or greater than E*
except for an isolated pole at E=E*. Hence, in this
particular case the asymptotic behavior of the inverse
Laplace transform of fE—A(E)] 'P(0) is entirely
determined by the residue of fE—A. (E) ']es'P(0) at
E=E*. Evaluating this residue we, thus, fj.nd that
(32) becomes, for asymptotically large t,

be justified) yields the master equation

&0(t)/&t= &(E*)y(t)+y(t)0(t ')-,

&4(t)/&t=&(E*)g(t), (large t).
(37)

4'(t) =P'(~)4 (t)

Equation (37) is a MarkoKan master equation, and
the e~act non-MarkoKan equation approaches (37) as
t approaches inanity. As we have seen, the exact
equation becomes MarkofFian at large t because the
non-MarkoKan memory P"(t) dies off at a rapid
rate —a rate more rapid than the characteristic decay
rate of $(t) itself.

The non-MarkofBan memory may be understood in
terms of "completed" and "incompleted" collisions. "
That is, it is shown in the following paper that
U, (ii i,+i, t) is nonzero only for that region of initial

configuration space which leads to a collision between
all the particles i», , i,+~ within the time t. Some of
these collisions may still be in process at time t and are,
hence, referred to as "incompleted" collision, whereas
other collisions will be completed corresponding to
scattering processes referred to as "completed"
collisions.

The cluster integral P, (t), which is simply the con-
figuration integral of g;,&;,... U, (it i,+i), may, thus,
be divided into a completed collision part and an
incompleted part. It then turns out that P'(~) is
entirely due to completed collisions and fa'(t) —P'( eo)]
is due to incompleted collisions. The reader may
verify that the exact non-MarkoKan equation (29)
may be written in terms of completed and incompleted
collisions as follows:

4(t)=f Z t"~.(E*))e"'"4(0)
r-O

(35)
('l

+I —
I

dKP'(t —X)—P'( )]4(y) (3g)
Eat&,

where m is the order of the pole of fE—A(E)] 'P(0) at
E=E*, and C, (E*) is equal to

dn 1 r —(E —E—8) n(~—1)!
lim . (36)

r l (I—1—y) i
&~&* dE" i rE tt (E)———

Equation (35) is the asymptotic solution of the non-
MarkoKan equation for P(t) in the limit of large t By.
solving for p(t) asymptotically in time the pa, st history
has been partially forgotten. In fact, (35) does not
satisfy the initial condition whereas the non-MarkoKan
equation, (29), does. That is, Eq. (35) would have the
initial value of P(t) equal to f1—h.'(E*)] 'g(0) rather
than equal to the correct initial value g(0).

h(0)=P (~)
so that A. (E*) may be written as

(39)

It is evident from (38) that the non-Markoffian
memory is entirely due to incompleted collisions. If
these incompleted collisions were to vanish we would
then have a simple MarkofBan equation f@'(t)
=P'(eo)P(t)] involving only completed collisions for
all t. The memory does not vanish but, instead, it
approaches zero so rapidly with time that the exact
equation eventually does become MarkofBan.

The scattering operator A. (E*) which appears in the
Markofiian equation (37) involves both completed and
incompleted collisions. This can be seen by noting, from
(31), that

B. Marco%an Master Equation to all
Orders in Density ~(E') =~(O)+ fA(E*)—A(0)], (40)

Equation (35) is the formal solution of a Markoffian
master equation. That is, the derivative of (35) with
respect to t (the derivative of this asymptotic form can

"The author is indebeted to Dr. M. S. Green and Dr. R. A.
Piccirelli for pointing out the relevance of the notions of completed
and incompleted collisions to the detailed understanding of the
evolution of a large system at large times (private communication).
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C. Master Equation for Binary and Ternary
Collisions to Second Order in the Density

It would be useful to obtain a density expansion for
the kernel of the Markoffian master equation, A(E*).
This would be particularly useful for gases at not too
high a density since then one need only retain the first
few terms of a density expansion.

To obtain the hrst two terms in the density expansion
of A(E*) we expand A. (E*) about E*=O. Thus,

E*=A(E') = P (~!)-'A.(0)E*-.
n=o

But Pi(t) =0(tV/V) so that A(E), E*, A(0) =0(iV/V)
and to second order in the density we need only retain
the first two terms in the sum in (41).Hence, to second
order in the density, we have

A(E*)=A(0)+A'(0)Ee,
=A(0)+ A'(0) A. (E*), (42)

"F.Henin, P. Resibois, and F. Andrews, J. Math. Phys. 2, 68
(1961);F. Andrews, Phys. Rev. 125, 1461 (1962).

where A (0)=P'( ~) is the scattering operator for
completed collisions, and $A(E*)—A (0) J is the
"memory" correction to the Markoffian equation due
to incompleted collisions. LWe wish to emphasize that
completed collisions are not to be confused with
"instantaneous collisions. " Physically, there are no
instantaneous collisions except for the special case of
two-body hard-sphere collisions (the volume of con-
figuration space which leads to iestamtaeeous three-body
hard-sphere collisions has measure zero, and it is shown
in the following paper that those three-body hard-sphere
"collisions" which contribute to Ps(t) have a nonzero
duration). It is completed collisions of a nonzero
duration, rather than instantaneous collisions, which
a,re relevant to the behavior of if'(t) for large t.]

The correction to the MarkoKan equation due to
incompleted collisions cannot, in general, be ignored.
The MarkofFian equation in Ref. 2 includes this
correction —although in a different form —and is
equivalent to (37). The Markoffian equations in Ref.
12, however, do not include this correction. That is, the
scattering operators in the latter equations correspond
to the completed collision operator A(0). These equa-
tions, then, are only correct when the full scattering
operator A(E*) can be approximated by A (0). Such an
approximation, however, is only valid to the first order
in the density since, as is shown in Sec. III C, the
correction LA(E")—A(0)j is of second order in the
density.

The Markoffian scattering operator A. (E") can be
expressed as a power series in the density, and we shall
derive the erst two terms of this series in the next
section.

so that

A(E*)= 5&—A'(0)3-'A(0) = 2 LA'(0)3 "A(0)
nM

= A (0)+A.'(0)A(0)+OL(1V/V)'j. (43)

But pi(t) and ps(t) are first and second order in the
density, respectively, so that to second order in the
density we have, from (43), (31),and (30),"

A(E*)=p.'(-)+p.'(-)— dttpi" (t) pi'(~)

+o ( )', («)

where Pi'( eo) corresponds to completed binary collisions,
Ps'( io) corresponds to completed ternary collisions, and
J'dttpi" (t) corresponds to incompleted binary collisions.

Substituting (44) into (37) we obtain

= p'(-)+p. '(-)

dttp, "(t)p,'(~) y(t). (45)

'3 There will also be a contribution to second order in the density
from the four-particle cluster P3(t). That is, in addition to a
"genuine" quadruple collision part which is third order in the
density, p&(t) also contains the term

V s iER,„,dR;„,dR;„,{exp)st(LN'+L;„,+L;„,)j
i1&i2&i2&i4

XexpE stLz g
—1 f.ris fisii —fir—isf&si4 fisiif. ris}Got

which is of second order in the density (because the integrand
is independent of R;„3) and which corresponds to a collision
between i& and i2 occurring independently and simultaneously
with a collision between i3 and i4. This term is signilcant. for the
master equation but will not appear in the Boltzmann equation
because it vanishes when integrated over all momenta but one.
It also vanishes when it operates upon a "dynamical flux" and,
hence, will not contribute to transport coeKcients. Finally, it
vanishes for hard-sphere interactions but not for soft-sphere
interactions.

Equation (45) gives the master equation for binary
and ternary collisions to second order in the density,
and involves the solution of a well-defined three-body
problem.

The cluster integrals Pi'( ~) and Ps'( eo) are scattering
operators in momentum space, and are referred to as
"collision integrals" or "collision operators. "

The operator Pi'(ao) is exactly the binary collision
operator which appears in the well-known low-density
limit of the master equation.

The ternary collision integral Ps'( eo) is not so well

known, and is discussed in great detail in the following

paper. This operator is well worth understanding since
its eigenvalues are directly related to the first-order
density correction of the usual density-independent
transport coefhcients. An operator which is entirely
equivalent to Ps'(co) will be found in the generalized
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CLUSTER FORMULATION OF THE EXACT EQUATION

APPENDIX D

To prove that

p(0)=p p. (o)=o,
s=l

we combine (C7) and (C9) to obtain the expanded form of P,'(t),

Z1 is+1—
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0 0

But the propagator Gp(r) is an exponential function of 7 so that, for small enough t, (Di) becomes
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From the binary collision expansion of V, (i& i,+&) it can be seen that for s&2 we must have k)1 so that
(assuming the limit can be taken) (D2) becomes, in the limit t ~ 0,

p'(o) =o, (» 2)

For s equal to 1, k is also equal to 1, and we proceed as follows, to prove P&'(0) =0.
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cj V(R,„,) 8 8

BRj j|p BPgy BPj2

since the volume integral of the gradient of V(Riiip) will produce a vanishing surface integral of V(Riiip). [It is
assumed, in (D4), that the limit and the derivative can be taken inside the integral. ] Combining (D4) and (D3)
we have the desired result,

s=l


