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Scattering of Electrons and Positrons by Cobalt and Bismuth: Calculations
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Partial-wave calculations of electron and positron scattering by cobalt and bismuth are presented, and
compared with the experimental results of Goldemberg, Pine, and Yount. A physical description of the
scattering process is given which throws light on the general behavior of the calculational cross sections.
/heir dependence on incident energy, and on the assumed nuclear charge distribution is discussed.

I. INTRODUCTION

HE purpose of this paper is to present partial-wave
calculations of electron and positron scattering

by cobalt and bismuth to be compared with the experi-
ments of Goldemberg, Pine, and Yount. ' The calcula-
tions are based on the information already obtained
about the nuclear distribution from the earlier electron
scattering work of Hahn, Ravenhall, and Hofstadter. '
The close agreement with the GPY experiments is a
confirmation of the basic assumption that, under the
conditions of these experiments, electrons and positrons
interact only with the Coulomb field of the nuclear
charge distribution. The calculations are extensive
enough to enable us to examine the sensitivity of this
ratio type of experiment to the assumed nuclear charge
distribution, and to the energy of the incident particles.

A comparison is also made with the small-angle
approximation of Drell and Pratt. ' Close agreement at
the smallest angles, for cobalt, serves as an independent
check of our computational method, while departures
a,t larger angles, and for bismuth, display the higher
Born approximation contributions which their treat-
rnent leaves out. Our calculations seem to be in qualita-
tive agreement with those of Rawitscher and Fischer, '
although since the energy and elements considered by
them are different from those of the GPY experiment,
a detailed comparison has not been made. The second
Born approximation calculations of Budini and Furlan'
seem to be in agreement with those of Drell and Pratt,
but for the same reason we have not been able to
compare them in detail.

Section II describes our calculational method. The
particular results obtained are presented in Sec. III.
A physical description of them, which throws light on
their various features, is given in Sec. IV. Section V com-
ments on the comparison with the GPY experiments.

*Supported in part by the U. S. National Science Foundation.
~ J. Goldemberg, J. Pine, and D. Yount, preceding paper, Phys.

Rev. 132, 406 (1963), referred to as GPY.
~ B.Hahn, D. G. Ravenhall, and R.Hofstadter, Phys. Rev. 101,

1131 (1956), henceforth referred to as HRH.
s S. D. Drell and R. H. Pratt, Phys. Rev. 125, 1394 (1962).

G. H. Rawitscher and C. R. Fischer, Phys. Rev. 122, 1330
(1961).

e P, Budjni and (r, Furlan, Nuovo Cimento 13, 790 (1959).

II. THEORY AND METHOD

In the Dirac equation which describes the motion of
the electron or positron, the nucleus is represented by
the Coulomb potential of a static, spherically sym-
metric charge distribution. The scattering amplitude is
obtained by a numerical partial-wave analysis which
follows closely the methods described by Yennie,
Ravenhall, and Wilson, ' and we shall refer the reader
to that paper for equations and formulas. BrieQy, the
procedure is as follows. Phase shifts measuring the effect
of the finite charge distribution, obtained by numerical
integration of the radial Dirac equation, are added to
the phases for Coulomb scattering by a point charge.
The total phase shifts are then inserted in the Legendre
series for the scattering amplitude. The differential
cross section for positrons is obtained with exactly the
same procedure as that used for electrons, the only
change being that the parameter y=(Ze'/Ac), which
characterizes the electron-nucleus Coulomb interaction,
is replaced by —y. Having obtained the electron (posi-
tron) differential cross section do, /dQ= o (do.„/dQ=o+),
we then calculate the quantity R measured by Goldem-
berg, Pine, and Yount:

~((i)= (~-—~+)/(~-+~+)

In the energy region covered by these calculations,
where Eo)&roc', the dominant quantity of dimensions
of length is t=hc/Eo, the electron reduced Compton
wavelength. There is an implicit dependence of cross
sections on X, or k=X ', because in the Dirac equation
the length parameters c and s of the charge distributions
occur in the dimensionless combinations kc, ks. Apart
from a smooth kinematic factor, the angular variation
of differential cross sections thus depends on kc and ks.
The only explicit dependence on X is as a multiplicative
factor in the scattering amplitude. For a given kc, etc.,
the effect of the actual value of k is to change the cross
section at all angles by a factor X'= k '. Because of the
ratio form of E, this latter dependence on k disappears.
R depends only on kc and ks, and, in general, only on
the values of the length parameters in units of X.

'D. R. Yennie, D. G. Ravenhall, and R. Wilson, Phys. Rev.
95, 500 (1954).
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TABLE I. Some numerical values of differential cross sections
and of R, for the Fermi shape at 300 MeV, for comparison with
other calculations. Each case is speci6ed completely by the follow-
ing parameter values: cobalt, y=Ze'/kc=~0. 1970, kc=6.37,
kz=0.796; bismuth, y=&0.6056, he=10.10, hz=0. 8558;
4=1.5204F '. 0 and 0-+ are the cross sections for electrons and
positrons, respectively, in mb/sr, the number in parenthesis being
the power of ten multiplying the quoted decimal. They are not
folded over angles.

yO

10
20
40
60
80

0.53&(3)
o.11o(2)
0.546 ( —2)
0.2vo( —3)
0.135( —4)

Cobalt

O.521 (3)
o.12o(2)
0.555 ( -2)
0.442 ( —3)
0.339( -5)

0.015
—0.044
—0.008
—0,241

0.599

0,448 (4)
O.296 (2)
0.298 ( -1)
0.250 ( —3)
0.610( —5)

Bismuth

0.437 (4)
0.446 (2)
O.666( —1)
o.v54( —3)
0.241 ( -4)

0.012
—0.202
-0.382
—0.502
—0.596

A discussion of the accuracy of our present results,
the output of a FORTRAN program written for the
IBM-7090 computer at the General Motors Research
Laboratories, will be presented in a forthcoming paper. ~

The special additional feature required for the present
results concerns the numerical summing of the Legendre
series. The reduction method employed to make this
series converge more rapidly' yields a new series whose
coeKcients are approximately the second differences
of the original coeScients. After using this reduction
method three times successively, there is a considerable
loss of numerical significance in the coeKcients of the
6nal series. The smaller the scattering angle, the more
slowly the Legendre function P (cos8) decreases with n
More terms of the scattering amplitude series are
needed, and this loss of significance becomes a limiting
factor. An elegant remedy for this problem would be to
separate from the total amplitude the nonrelativistic
Coulomb point-charge amplitude whose analytic sum
is well known. It is the most singular part of the scatter-
ing amplitude for 0 —+ 0, and consequently, is responsible
for the least convergent part of the Legendre series. The
remaining part, which is still singular as 0 —+ 0, can also
be summed analytically, in an appropriate way which
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FIG. 1. Charge distribution for bismuth and cobalt. The solid
line for bismuth is the Fermi shape (1), c=6.64 F, s=0.56 F; the
dashed line is the modi6ed Gaussian shape (2), c =6.58 F, a=2.76
F; and the dash-line is the parabolic Fermi shape (3), c=6.32 F,
s=0.65 F, m=0. 64. The cobalt curve is the Fermi shape (1),
c=4.19 F, z=0.52 F.

is reliable for tI ~ 0.' Because of the relative simplicity
with which double precision arithmetic may be done in
FORTRAN on the IBM-7090 computer, we chose the
inelegant alternative of obtaining and summing the
relativistic Coulomb point-charge amplitude numeric-
ally with double precision. With sixteen digits available,
the l.oss of significance does not jeopardize the precision
of the sum until the scattering angles become smaller
than around 5'. The contribution to the amplitude from
the finite extent of the charge distribution —the nuclear
phase shift part —is not singular at 8 —+ 0. It is calcu-
lated in single precision, and the result added to the
point-scattering amplitude. The results of this method
agree well with those entirely in single precision at
angles beyond about 25'.

To allow a check with later calculations, we have
presented in Table I some sample numerical results, for
the Fermi distributions considered in the next section.
A comparison of the exact partial-wave results for the
uniform distribution with the second-Born approxima-
tion expressions derived by Drell and Pratt' is made in
Table II. Their treatment is exact in the limit of small

Cobalt
R RDP go

Bismuth
R RDP

TABLE II. Comparison of results for uniform charge distribu-
tions with the approximation of Drell and Pratt. ' Their result for
R, called Rnp was calculated from Eq. (17) of Ref. 3. The inde-
pendent variable of their calculation, x=6,u, has the following
relation to quantities used in the present paper: a=(3/5)'Is2kc
sin-', e. The two uniform shapes are: cobalt, p(=—Ze'/kc) =0.1970,
kc=6.37; bismuth, y=0.6056, bc=10.10.

angles, and the agreement, for cobalt, at the two
smallest angles is a useful check on our numerical work.
The progressive difference at the larger angles shows
the presence of the higher Born terms neglected in their
calculation. In bismuth, it seems that the agreement
with their approximation must occur at angles too small
for our code to handle. This is presumably due to the
larger value of Z.

0.5
1.0
1.5
2.0
2.5
3.0

5.81 0.191 0.191
11.63 0.0169 0.0161
17.49 —0.0076 —0.0100
23.39 —0.0618 —0.0676
29.35 —0.1670 —0.1876
35.40 —0.3689 —0.5315

3.66
7.33

11.00
14,.69
18.39
22.11

0.0345
0.0411
0.0080

—0.0630
—0.1622
—0.2189

0.0371
0.0311

—0.0194
—0.1311
—0.3638
—1.0304

III. CALCULATIONS

To describe the static nuclear charge distribution we
have employed the following three shapes. They were
used in the electron-scattering analysis of HRH, and

See Ref. 3.

' D. G. Ravenhall, R. Herman, and B. C. Clark (unpublished).
s See Ref, 6, Eq. (47) and the material following it.

9 The corresponding treatment for the Klein-Gordon equation
has been formulated by J. H. Hetherington, Ph.D. thesis, Uni-
versity of Illinois, 1960 (unpublished); J. H. Hetherington,
J. Math. Phys. 4, 357 (1963).
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FIG. 2. Plots of the
quantity R versus 8, for
various Fermi shapes in
bismuth. As is described in
Sec. 2, R is a function only
of kc and kz. Besides the
central value kc =10.1,
kz =0.8558, there are curves
for kc decreased by 2%, to
illustrate the sensitivity to
the charge distribution
parameters. For comparison
there is also included the
curve for the uniform shape,
kc =10.1. The tangent at
8=0' is what is obtained
with a point charge (see
Ref. 13).
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are expressed in the notation of that paper'.

Fermi:

p(r)=p, {exp'(r—c )/z, 3+1) ';
Modified Gaussian:

p(r) =ps{expL(r' —cs')/zs'j+1) ',
Parabolic Fermi:

p(r) =psL1+ (ter'/css)3expH» —cs)/zsJ+1) '.
The charge distributions represented by these expres-
sions, for particular parameter values used in this paper,
are illustrated in Fig. 1. For the first two shapes, which
are constant in the interior and have a diffuse edge, the
parameter c is the distance to the half-point, the radius
where p(r) is half of its central value. The parameter z
determines the surface thickness, but its relationship
to t, the 90 to 10% thickness, is different for each shape:
Fermi, t=4.40 z, ; modified Gaussian, t 2.20 zss/c.
Because of the extra factor (mrs/cs) in the parabolic
Fermi shape, the physical meaning of c and z for it are
not precisely the same as with the Fermi shape, but
qualitatively they have the same effect. The additional
parameter m permits a smooth variation of the charge
density in the inner region.

A useful theoretical reference point is provided by the
uniform charge distribution, for which the density is

constant, but which has a sharp edge. Such a shape
results from allowing z to approach zero in the Fermi or
modified Gaussian shapes.

The results of the HRH analysis of relative differ-
ential cross sections for electron scattering were that
the parameters c and 3 could be determined to about
+2% and +10%, respectively. It was well known

previously, of course, that t was significantly greater
than zero, i.e., that no uniform shape could yield agree-
ment with experiment. " In a detailed analysis of one
element, gold (rsAu"'), shapes like the Fermi or modi-
fied Gaussian were found to be about equally acceptable,
provided that in each case c and z were chosen appro-
priately. An approximately shape-independent surface
thickness was found in the 90 to 10% distance t. For
the parabolic Fermi shape the "best" value of m was
0.64, but acceptable values included m=0. It is against
this background of knowledge that we discuss the
information available with the electron-positron ratio
experiments.

For bismuth and cobalt, the HRH analysis used only
the Fermi shape. The quoted values of the parameters
v ere: bismuth, c=6.47 F, (=2.7 F; cobalt, c=4.09 F,
3=2.5 F. At the energy of the GPY ratio experiments,

I See, for example, Ref. 6. A complete bibliography is contained
in R. Hofstadter's Nuclear and Nucleal Streectecre (W. A. Benjamin,
Inc. , New York, 1963).
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FIG. 3. A comparison of
the quantity R expected
from the electron scattering
analysis (see Ref. 2) and
the GPY experiments (see
Ref. 1) for bismuth. With
the central Fermi curve of
Fig. 2 are shown the corre-
sponding curves for the +
modi6ed Gaussian and e
parabolic Fermi shapes,
with the parameter values +
indicated. These curves, s

have been folded over '
angles; see Fig. 4. Thus, the,
Fermi curve is not the same
as the corresponding one in
Fig. 2.
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302 MeV (corresponding to k=1.53 F '), the central
parameter values of our calculation should thus be:
bismuth, kc= 9.90, ks=0.94; cobalt, kc= 6.26, km=0. 87.
More recent studies of electron scattering by Crannell
et al. ," who measured absolute values of differential
cross sections, have suggested that the value t=2.7 F
for bismuth is too large, and should be somewhat
reduced. Another set of values obtained in HRH at a
different energy" also included a lower value of t in
bismuth. Also, for historical reasons, our first ratio
calculations assumed an energy of 307 MeV. Conse-
quently, our central parameter values for the Fermi.
shape are not exactly those quoted above, but are
bismuth, kc= 10.1, ks=0.8558; cobalt, kc= 6.37,
kz=0.796. (These dimensionless numbers, together with
y=Ze'jhc=0. 1970, cobalt; y=0.6056, bismuth, specify
our calculation completely. ) In any case the regions
within the quoted errors of the HRH values are covered
adequately.

Figure 2 shows curves of R versus 8 in bismuth, for
the Fermi shape just quoted. To explore the sensitivity
to variation of parameters, curves are included for kc
decreased by 2% and for ks increased and decreased

"H. Crannell, R. Helm, H. Kendall, J. Oeser, and M. Yearian,
Phys. Rev. 121, 283 (1961)."See p. 1139of Ref. 2.

'3 See, for example, N. F. Mott and H. S. W. Massey, The Theory
of Atomic Collisiosts, 2nd ed. (Oxford University Press, London,
1952), p. 82.

by 10%.We include also the case of a uniform distribu-
tion, to exhibit the limit of zero surface thickness.

The ratio curves for modified Gaussian and parabolic
Fermi distributions cannot be predicted with complete
confidence, since the HRH fitting to the electron-
scattering experiments was not done with these shapes.
We have estimated the parameters c, s (and w for the
parabolic Fermi shape) from their known values for
gold, scaling c and s in the way indicated by the Fermi
shape. The results are given in Fig. 3, together with the
experimental data of GPY. The fact that over the range
of recoil momenta covered by the electron experiments,
which at 300 MeV correspond to angles between 20'
and 55', the ratios for the three shapes we have used
are closely similar suggests that the above estimates are
reasonably close. Whether or not it would be possible
to bring the parabolic Fermi ratio into closer agreement
with the other two by adjusting its c and s parameters
we have not investigated in detail. Such an adjustment
should be accompanied by a reanalysis of the electron
scattering experiments, and this we have deferred until
new results are available.

The curves of Fig. 3 include the small, but not
inappreciable, effect of the Qnite angular resolution of
the experiments. In a manner described in Ref. 2, the
electron and positron cross sections have been folded
over angles separately, with for convenience the
functional form exp) —(0—ft')'/LVi, where 6 has been
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Fermi ratio shown in the 300 MeV curves, is an en-
couraging feature for experimental distinguishability of
these shapes, as has been suggested by Rawitscher and
Fischer. 4 It is unfortunately accompanied by the rapid
decrease of both electron and positron cross sections to
the 10 "cm'/sr range. At this stage even our partial-
wave analysis becomes computationally unreliable,
which explains why the ratio curves are not given
beyond 120'. The 50-MeV curves. which are for the
same shapes as the 300-MeV results, but with the
parameters kc and ks reduced by a factor 6, have
practically no structure, as would be expected from
elementary diGraction arguments. The values of E are
several times as big as in the corresponding angular
region of the 300-MeV curves. This qualitative feature
has been noted by Rawitscher and Fischer. 4 The relapse
variation in R from one shape to another is however
only 50% larger than at 300 MeV, and the cross
sections themselves at corresponding values of the
recoil momenta are smaller by roughly a factor 30.
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IV. DISCUSSION

In over all features the theoretical results obtained for
bismuth and for cobalt are very similar, and for each
element the characteristic shape of R is rather insensi-
tive to the charge distribution. Some differential cross
sections from which E was obtained are shown in
Figs. 7 and 8. For each shape and each element, the
positron and electron cross sections appear to differ only
in being shifted in angular scale. Such a shift can be
produced between two electron cross sections either by
decreasing the radius or decreasing the energy. The
partial-wave analysis is unilluminating as regards such
regularity. The second Born approximation Tnethod of
Drell and Pratt' also sheds little light on it, since the
terms neglected in R depend directly on the nuclear
charge, and are important even for cobalt. It seems
worthwhile to discuss the problem from the point of

Fyo. 7. Differential cross sections at 300 MeV for electrons and
positrons on bismuth, for the Fermi shape kc=10.T, ks=0.8558,
and for the uniform shape kc=10.1. The vertical arrows indicate
the angular positions of the Born-approximation zeros, and the
diagonal arrows the shifted positions predicted by the modi6ed
Born approximation. The cross sections are not folded over angles.

Io"

COBALT, 300 MEV

—ELECTRON-- POSITRON

view of a diferent approximation, used previously in a
similar context by Ravenhall and Yennie. "Ke should

reiterate that the results presented in this paper were

obtained. with the partial-wave analysis and in no way
rely on such an approximation.

I I I I I I I t I I t I
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0 IO 20 50 40 50 60 70 $0 90 100 IIO 120 140

8
FIG. 6. The quantity R for bismuth, 300 MeV, for the three

shapes considered in Fig. 3, plotted over a larger angular range.
Also plotted are the corresponding curves at 50-MeV incident
energy, i.e., with the length parameters of Fig. 3 reduced by a
factor 6. The curves are not folded.
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FIG. 8. As for Fig. 7, for cobalt, with the Fermi shape kc =6.37,
ks=0.796, and the uniform shape kc =6.37.

' D. G. Ravenhall and D. R. Yennie, Proc. Phys. Soc. (London)
A70, 857 (1957l.
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The approximation, which seems to predict naturally
the above regularities, is a modified Born approxima-
tion. For a detailed discussion and justification of its
relevance to electron scattering we refer to other
papers. ""Its appealing feature is that the large angle
scattering is assumed to arise from one collision, as in
the Born approximation. Roughly speaking, the large
momentum components of the interaction required to
give such large-angle scattering come only from the
region of the nucleus. The long-range part of the
Coulomb Geld is very smooth, and does not give rise to
scattered waves at large angles. It only modifies the
direction and magnitude of the electron momentum at
the nucleus. The incident wave function has thus an
increased wave number near the nucleus,

k (r) = /s+ ( V(—r))/ (hc),

and has been distorted so that k(r) is somewhat smeared
out in angle about the initial direction of k. Because of
the basic assumption of first Born approximation, the
cross sections depend largely on the recoil momentum,
or rather, recoil wave number q=2k sin-,'8, apart from
the familiar kinematic factors."The above effects on
the incident and final wave functions produce a cross
section in which the Born approximation appears to
have been shifted to smaller angles, because of the
increased value of k(r) at the nucleus, and to have been
smeared out in angle, because of the smearing of k(r) in
angle. As has been appreciated for a long time, and as
appears clearly in Figs. 7 and 8, this is just the behavior
exhibited by the partial-wave cross sections. The arrows
on the Fermi-shape cross sections show the positions of
the Born-approximation zeros, with shifts in angle due
to a modification in, the wave number of (Ac) '(4sZe'/c).
(The quantity Ze'/c is the value of the Coulomb
potential at the half-radius, and the factor -', gives the
average predicted by the approximation).

The implication for Posstrorc scattering is as follows:
The single scattering at the nucleus will be different
from that for electrons only because the incoming and
outgoing particles have encountered a smooth repulsion
instead of an attraction. The effective wave number is
reduced, and the wave is diverged rather than con-
verged. The large momentum components caused by
the nuclear charge distribution are unchanged however,
and the over-all change in sign of the amplitude vanishes
on squaring it to get the cross section. The main effect
will be to shift the diffraction pattern to larger angles
than those of the Born approximation. The smearing
effect of k(r) will be more or less the same as for elec-
trons. In Figs. 7 and 8 the positron cross sections
obtained by the partial-wave analysis show clearly this
eRect. To the extent that it is the diRraction structure

"B.Downs, D. G. Ravenhall, and D. R. lennie, Phys. Rev.
106, 1285 (1957); D. R. Yennie, F. Boos, D. G. Ravenhall (to be
published).

' See, for example, R. Hofstadter, Rev. Mod. Phys. 28, 214
(1956).

produced by the large Fourier components of the
Coulomb field which gives information about the
nuclear charge distribution, the positron scattering by
itself would thus give no more information than has
already been obtained. by electron scattering. (This
holds provided that the interaction is entirely
Coulombic. ) The possibility that because of the
Coulomb repulsion, as compared with the attraction felt
by electrons, the positrons will explore differently the
various regions of the charge distribution, and so obtain
diRerent information about it, would be realized only
when the eRect of this repulsion on the magnitude of
the wave function near the nucleus is appreciable. In
bismuth the Coulomb potential is about 20 MeV in the
nucleus, and at incident energies comparable with this,
the total effect of nuclear finite size on the cross section
has become very small. Already at 50 MeV, as is shown
in Fig. 6, the variation of E. among the various charge
distributions is not qualitatively diRerent from that of
the corresponding portion of the curve (as regards
recoil momenta) at 300 MeV. The quantitative change
mentioned in the previous section is largely predicted
even by the approximation of Drell and Pratt, ' and
does not arise from distortion of the wave function near
the nucleus. '7 Thus, at 50 MeV the electron and positron
wave functions at the nucleus "see" almost the same
thing, and this is much more so at 300 MeV.

The experiment of Goldemberg, Pine, and Yount'
employs the subtle idea of directly comparing the elec-
tron and positron cross sections. Apart from the experi-
mental advantages of such a plan, the theoretical effect
is to display a very marked structure, even at small
angles. From the cross sections for the Fermi shapes,
and for the uniform shapes (zero surface thickness)
illustrated in Pigs. 7 and 8, it is clear that the effect of
smoothing the surface of the charge distribution is to
decrease the amplitude of the diffraction wiggles, and
also to make the envelope fall off more rapidly with
angle. (The angular position of the diffraction structure
depends on c, and is not shifted very much. The more
rapid decrease is due to the reduction in high-
momentum components of the charge distribution, in
the modi6ed Born-approximation picture. ) The quan-
tity R, which is the difference of cross sections divided
by their sum, thus contains the Grst eRect of smoothing
the surface, but not the second. This explains the rather
low sensitivity to the surface thickness shown in Fig. 2,
although the particular form of E, which is restricted
to ~R~ (1, overemphasizes this effect somewhat. The
detailed changes among the three Fermi shapes with

'7 With a crude version of the modified Born approximation
which contains only the change in wavelength at the nucleus, the
quantity R is approximated by ', P(BF'(q)/Sq)/F'(q) ]tSq.—hq is the
difference in wave number of electrons and positrons, so that
Aq—4(kc) '(4.3) (Ze'/c) sin-', q. Thus, R is given as a function of q
times the kinematic factor sin&8, which is very similar to the form
of Drell and Pratt's3 expression. It is the sin~8 factor which
produces the change in scale of the 50-MeV curves relative to the
300-MeV curves in Fig. 6.
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varying surface thickness are just what would be
expected from these general observations. The eRect on
differential cross sections of decreasing the radius is to
increase the angular scale of the diRraction structure,
and thus of E. This is just what is seen in Fig. 2, also.
The rather pronounced eRect of a central depression in
the charge density illustrated in Figs. 3 and 6 is a
reQection of the fact that the spacing of the diRraction
wiggles varies differently with angle. Whether there is
a correspondence of this kind independent of the
functional form of the charge density is not known at
this stage.

V. CONCLUSION

In bismuth, the range of values of E delimited by the
previous electron scattering experiments is exemplified
by the curves of Fig. 3, remembering also that each
curve has a spread comparable to that illustrated by
Fig. 2. The range of values of E.in cobalt may be inferred
from the bismuth results and the two curves given in
Fig. 5. Thus, at 35' the range of values of R allowed by
the electron-scattering experiments would be about
(—0.35+0.02), and at 45' (+0.32&0.04).

The agreement between these predictions and the
experimental results of Goldemberg, Pine, and Yount
for cobalt is remarkably close. The only disagreement
with the high-resolution points of GPY is at 45', and
is less than one standard deviation. The low-resolution
points are not able to discriminate against inelastic
scattering, which is expected to be most important at
the largest angles, and this could explain the 40' low-
resolution point. It should be remembered that the

curves are the HRH predictions from electron-scattering
alone, and have not been 6tted to the GPY experiments.
The agreement would presumably be even closer if a
mutually best fit were obtained.

Similar remarks apply to the bismuth comparison,
Fig. 3. The agreement seems to us very good except for
the low-resolution points at small angles, where we do
not understand the discrepancy. The curves predicted
by electron scattering are model-independent at these
small angles, and inelastic contributions to the scatter-
ing would be expected to be small. But the over-all
agreement between the predictions of the earlier
electron scattering experiments of Hahn and Hofstadter,
and the electron and positron experiments of Goldem-
berg, Pine, and Yount, seems to us to be a remarkable
confirmation that under the conditions of these experi-
ments, the interaction between electrons or positrons
and the nucleus is the static Coulomb interaction. The
fact that the ranges of recoil momenta examined by
the two sets of experiments were the same prevented
the discrimination among possible nuclear shapes which
further experiments of either kind at larger recoil
momenta will allow. In this regard, the sensitivity of
the two kinds of experiment, electron scattering, and
the electron-positron scattering ratios, to the features
of nuclear charge distributions is somewhat different,
and should be allowed for in planning further experi-
ments.
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