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Decay of the ~ Meson and Goldberger-Treiman Relation~
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An extension of Goldberger and Treiman's approach to charged pion decay is attempted. Derivation of a
generalized Goldberger-Treiman relation is studied without recourse to the nucleon-antinucleon pair ap-
proximation. A certain type of dispersion relation is presupposed ffor the annihilation amplitudes of inter-
mediate states into a lepton pair, which contribute to the imaginary part of the decay amplitude. Also
discussed is the determination, in principle, of the weak-coupling constants reponsible for the decay.

I. INTRODUCTION It seems worthwhile to remove the limit set by this
approximation, although one then encounters the
formidable barrier imposed by the intervention of
strong-interaction eRects. However, one can go ahead,
at least formally, much farther than it appears at first
sight if one supposes we know every quantity concerned
with only strong interactions. Investigation of the
problem from this standpoint is the aim of this paper.

The weak interaction responsible for the decay is
assumed to be axial vector, which reasonably explains
the experimental ratio, 1.2&&10 ', of z —+ e+v decay
to z. ~ fs+v decay. We treat the weak interaction in
lowest order and neglect all electromagnetic corrections.

In Sec. II the imaginary part of the invariant decay
amplitude Ii (s) is studied by presupposing a certain type
of dispersion relation for the annihilation amplitudes of
intermediate states into a lepton pair. The ImP consists
of two terms. One corresponds, loosely speaking, to a
perturbation-theoretical result, and the other is exactly
equal to what is obtained under the assumption that
the axial-vector current is proportional to the derivative
of the pion field. Derivation of a generalized G-T rela-
tion is discussed in Sec. III.It is important to distinguish
the cases according to whether the renormalization con-
stant Z3 for the pion propagator is finite or zero.

In Sec. IV we discuss a possible method to determine,
in principle, four axial-vector coupling constants of the
baryons with the leptonic current by use of the hy-
pothesis of universal Fermi interaction. When Z3
vanishes, we have an additional condition on strong-
interaction parameters.

Two supplementary remarks are made in the final
section. First, the case of a pseudoscalar coupling is
studied to see a parallelism of nonperturbational results
with perturbational ones for the types of divergences in
various weak couplings. Finally, neutral-pion decay,
~ —+ 2y, is briefly discussed.

IVE years ago, Goldberger and Treiman investi-
gated the decay processes of the charged pion' and

of the neutral pion, ' as well as the problem of the weak-
current form factors of the baryons. ' Their works were
a great step toward the dynamical understanding of
weak processes. Although they used somewhat question-
able assumptions, they obtained a surprisingly good
result for the charged-pion decay amplitude, which has
received much attention since then, and is usually called
the Goldberger-Treiman (G-T) relation. 4 These sub-
sequent authors tried to find a physically more reason-
able basis for the Goldberger-Treiman relation. The
present work is closer in spirit to the original papers"
than to these later works, but the connection between
the various approaches will be mentioned.

We shall confine ourselves here mostly to charged-
pion decay because neutral-pion decay can be discussed
in almost the same way. They assumed charged-pion
decay proceeds predominantly through a virtual dis-
sociation of the pion into a nucleon-antinucleon pair,
the latter annihilating through the axial-vector Fermi
interaction to produce a lepton pair. It was also neces-
sary to assume that the pion-nucleon vertex is damped
for large momentum transfers. Indeed, one is led to a
paradox if it is not damped.

Very recently, Barrett and Barton' have shown that
the pion-nucleon vertex tends to a nonvanishing con-
stant if one accepts a Regge behavior for the nucleon-
antinucleon phase shifts at high energies. They propose
a dispersion relation with a subtraction at infinity for
the invariant decay amplitude, in order to resolve the
difIiculty within the one-channel approximation.

*This work was supported by the National Science Foundation.
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II. DISPERSION RFLATIONS FOR m DECAY

The invariant amplitude F for the process, z -+ l+ v,
is defined by

(2 1)(2pp)'~s(0 [ J),~ (0) j
z-) =—ipgF,

where Jq" (x) is the strangeness-conserving axial-vector
current and pq is the four-momentum of the pion,
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We note that T(s) is symmetric under time-reversal
invariance.

Solutions of (2.7) and (2.8) will not be unique due to
ambiguities similar to those of Castillejo, Dalitz, and
Dyson. ' We shall concern ourselves with the simplest
solutions. One then Ands'

—p'= p'. The pion decay rate a& is then given by

(2.2)co =—— 1— pF

K(s) = D '(s)D(~')K(~')
= D—'(s)K(0),

L (s) =M (s) —K(s)Ls/(s —p') 7F,

(2.11)

(2.12)
1 " ImF (s')

F(s)=- ds . (2 3) where

M(s) =D—'(s)L(0).

Substituting (2.12) into (2.5), we get

ImF(s) = (n-/s) f Mt(s)9(s)K(s)
—Ls/(s —u')7FK'(s) 9(s)K(s)) (2 14)

(2.13)7l (3p)2 S s $6

The imaginary part of F(s) is expressed as

ImF(s)= (m/s)g„(OI BqJ&,"Is,l)
X(S,~le. IO)5(p„—p), (2.4)

Using the standard method, one can obtain an
analytic function of a variable s, such that F=F(s=p').
An essential assumption to be made here is that the
function F(s) satisfies a dispersion relation without
subtractions:

I y(s), P,7=0. (2.6)

Our approach is based on presupposing dispersion re-
lations for K(s) and L(s) of the form

where' is the source of the pion fiel, (p' — )y, and
n denotes all the variables other than s. The divergence
of the current rather than the current itself is considered
here because only the pseudoscalar states contribute to
the ImF.

By summing up over spins and separating out kine-
matical factors, (2.4) can be written in the form

ImF(s) = (m/s)Q„L„*(s)p„(s)E„(s),
or in matrix notation,

ImF(s) = (~/s)Lt(s) y(s)K(s) . (2.5)

The two invariant amplitudes, K(s) and L(s), represent
virtual dissociation of the pion into intermediate states
and their annihilation into a lepton pair, respectively.
The kinematical factor commutes with channel projec-
tion matrices P, (i=3m, EE, etc.):

We note here that

«(s) 9(s)K(s) =2 „1(SKIs.
I o) I

s(p„—p)
=(s p')' (o)s— (215)

where o.(s) denotes the spectral function of Kallen and
Lehmann' for the pion propagator, and that

K'(s) 9(s)P'K(s) = (s—u')'&'(s) (2 16)

where o,(s) is the contribution from the channel i to
the spectral function, so that a(s) =Q; o.;(s). For later
convenience another function of s for each channel will
be introduced by

B,(s)—=Re(Mt(s) 9(s)P;K(s))/o. ,(s), (2.17)

which is defined for s larger than the channel threshold
s;. The convention of one-half the sum over "out" plus
"in" states has been used in order to maintain the
reality in each channel. (2.14) may then be written as

(1/m )ImF (s)

= (1/s) M'(s) 9(s)K(s) —(s—p')~(s)FK(s) K(p') 1 " Tt(s')9(s')K(s')+- ds,
s—p,

' s—y' ~ (~,12 (s' —p') (s' —s—se)
(2 7) (S—~')'

P o, (s) H, (s)— F . (2.18)
S pL(s) L(0) F—K(p, ')

At this point we can compare our approach with that
of Bernstein et a/. 4 These authors assumed an un-
subtracted dispersion relation for I~@(s) of the form,

2.8

S—p

1 " Tt(s') 9(s') L(s')
ds

7I (ss)' s (s s se) p'F 1 " ImL~g(s')
I-zrz(s) = &~a (y')+— ds'. (2.19)

p S S —s—26
T(s) is the scattering amplitudes in the pseudoscalar
sector and can be expressed as

T(s) = D—'(s) N(s), (2 9) By supposing the dominance of the pole term for small s,

s " N (s') 9 (s')
D(s) =1—— ds'.

(s&)' s (s —s—$E)
(2.10)

where N(s) is real in the physical region and D(s) is
given by

'L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1955).' S. W. MacDowe11, Phys. Rev. Letters 6, 385 (1961).

G. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Lehmann,
Nuovo Ciroento ll, 342 (1954).
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they found
Leer(o) =2~NGN"

F—Eerier(p'), (2.20)

which is equivalent to the original Goldberger-Treiman
relation. '

It is to be noted that if we assume, instead of (2.8),
an unsubtracted dispersion relation for L(s) and if we

take the simplest solution, then we would have

&(~)= L"'F/(~' —~)]K(~) (2.21)

the result known to Gell-Mann and Levy, 4 who con-
jectured the relation,

~xJx =p Fp~ (2.22)

III. GENERALIZED GOLDBERGER-TREIMAN
RELATION

There are four baryon-antibaryon pair channels with
nonvanishing contribution to the charged pion decay,
which are

np, (1/&2)(AZ++Z+A) (1/&2)(Zo~+ 2+~0) and + o

for m+ decay and their charge conjugated states for m

decay. We note here that only the odd G-parity states
contribute to ImF with the neglect of electromagnetic
corrections. These states need special consideration
because they are probably the only channels "directly"
coupled to the lepton pairs, if we may use Lagrangian
language. For simplicity, they will sometimes be repre-
sented by E, A, Z, and . We shall give expressions for
some quantities, which appeared in the previous section,
for these channels. Hereafter, we assume even A-Z rela-
tive parity, which seems favored by recent experiments

For the amplitudes of pion dissociation into baryon
pairs, we write

(8;iE;2/M, iM;2)' '(B,iB,2i~ i 0)=u;gygu;iE, (s), (3.1)
z=/ A Z ™.

For the annihilation amplitudes of baryon pairs, we
write

(KiK2/M'iM'2)'"(Ri&i2
~

A"
~
o)

=u;2La;(s)iy&yn+b, (s)p"y'+b (s)0"„ip„ys]u;i, (3.2)

The approximate equality, (2.20), would then be
replaced by

LNN(0) FE1VN(0) ~ (2.23)

It is easily seen that F(s) cannot vanish at infinity if
L(s) is given by (2.21).

The assumption that L(s) satisfies an unsubtracted
dispersion relation is very appealing in that the Gold-
berger-Treiman relation is an almost automatic conse-
quence. But if F(s) vanishes at infinity, this assumption
must be abandoned and one returns to Eq. (2.8).

H;(s) =ReM;(s)/E;(s), (3.5)

which has a meaning not only for s larger than s; but also
for s smaller than s,. As M(0) =L(0), we see that

H;(0) =L,(0)/E, (0)= (M;i+M; p)G;"/E;(0). (3.6)

The right-hand constants in the above equation will be
called Goldberger-Treiman's constants and denoted by
F,GT. Elementary calculation also shows that

1 S
o.,(s) = 0[s—(M, i+M,2)']

Sm' (s—p')

(M,i+M, 2)' "'
X

X[1—(M, i—M 2)'/s]'i')E;(s) [' (3 7)

In the dispersion relation, (2.7), we assumed a once-
subtracted form for all L„(s). According to the usual,
although rather questionable, Lagrangian theory all the
channels except for those of the baryon pairs have no
direct coupling to the lepton pair. In dispersion theory
we claim that L„(s) for channels indirectly coupled to
the lepton pairs satisfy unsubtracted dispersion rela-
tions. L„(0) for those channels will then be determined
by 6;~, F, and quantities concerned with strong inter-
actions. Therefore we have the five weak-coupling
constants, G~~, G~~, G~~, G-.~, and F.

Determination of F in terms of the axial-vector
coupling constants can be done by the unsubtracted
dispersion relation for F(s). In carrying out the inte-
gration of (2.3), with ImF given by (2.18), we have to
distinguish the two alternative cases according to
whether

Z8 ' ——1+ 0(s)ds (3.8)

is Rnite or infinite.

A. Z, ~o
On substituting (2.18) into (2.3) and putting s=p', it

ilnmediately follows that

S—p,
' 00

P a, (s)H, (s)ds 1+ 0(s)ds, (3.9)

where s= —p'= —(pi+ p2)', and a, (0)—=G;".From (3.2)
we have

(~il~i2/MilMi2)'"(~ilq~i2~ ~X%"
~
o)

=u;2iysu, rL, (s), (3.3)
where

L, (s) = (M;i+M;2)a;(s)+sb;(s). (3.4)

The functions H, (s) defined in (2.17) can be expressed
for baryon-pair channels as

a See, for instance, J.~.Cronin and p. F. pverseth, pIIys. Re which may be called a generalized Goldberger-Treiman
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In the nucleon-antinucleon pair approximation one
finds from (3.5) that Htv(s) is constant since D t(s) is
not a matrix in this approximation, and from (3.6) that
it is equal to F~oT. Thus, (3.9) becomes identical to the
formula obtained by Goldberger and Treiman, ' '

s pF= otv(s)ds .1+
(2M)' S

They derived the G-T relation,

P P GT

2M)

o tv (s)tb F~

(3.10)

(3.11)

from (3.10) under the assumption that the denominator
in (3.10) is much larger than unity. This last assumption
means that Z3 in their approximation is much smaller
than unity, although it does not vanish. If Z3 vanishes
in this approximation, one encounters a difficulty that
will soon be discussed.

s—p2

P o,(s)H, (s) Fo(.s) ds (3—.12).

B. Z, =o

Substitution of (2.18) into (2.3) causes a divergence
of the Z3 type if no cancellation occurs in the high-
mass limit, and the generalized G-T formula is no longer
valid. In order that the dispersion relation for F (s) need
no subtractions, or in other words, in order that the
expression

Ztv '(s) =1—(s—Mtv')
&Nl S

ds', (4.1)
N+u) s s 26

where atvt(s) is one of the spectral functions of Kallen
and Lehmann for the nucleon propagator:

they can, at least in principle, be determined, except for
a scaling factor, if we assume we know every quantity
concerned with strong interactions. It seems difficult to
present a unique method since our knowledge of weak
interactions is still very restricted. We shall suggest a
method based on the hypothesis of the universality of
weak Fermi interactions. "

According to this hypothesis, the "bare-" coupling
constants of the vector and the axial-vector currents are
equal to the coupling constant of the p,-e decay inter-
action, G. It should be noted that bare coupling con-
stants of weak interactions seem to have a physical
meaning, although those of strong interactions do not.
Indeed, it is to explain the experimental fact of no
renormalization for the vector coupling constant,
GN =G, that the hypothesis of vector current conserva-
tion was introduced. ""

The vector and the axial-vector form factors of the
nucleon, ctv(s) and atv(s), are, under the universality
principle, supposed to tend to ZNG as s —+ ~, where ZN
is the renormalization constant Z2 for the nucleon. "It
will be convenient to introduce the function defined by

be meaningful, we must have

F= lim [P o, (s)H, (s)/o (s)j,

St tv'(x) =St tv(x)+

(3 13) As we know that

Mr+a) '
[Ss (x,s) tr ttv (s)

+As (x,s)o-,tv(s)]ds.

lim Ztv '(s)=Ztv ' (4 2)
S

which can be regarded as a generalized 6-T relation.
In the nucleon-antinucleon pair approximation, (3.13) we now express the condition that utv(s) tends to ZtvG

means that as s ~ ~ in the form
Ii =IiNGT,

which leads to a difficulty because we then obtain the
absurd result,

p—o-tv (s)ds (0,
2M)2 S

as was noted by Barrett and Barton' and by Nishijima. "
In order to avoid this difficulty, the former abandoned
the unsubtracted form of the dispersion relation for
F(s) and the latter thought electromagnetic corrections
should be important, all of them working in the one-
channel approximation.

IV. WEAK-COUPLING CONSTANTS

In the previous section the four axial-vector coupling
constants, G,~ with i =X, A, 2, and ™,were regarded as
given parameters. It will be very appealing to see how

's K. Nishijima„" (private conversation)

lim Ztv
—'(s)atv(s) =G. (4 3)

Similar equations may be written for the form factors of
other baryons. We thus claim that

lim Z,—'(s)u, (s) =G, (4.4a)

for i, i=E, Z, g, and that

lim Za "'(s)Zz "'(s)att(s)=G. (4.4b)

"R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).

'4 S. S. Gershtein and I. B. Zel'dovich, Zh. Eksperim. i Teor.
Fiz. 29, 698 (1955) Ltranslation: Soviet Phys. —JETP 2, 576
(1956)).

'3G. Kallen, Proceedings of the CERE Symposium oe High-
Emergy Accelerators and Pion Pttysics, Gettcsa, 1956 (European
Organization of Nuclear Research, Geneva, 1956), Vol. 2, p. 187,
K. Symanzik, Nuovo Cimento 11,269 (1959); M. Gel-Mann and
F. Zachariasen, Phys. Rev. 12$, 1065 (1961).
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Let us suppose we know u, (s) in terms of the axial-
vector coupling constants, G;~, and strong-interaction
parameters. Then, from the above four equations, we

may, in principle, determine the G,"'s by G (and strong-
interaction parameters).

The functions H;(s) are now expressed by G and F.
What we have to do is to express Ii by G. It can be done
by use of the generalized G-T formula, (3.9), if Z&40,
or by use of the generalized G-T relation, (3.13), if
Z3=0. In the latter case, however, one is put in a some-
what paradoxical situation because there is one more
equation, (3.12). If we divide the both sides of (3.12)
by Ii, we obtain

-s—p' H (s)
Z~'(s)

3p)» s & F
—o.(s) ds, (4.5)

which should be regarded as a condition imposed on
strong-interaction parameters. "

s—p, s
P o, (s)H, (s) o(s)F ds—, —(5.1)

3p) P2 2

where Ii ~ is the invariant decay amplitude of the pion
in the case of pseudoscalar coupling and H, P(s) is
defined in the same way as H;(s). Therefore, (5.1) has
self-mass type of divergence if there occurs no cancella-
tion in the high-energy limit. Even when we have a
condition for cancellation similar to (3.13), (5.1) may
still have Z3 ' type of divergence if Z3 vanishes. Such a
situation certainly corresponds to the well-known fact
that in a perturbation-theoretic treatment of pion decay
one encounters a quadratic divergence for pseudoscalar
coupling, while one has only a logarithmic divergence
for axial-vector coupling.

The final remark is concerned with neutral pion
decay, m'~ 2y. This decay process' is evidently more
complicated than that of the charged pion, for two
photons come out from two different points, while in
the latter decay a lepton pair come out from a single
point if we neglect electromagnetic corrections. We shall
apply, without proof, to the neutral-pion decay the
method used in the previous sections.

' E. R. McCliment and K. Nishijima, Phys. Rev. 128, 1970
(1962).

V. SUPPLEMENTARY REMARKS

It might be of theoretical interest to see the case of
a primary pseudoscalar Fermi interaction, although the
axial-vector character has been established experi-
mentally by the measurement of vr ~@+i and ~ —+ e+i
decay rates. As the argument is almost the same as
before, we shall omit all its detail. Corresponding to
(3.12) we here have

where e and e' denote polarization vectors of the two
photons. We demand that F (s) satisfies an unsubtracted
dispersion relation:

1 " ImF (s')
F(s) = — ds'.

(3&)' s —s—z6
(5 3)

ImF(s) is expressed in terms of matrix notation as

ImF (s) = (vrjs)Lt(s) y(s) K(s), (5.4)

where s 'L(s) denotes the annihilation amplitudes of
intermediate states into the two photons, the factor s '
being separated just to keep a parallelism with ~-p
decay. It has been assumed here that in the annihilation
matrix elements the four-momenta and the polarization
vectors of the two photons form a pseudoscalar in-
variant by themselves, not with the vectors of inter-
mediate states, because the two photons are in a
pseudoscalar state.

L(s) are then supposed to satisfy the dispersion rela-
tions of the form

TtpLL(s) a F 1
K(p')+-

s s s—p 7I (3y)~s (s s ze)

b(s')j.+- ds', (5.5)
7r r s (s —s —$e)

where a=L(0) and I' represents unphysical cuts. The
last term in the right-hand side of the above equation is
due to the two-point character of the decay interaction.
Discarding again CDD ambiguities, one Ands

with

L(s) =M (s) —K(s)Ls/(s —p')]F, (5.6)

M (s) = D-'(s) a+—D—' (s)
D (s')b (s')

ds'. (5.7)
s s —s—zE

ImF(s) is then given by (2.14) with M(s) defined above.
The difhculty in practice here is that we must express
a and b(s) in terms of the fine-structure constants and
strong-interaction parameters, even when D(s) is sup-
posed to be known.

The rest of the argument is almost the same as before.
We obtain a generalized G-T formula Lsee Eq. (3.9)g
for the decay amplitude when Z3 does not vanish, and
a generalized G-T relation Lsee Eq. (3.13)]if it vanishes.
We may note that although no divergence occurs in the
lowest order perturbational calculation of x decay one
encounters a logarithmic divergence if one takes into
account the anomalous magnetic moments of the
nucleons.

The invariant amplitude F is defined by

(4koko')'12(k, e,k', e'( J (0)
=iS„„g,e„e„'kgb.'FL—(k+0')'), (5.2)
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Scattering of 300-MeV Positrons from Cobalt and Bismuth*
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(Received 16 May 1963)

Positrons and electrons from the Stanford Mark III linear accelerator have been scattered from cobalt
and bismuth at 300 MeV. The ratio R, equal to (o. —o+)/(o. +o+), has been measured at a number of
angles from 10' to 45' for cobalt and from 5' to 45' for bismuth. Two experiments are reported: a high-
percision experiment with poor energy resolution, suitable for measuring the small values of R found at small
angles, where inelastic scattering is not important; and an experiment with somewhat lower precision but
better energy resolution, suitable for measuring the larger values of R found at angles where inelastic scat-
tering must be taken into account. The elastic scattering data are in good agreement with phase-shift calcu-
lations of Herman, Clark. , and Ravenhall, who used nuclear charge distributions which fit earlier electron
scattering data. The inelastic data, for which no reliable predictions exist, indicate that R; e&„&io is generally
smaller than R, l„&,, This suggests that the inelastic scattering is better described by the first Born approx-
imation, in which R =0, than is the elastic scattering.

INTRODUCTION

'HE elastic scattering of positrons by nuclei differs
from that of electrons. For point nuclei with no

magnetic moment, Feshbach' has computed o+/o. , the
ratio of positron to electron cross sections, at a given
angle and energy. For backward scattering by high-Z
nuclei, this ratio is =1/5 and it approaches 1 as the
scattering angle and the atomic number are made small.
The effect can be understood in terms of different spin-
orbit interactions arising from the diferent classical
trajectories of positrons and electrons scattered through
the same angle. Alternatively, the effect can be ascribed
to diferent distortions of the incident and of the
scattered waves by the Coulomb field of the nucleus.
In the erst Born approximation, which takes into
account only 1-photon exchanges, such distortions are
neglected, and positron and electron scattering are
identical. The difference in scattering is, thus, a meas-
ure of the importance of the exchange of two or more
photons.

For Gnite nuclei, the difference between positron and
electron scattering is sensitive to the distribution of
nuclear charge. Figure 1 shows qualitatively the ex-
pected behavior of the difference in positron and electron
scattering as a function of the scattering angle 0 for

~ This work was supported in part by the U. S. Ofhce of Naval
Research, the U, S. Atomic Energy Commission, and the U. S.
Air Force Ofhce of Scientific Research,

f Present address: California Institute of Technology, Pasa-
dena, California,

f, Present address: Department of Physics, Princeton Uni-
versity, Princeton, New Jersey,' H. Feshbach, Phys. Rev. 88, 295 (1952).

axed and equal incident energies. The diGerence is
characterized by the quantity R, de6.ned by

~= (a-—a+)/(~-+a+),

where a= and 0+ are the differential scattering cross
sections for electrons and positrons. The initial increase
of R corresponds to the point nucleus behavior. At
angles where the classical trajectories begin to penetrate
the nuclear charge distribution, E becomes negative. In
terms of the classical trajectories, the deeper penetration
of electrons into the charge distribution causes the
electron cross section to become smaller than the posi-
tron cross section. Finally, as the angle is further in-
creased, R oscillates. The de Broglie wavelengths of
the positrons and electrons differ at the nucleus, and

Fxc. i. Qualitative
behavior of the ra.tio
R as a function of
scattering angle for
nuclei of 6.nite size.


