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Spin Hamiltonian for Even-Electron Systems Having Even Multiplicity
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The form of spin Hamiltonian necessary to represent the most general zero-6eld splitting and lowest order
magnetic and quadrupole interactions is investigated for systems having an even number of electrons and
an even multiplicity. It is shown that, when referred to principal axes, two components of the g tensor are
necessarily identically zero. Various other peculiar features emerge. In particular, it is shown that in inter-
pretations of electron spin resonance measurements using a spin Hamiltonian for a non-Kramers doublet,
considerable misapprehension and error exist in the literature.

I. INTRODUCTION

S INCE the original introduction of the concept of
spin Hamiltonian, ' many investigations have been

made of the general form of spin operator adequate to
represent splittings of the states concerned. Some of
these have asked what spin Hamiltonian is suitable
when the splittings are calculated to a certain order in
perturbation theory, while some have asked what is
adequate to represent matrix elements of given oper-
ators within completely arbitrary sets of states. ' 4

The present paper is concerned with the spin Hamil-
tonian to be used in describing electron resonance
within an even number of states, and especially within
a doublet, of an even-electron system. The treatment
is entirely general; the only assumption made about
the set of states is that no other independent state of
the system has the same energy as any of them. It will
then appear that some rather curious features of the
spin Hamiltonian occur in this situation. These features
are consistent with all the available experimental data,
as far as this author can discover.

It is well known that it is relatively more dificult to
observe resonance in even-electron systems. This is
usually ascribed to the fact that there is no necessary
degeneracy of the K.ramers type and that, therefore,
in a system with no symmetry, all states wouM be
expected to be nondegenerate. A nondegenerate state
has, of course, no first-order interaction with a magnetic
field and, therefore, does not give an electron resonance
signal. Furthermore, few pairs of states would be
within the small number of wave numbers distant from
each other which is necessary in order for the magnetic
field of the resonance measurement to mix them. In
spite of this, electron resonance has been observed in a
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number of cases."Many of these were doublets and
it is with them that we shall be primarily concerned.
The others were from triplets or quintets, usually
arising from ground states in which there is only spin
degeneracy an.d in which the second-order effect of spin-
orbit coupling is insufficient to split the substates
excessively. For reasons which will be apparent as we
proceed, the peculiar features occurring in the doublets
do not appear for triplets or quintets.

For doublets, measurements have usually been
interpreted with a spin Hamiltonian, '

X(S)=g,PH,S,+AS,I,+AS„
with fictitious spin S=~. The term ~S is the only part
of (1) which looks at all odd. Here A is a numerical
coeKcient, having dimensions of energy, and 6/0
means the two states of the doublet have a zero-field
splitting. This is unlike an odd-electron doublet, where
the Kramers degeneracy shows that there can be no
zero-field splitting and, hence, 6 must be zero. The
formulation (1) has not been regarded as the most
general possible, but merely one which sums up the
observable data in the majority of cases. For example,
Bleaney, Llewellyn, Pryce, and Hall~ have replaced

with A,S +A„S„ in an interpretation of the
spectrum of Pr'+. Actually 6, and h„were taken to
have, not unique values, but distributions of values
representing slightly different environments for diGerent
praseodymium ions. Also, many authors have added a
term g,P(H,S,+II„S„).g, is usually zero, however,
and as far as I know has never been observed to have
a value significantly different from zero.

The rather startling result we shall demonstrate in
this paper is that for any even-electron doublet what-
soever, satisfying the one weak condition mentioned in
the second paragraph, g&=0. At first sight this may
appear obviously absurd. What meaning can the
symbol J have unless it means perpendicular to some
symmetry axis? Furthermore, how can. one prove, in
general, that g =g„=0 without also proving g, =OP
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The answer to these difhculties turns out to be that
the states of the doublet itself define a unique axis
(unless g,=g„=g,=0) and this axis is a principal axis
of the g tensor. When this axis is taken as the s axis,
we shall prove that g,=g„=0.

II. THE SPIN HAMILTONIAN FOR A DOUBLET

The restrictions on the form of spin Hamiltonian
arise only from the effects of the Kramers (or time-
reversal) operator' and the two-dimensionality of the
manifold of states. It is well known' " that the eigen-
states of a Hamitonian 3C for an even-electron system
in the absence of a magnetic field may be taken to be
real, i.e., that

where lu) and
I b) are a pair of eigenstates and the

superscript E represents Kramers's conjugacy operator.
The only condition we need add if we are to apply this
result to our arbitrary doublet is that there should be
no other eigenstates of BC having the same energy as
either Ia) or Ib) This p.revents the possibility of, for
example, la)x being different from and orthogonal to
both Ia) and lb).

The interaction with an external magnetic field H is
given by the additional term

bX, =P~ H,
where

rl = L+2S,

Now consider a component, g say, of g. We have

&~l ~ I
a) =(al ~*Ia)*=&ale.

l a) = —&ale. l a),
(~)

&a I &, I
b)*=&a

I &, I
b)"= —&a I &.lb).

Hence,

=0, &b

for some real number ns, . Suppose now we take an
orthogonal transformation,

I
a') = cos8

I a)+ sin8
I b),

Ib')= —e»n8 la)+«os8 Ib),

with e= &1.We at once deduce from (6) and (7) that

&b'I ~*l a') = elm*

In other words, Im, l
is independent of the choice of

basis in our two-dimensional mainfold, provided the
basis is real.

Now we represent the effects of NC in a spin Hamil-
tonian with S=-', by correlating its states with

I a) and
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Ib) as follows: Set

i
I s)-—

I ~)+—Ib) I
—s)-—I~)——Ib); (g)

v2 K2 v2 v2

w~ere
X(S)=g,PH,S„

g,s=4(m, '+m„'+m, ') .

(10)

We have shown, therefore, that if we refer our spin
Hamiltonian to suitable axes that g, and g„are identi-
cally zero. This is the most interesting result we find
and so we pause now to consider various points about
it. What are the s axes which are referred to in Eq.
(10)P The s axis referred to under g and H is an axis
in real space determined directly from the vector I
and indirectly from the actual form of the states

I a)
and Ib). Apart from the possibility of reversing its
direction, it is, however, uniquely determined by the
space Z spanned by Ia) and

I b); in other words, it does
not depend on which particular real basis we take for
Z. On the other hand, the s axis for S, has nothing
whatever to do with any axis in real space, and the
fact that g,PH, gets multiplied by S, rather than some
othel linear form in the components of S is a conse-
quence merely of the particular form (8) chosen for
our association of the states la) and Ib) with the
eigenstates of the fictitious spin component 5,.

The special form (10) depends, as we have just seen,
to some extent on particular choices of axes. However,
it contains solid observable predictions, namely that
the g tensor referred to principal axes has two compo-
nents identically zero. The literature agrees with this
prediction in that gJ. appears never to have been found
significantly difrerent from zero, It disagrees however,
in often giving values such as g&=0.1+0.15 or g&=0,
which imply that gJ could be different from zero. We
have, therefore, rigorously established that g=g, lcos8I
for a field H at angle 8 to m and that, in the absence of
a zero-field splitting, the intensity of the transition

I
rs)

I

—sr) is identically zero. Finally, we have found
a new general theoretical reason why resonance is rare
to observe in polycrystalline even-electron specimens,
namely that with g=g, lcos8I the line shape is such
that the majority of the resonance comes from g near
zero (or near the zero-field splitting if there is one).

A last point to note at this stage is that the funda-
mental reason why we get such a difference between
these non-Kramers doublets and the more usual

then it follows from (6) that

&-', IBRI-,')= —(——
s, lBKI

——', )=Pm H, (-', IN('.
I
—-', )=0,

and so 5X may be represented by a spin Hamiltonian

X(S)=2Pm HS, . (9)

If we choose the s axis in real space to lie along the
vector m, we then get the simpler expression
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Kramers doublet is the difference of behavior under
the Kramers operator. It would be natural to define a
hctitious Kramers operator turning one of the fictitious
spin states

I s) into the other
I

—sr). But then we would
have

which matches the behavior of the true states under
the true Kramers operator for Kramers doublets, but
not for non-Kramers doublets. It is this nonmatching
which forces the rather unsymmetrical spin Hamil-
tonian (1) upon us.

We now consider briefly some other terms in K(S).
The same argument as we have just given refers to the
nuclear hyperfine interaction, although the vector
corresponding to m in this case need not lie in the
same direction as 1 for the g tensor. Hence, we have
the increment

8K(S) = (A„I,+A,„I„+A„I,)S,. (11)

Next consider the fine structure. Naturally, if there
is a fine structure splitting, we would take the

I
a) and

I b) of Eq. (8) to be eigenstates of X, rather than choose
linear combinations such as

I
a') and

I
b') which would

not be. Therefore, we should have

with H, b
——0. If we choose the linear combinations the

only formal difference is that II,&40. From (8) and

(12) we find that the fine-structure part of X(S) is

&PC(S) =-', (II..+IIsg)+ (II..—IIss)Sg+2II.sS„. (13)

The first term of (13) only shifts the center of gravity,
while the third is zero provided we choose

I a) and
I b)

as eigenstates of K. This, then, justifies both the term
DS, in (1) and also the addition of a term h„S„.How-

ever, the term in S„cannot correspond to anything
observable (although 6,'+3,„' does) because it can be
eliminated by taking

I a) and
I
fi) as eigenstates of K.

As in our discussion of Eq. (10), similarly here, the
suflixes x and y in Eq. (13) have nothing whatever to
do with anything in real space. Therefore, it seems to
me that it is slightly incorrect to take a distribution
for both 6, and 6„ in order to describe a distribution
of environments~ ";the most general thing one can do
along these lines can be expressed adequately by giving
a distribution for 6 in Eq. (1).

It is clear now how we should proceed for other
quantities which get represented in a spin Hamiltonian,
One small new point occurs for the nuclear quadrupole
term. Here one has, in the most general case, an
operator equivalent of the form

lsd�(S)=Q (Q,).'+Q.), S.+Q.),"S„)I,Ii„(14)
"J. M. Baker and B. Bleaney, Proc. Phys. Soc. (London)
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where 5, 5—1, etc. , are the M, values. Then using
similar arguments to those of the last section we deduce
that for an arbitrary operator p satisfying p= p*=p~
we have

while for p satisfying p= p*= —p~ we have

Previously' we used the operator equivalent

X=+(—1)rQ (~)S (~l (18)

where 5~&') is the irreducible product of degree c of
c spin vectors Sp,. The reduced matrix element of each
57&') was taken to be real. It then followed from p= p*
that Q, i'&*= (—1)&Q,i'1, and this is true in the present
case. The other restrictions on Q,",which derive from
(16) and (17) by simply expanding the matrix elements

where the Q„i,' are numbers satisfying Qi, ' ——Q„i' for
each c. However, if we take the fine-structure term to
have 6„=0,we have then defined a precise choice for

I a)
and

I b) and, therefore, cannot, in general, take any of
the Q„&," to be zero. Even if 5=0 we can only eliminate
one of the Q„p.

Finally, note that if there is any symmetry, the
expressions (11) and especially (14) are often consider-
ably simplified.

III. SPIN HAMILTONIANS FOR ARBITRARY
DEGENERACY

The original form of spin Harniltonian for general
fictitious spin 5 contained only quadratic and bilinear
expressions. ' However, several authors have pointed
out that for S&1—„higher order expressions may occur
in the fine-structure Hamiltonian' and, for $&1, in
the part concerned with interaction with external or
nuclear magnetic field. ' An essentially complete solution
of the problem of determining these operator expressions
for general S was given by the present author, 4 but
with the assumption that 5 differed from the true spin
by an integer (possibly zero). Because of the Kramers
degeneracy, this is necessarily true for odd-electron
systems and, therefore, false just for even-electron
doublets, quartets, etc. We now derive the general
spin Hamiltonian for them, using just the same type of
argument as was used previously for the other cases. 4

Let the even degeneracy be 25 and start with 25
real functions a, b, c, d, e. . Associate these with
fictitious spin states by the rules
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of (m
~

X ~m') and (—nz'~ X~ —m) by the Wigner-Eckart
theorem" and eliminating the V coefFicients through
their orthonormality properties are now slightly differ-
ent. For p=p~, i.e., as in the fine structure matrix, we
find Q~&'=0 unless c+y is even. For p= —px, i.e., as
in the magnetic interactions, we find Q~i'&=0 unless

c+y is odd.
This completes the general solution. As before, each

component of 8 gets multiplied by a separate operator
equivalent of the form (18) and satisfying the afore-
mentioned conditions. By choosing axes suitably, the
bilinear part of the interaction with H can be reduced
to g,PH, S,. Hence, the absence of terms in S, and S„
is an absolutely general result. This may seem sur-

prising at first sight. However, this surprise is really
based upon the view that a general bilinear expression
should be the first approximation to the magnetic term
in the spin Hamiltonian, which derives in turn from
the use of perturbation theory starting from spatially
nondegenerate states. "4 But for such states of even-
electron systems the degeneracy is necessarily odd and
results deduced for them are irrelevant to the present
situation. For example, in the present case, each
component of the magnetic field gets multiplied, in a
quartet state, by an operator equivalent

X=aS,+b(5,5,+5,5,)+c(5„5,+5,5„)+dS.'
+e(5,5,'+5,'S, S,S„' —S„'5,)—+f(5+„S,

+S,S,S„+S„S.S,+S.S„S,), (19)

and there seems no reason why the energies deriving
from aS, should be larger than those coming from the
higher order terms.

Finally, let us note that one rather peculiar feature
of the doublet spin Hamiltonian is now much more
comprehensible. The components of the spin vector S
are divided between S and S„ in the fine-structure
Hamiltonian and S, in the magnetic Hamiltonian
because c+y is even for Si' and S i' which are linear
combinations of S and S„,but odd for So'=S,.

IV. DISCUSSION

We shall now discuss the relationship between the
preceding analysis for non-Kramers doublets and the
experimental data and their interpretations to be found
in the literature. It is the author's belief that the
results of the present paper reveal a considerable
misapprehension in the past of the nature and signifi-
cance of the terms occurring in a spin Hamiltonian
such as that in Eq. (1). This can be made most clear
by considering and summarizing a number of separate
points about various terms in the spin Hamiltonian.

First, it has been generally assumed and can be
proven4 that an environmental symmetry implies the
corresponding symmetry of the g tensor. The converse

implication is not logically true but is at least likely in
many circumstances. For the non-Kramers doublet,
however, the g tensor is axially symmetric always and
so this symmetry implies nothing whatsoever about
the nature of the environment —except that it must be
suKciently uesymmt, 'trical to have separated out a
comparatively isolated doublet of states~

Second, following on from the last point, there is no
reason, in general, why the nuclear hyperfine interaction
tensor should show symmetry about the same axis as
the g tensor. The hyperfine tensor, however, must have
the form (11) and, in particular, terms like S,I, and
S„I,cannot occur. In their work on the holmium ion
Ho'+ which is 4f", Baker and Bleaney" interpreted the
data using a nonzero term B(S,I,+S„I„)in their spin-
Hamiltonian. However, later" they partially reinter-
preted it without this term and assigned the relevant
effects (intensity of S,=+2, I,=m 5,= —i~, I,=m
+1 hyperfine lines) to interaction with a neighboring
state outside the non-Kramers doublet. We have shown
their original interpretation must be wrong, although
we would have allowed a term A„I,S, or A,„I„S,
which could give nonzero field-dependent intensity.

Third, for the same reasons, unless one has inde-
pendent evidence of axial symmetry, there is no reason
why the quadrupole tensor should have the form
PP.2 3I(I+1)]i—nstead of the more general expression
(14).

Fourth, the x and y axes in the fine structure Hamil-
tonian 6,5 +6„5„have nothing to do with spatial
axes and only (4,'+6„')"' represents anything ob-
servable Lsee discussion of Eq. (13)j.

Fifth, gi=—0 for doublets (and quartets, sextets, etc.).
Therefore, the numerous attempts in the literature to
measure this quantity are misplaced.

With reference to all these results note, however,
that while they are perfectly general, they apply to
finding operators equivalent to certain terms in the
true Hamiltonian within a pair of eigenstates of the
true Hamiltonian for zero nuclear and external mag™
netic fields. In case other eigenstates lie near the
doublet these will be mixed in by these fields and might
produce eGects which could be mistaken for those
arising from matrix elements of the field within the
original pair of eigenstates, as in the holmium ion
investigated by Baker and Bleaney" and discussed
above. This warning, of course, is not peculiar to this
situation but always applies when a spin Hamiltonian
is used, e.g., for Kramers doublets as well.

Finally, it is well to emphasize that while the ob-
servable consequences of our results are real and
nontrivial, the special position occupied by the s axis
in our spin Hamiltonian is a result of two deliberate
choices of axes, one in real space and the other i'
fictitious spin space.


