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Conditions on the S matrix which arise from the assumption that it describes interactions which are at
least approximately local are discussed. Particular conditions of this kind, which may be called cluster de-
composition properties, are formulated and the implications of these conditions for the structure of the S
matrix are studied. The discussion is restricted to the case of a world in which there is only one kind of par-
ticle, namely a spinless boson of Gnite mass. The considerations presented apply equally well to relativistic,
as well as to nonrelativistic scattering theories. It is not assumed that the S matrix can be derived within
the framework of a strictly local Geld theory, nor is it assumed that the S-matrix elements possess any par-
ticular properties of analyticity. As an illustration it is pointed out that the cluster decomposition properties
assumed hold good in the conventional perturbation theory approach to Geld theory.

I. INTRODUCTION

''I the S-matrix description of collisions between
- ~ particles, ' attention is focused on the relationship
between an initial asymptotic configuration of particles
and the corresponding final asymptotic configuration;
what happens "during" the collision event is not de-
scribed. The basic assumption of 5-matrix theory is that
the interactions between the particles are, in some sense,
of short range, and because of this property of the
interaction it is possible to describe a state either in
terms of an initial asymptotic configuration of non-
interacting particles or in terms of a Anal asymptotic
configuration of noninteracting particles. In the asymp-
totic limits, the particles behave like noninteracting
particles simply because their mean separations tend to
infinity and hence the interactions become ineffective.

The detailed mathematical formulation of these ideas
is well known and has been given elsewhere'; we do not
repeat this formulation in the general case of an arbi-
trary number of different kinds of particles. We may,
however, mention the following:

The Hilbert space X, of all possible states of the world
is the Hilbert space appropriate to the description of all
possible states of an arbitrary number of eoeieteructing
particles of which there are a finite number of different
kinds. The group Lo of all inhomogeneous Lorentz
transformations, or more precisely the universal cover-
ing group of Lo, is realized as a group of unitary trans-
formations on 3C.

The 5 matrix is a unitary mapping of X onto itself.
The Lorentz invariance of the description of scattering
is expressed mathematically by the condition that 5
shall commute with the unitary transformations which
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represent Lo. From this requirement it follows that S
preserves the unique vacuum state,

~
vac), and that S

also preserves the various possible one-particle sub-
spaces of K, or, more precisely, that 5 can be so selected
without loss of generality. This follows from the fact
that the group Io acts irreducibly according to the
identity representation on the vacuum state, and irre-
ducibly according to one of the representations F,„
m&0, on each one of the one-particle subspaces of K.
On the remainder of X, I 0 acts according to the various
tensor products of representations of the type F,, ; the
resulting representation of Lo on X is accordingly highly
reducible. ' For this reason the action of S on 3C is by no
means unique.

As we have said, a basic requirement on the 5 matrix
is thus that it shall commute with the unitary trans-
formations representing Lo. Additionally, we may re-
quire that S shall commute with the unitary or anti-
unitary transformations on BC by which other symmetry
groups which we believe in are realized.

However, these conditions are not sufficient for the 5
matrix to be meaningful physically. It is our purpose in
this paper to consider some additional conditions which
we believe every physically meaningful 5 matrix must
satisfy.

The conditions we wish to impose derive from the
idea that the interparticle interactions are of short
range; therefore, the outcome of a scattering event
involving two particles that are close to each other at
some time does not depend on the presence of other
particles very far away. To dramatize the situation we

may say that the presence of particles on the moon
must not affect the outcome of events in a bubble
chamber on the earth.

It should be noted immediately that this property of
the S matrix by no means follows from its unitarity and

' A short review of the relevant representations, and a discussion
of the reduction of tensor products of these representations, may
be found in J. S. Lomont, J. Math. Phys. 1, 237 (1960).
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its invariance under conjugation by Lorentz trans-
formations, but that it must be imposed as a separate
physical condition.

For the case that the S matrix can be obtained within
the framework of a local field theory the condition just
mentioned can reasonably be expected to hold, and it
does hold. One could well argue that one reason for
trying to describe scattering events in terms of a field
theory is just to ensure the possibility of at least a rough
space-time description of scattering events which con-
forms to the idea of short-range interactions between
the particles. Looked upon from this point of view, the
field theory approach seems eminently reasonable. On
the other hand, one may well ask whether it is reason-
able to impose the condition of strict microcausality4 in
6eld theory in view of the somewhat unphysical and
obscure nature of this condition. There can be no doubt,
however, that a satisfactory theory must be what we
may call approximately local, and that a space-time
description must be possible at least in an approximate
sense, i.e., for distances larger than the characteristic
range of the interactions. A "pure" S-matrix theory
devoid of any notions of space, time, and locality would
be highly unphysical because it would be unrelated to
the obvious classical description of what takes place in
a bubble chamber or emulsion.

In this paper we do not base our discussion on a field
theory. We assume an S matrix which is unitary and
which commutes with the Lorentz group. We then
impose particular physical requirements on the S
matrix, which we call cluster decompositioN properties, in
the form of transparent physical conditions on physi-
cally observable quantities. We then 6nd the mathe-
matical expression of these conditions in the form of
statements about the structure of the S matrix. Physi-
cally, the cluster decomposition properties mean that
the outcome of a scattering event, in which two or
several particles come in close contact with each other
is unaffected by the presence of any number of particles
very far away, or, differently stated, that several scatter-
ing events spatially separated from each other by large
distances are independent of each other. In a sense the
S matrix must therefore "factor" into a product of S
matrices describing the various independent events.

For simplicity we restrict our study to the case in
which there is only one kind of particle in the world,
namely a spinless boson of 6nite mass mo.

It might be stated explicitly that we make no assump-
tion about any possible analyticity properties of the
S-matrix elements as functions of the four momenta of
the particles. Such assumptions, ' in the absence of any

' For a formulation of the axioms of local Geld theory, and a
discussion of results obtained, see R. Haag, Suppl. Nuovo Cimento
14, 131 (1959);or see the article by A. S. Wightman in Theoretical
Physs'cs (International Atomic Energy Agency, Vienna, 1963),
Book I, Part I, p. 11.

5 The case for a scattering theory based on properties of analy-
ticity instead of notions of local Geld operators is stated in, for
instance, G. F. Chew, S Motrig Theory of S-tromgjIrtteroctiorss

II. CONSTRUCTION OF MANY-PARTICLE
STATE VECTORS

Let X be the Hilbert space of all states of an arbitrary
number of noninteracting particles, all of the same kind.
Let at(p) be the plane-wave creation operator for this
particle, which we assume to be a spinless boson of mass
mo)0. The Hilbert space K is spanned by the (im-
proper) vectors obtained by multiplying the unique
vacuum state vector,

I vac), by any number of creation
operators from the left. The following relations hold:

Lo(p), o'(e) j=3s(p —q),

I:~(p),o(q)l= o,

a(p) I
vac)=0,

(vac
I
vac) = 1.

(1b)

(1c)

(1d)

(W. A. Benjamin, Inc., New York, 1962), Chap. 1;or see H. Stapp,
Rev. Mod. Phys. 34, 390 (1962).

notion of locality, do not seem to reAect any obviols

physical requirement.
We feel it of considerable interest to try to And as

many properties of the S matrix as possible which
follow from very basic and concrete physical require-
ments; i.e., which must hold if a common-sense inter-
pretation of the theory is to be possible. The symmetry
properties which express Lorentz invariance are of this
kind, and so are, we wish to maintain, the cluster
decomposition properties. For this reason we have
avoided making specific assumptions of the kind that
the interactions can be described by a strictly local field

theory, or that the S-matrix elements possess extensive
properties of analyticity. Weak assumptions naturally
lead to weak results and we believe that the partic-
ular property of the S matrix which we study in this

paper is only one among many of the common-sense

properties which the S matrix must possess if the idea
of approximately local interactions is to be incorporated
into the theory.

In Sec. II we discuss the construction of state vectors
which represent many-particle states. In Sec. III we

formulate the cluster decomposition properties of the S
matrix with which this paper is concerned. In Sec. IV
we establish a parametrization of the S matrix suitable
for a discussion of cluster decomposition properties, and
in Sec. V we discuss the implications of the cluster
decomposition properties for the structure of the S
matrix. In Sec. VI we discuss a representation by
diagrams of our expansion of the S matrix in terms of
cluster amplitudes. We discuss the connection between
these diagrams and the Feynman diagrams of conven-
tional perturbation theory, and we point out that the
S matrix in perturbation theory satisfies the cluster
decomposition properties. We conclude this paper with
some general remarks in Sec. VII.
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The general element A(M, z) of the inhomogeneous
Lorentz group Lo, which has the action

Ax= x'= Mx+z (2a)

on a position variable x in four-space, and the action

(2b)

on a momentum variable, is represented by the unitary
transformation U(A.)= U(M, z) on K such that

U(M, z) Ivac)= Ivac) (3a)

U(M, z)at (y) U—'(M, z) = ((u'/ce) '*e"'"'at (p'), (3b)

where the four-vectors p and p' have components

p= (p,(e) P™p=(y', cv'), (3c)
and where

(d) the function @ is normalized to unity in the sense
that

d'(p ). d'(y. ) I4 (y, ,y.) I'=1.

Thus, the set VP„ is a space of testing function appro-
priate for the definition of tempered distributions'; the
set of all tempered distributions associated with VP„ is
defined as the set of all continuous linear functionals on
%' . The set VP„~ may be regarded as the set of all
e-particle momentum-space wave functions which are
infinitely difrerentiable and "rapidly decreasing, " i.e.,
which are also elements of the set %'„.

Let us now associate with every P in 'P *an operator

At{&}acting on X by defining

= (y)=( '+y')'*.

A position vector x has components

x= (x,t)

(3d)
At{y}= (ri!) ~'(pi) a'(p-)

Xy(pi, ,p.)~'(pi) ~'(p.) . (9)

and we employ a metric such that

x P=&at xp. — (4b)

SI vac) =
I
vac), Sat(y)

I
vac) = at(p)

I
vac), (5)

SU(M, z) = U(M, z)S. (6)

We next define a particular dense set of vectors in the
e-particle subspace K of BC.

Let Vv" be the set of all complex valued functions

@(pi, ,p„) of the n three-inomentum variables

p~, . ,p„such that

The Lorentz transformations A (M,z) are thus
parametrized by the four-dimensional real matrix M in
the group 1.0 of proper homogeneous Lorentz trans-
formations, and by the real four-vector s which repre-
sents a translation.

The collision events are described by the unitary
transformation S which maps 3C onto itself, and which
satisfies the conditions

Somewhat loosely we may say that At{&} is an
operator which creates a cluster of e particles described
by the momentum-space wave function p. The Her-
mitian conjugate of the operator At{&}will be denoted

by A{&}.
We note the following:

(a) If p is any function in 'K„*,then the state vector
A t {&}I

vac) is a unit vector in the e-particle subspace X„.
(b) The set of all vectors cA t{P}I vac), where tt is any

function in VP „~, and c is any complex number, is dense
in BC„.

(c) If P is any function in 'K„*,and if A(M, z) =A is

any element of Lo, then there exists a unique function,
denoted A.P, in &„*such that

U(M, z)A t{g}U '(M z) =A t{AQ}. (10a)

The inhomogeneous Lorentz group therefore has an
action on VP„~ such that VP„*is mapped onto itself. ~ We
are particularly interested in the translations h(I, z) in.
Lo, and we then have

(a) Q is infinitely differentiable;
(b) if D= D (p; 8) is any polynomial in the components

of the momentum variables y and in the differentiation
symbols with respect to these components, then

(10b)

where the function

Q'(yr, .
,p„)=p(pr, .

, y ) exp(zQ z p ) (10c)
&=1

lim r~I D&I =0
@~00

for all integers Ã, where

(7a)
is in'VP *.

(d) If p is in V7„*, then the Fourier transform of g is
also in 'K„*,and roughly speaking we may say that the

r = (pi'+ p2'+. "+y-')'. (7b)

Furthermore, 1et%' ~ be the subset of all functions in
'N„which satisfy the additional conditions that

(c) g (pi, ,y„) is a symmetric function of the
InoInentum variables Pi, „Pe;

' See for instance, L. Garding and J. L. Lions, Suppl. Nuovo
Cimento 14, 9 (1959).A short account may be found in A. Messiah,
QN anthem 3/Iechanics (North-Holland Publishing Company,
Amsterdam, and Interscience Publishers, Inc. , New York, 1961),
Vol. 1, Appendix A; as well as in S. S. Schweber, Ref. 2, Chap. 18.

7 Consequently, the Lorentz group has an action on the temp-
ered distributions acting on VP . See L. Garding and J. L. Lions
(Ref, 6) or S, S, Schweber Reft. 2, Chape. 1$,
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state vector At{&) Ivac) represents an n-particle state
such that its wave function in coordinate space as well
as in momentum space is "rapidly decreasing. " A
Lorentz transformation on such a wave function gives a
wave function of the same kind.

(e) Since the vectors cAt{g ) Ivac) are dense in BC„
it follows that the 5 matrix is uniquely determined by
the set of all matrix elements of the form

&vacIA{@ }SAt{@}Ivac), (11a)

where p and p„are functions in% *and% „*,respec-
tively. We have, of course, the additional trivial matrix
elements

&vac I
S

I
vac) = 1,

&vacISAt{$) Ivac)=&vacIA{p)SIvac&=0. (11b)

The choice of the sets 'VP„, and thus of the associated
set of vectors A t{g) I vac), where p is any element of one
of the sets 'VP„*, is to a large extent arbitrary and is not
to be taken too seriously. We have made our particular
choice for the technical reason that we wish to describe
as tempered distributions the plane-wave 5-matrix
elements 5, defined by

Sma(qlp ' '
yqm j pli ' ' '

ipse)

= &vac
I a(qi) ' ' ' a (q )Sa"(pi) ' ' ' a'(p ) I

vac) . (12)

Therefore, we assume that the formal expressions 5
are, for all m and n, tempered distributions acting on
& +„.Since @ *p„is an element of%" + if tt„and @
are in VP ~ and VP *, respectively, our assumption
serves to make all matrix elements of the form (11a)
well de6ned.

There is, however, no compelling physical reason why
we should favor tempered distributions over any other
kind. We might equally well have chosen some other
space of testing functions, in which case the expressions
5 „would be defined as distributions acting on that
other space instead. Our only reason for making a
particular choice is that tempered distributions have
been given particular attention in discussions of field

theory in the past. ' Some assumption along these lines
naturally has to be made if the discussion is to proceed
at all. We believe that much more could be said about
the nature of the 5 „on physical grounds. The weak
assumption which we have made is sufhcient, however,
for our purposes and a more restrictive assumption as to
the nature of the 5 „will not invalidate our principal
results.

III, FORMULATION OF CLUSTER DECOMPOSITION
PROPERTIES OF THE S MATRIX

We have interpreted the operator At{/), where tt is
in one of the sets VP„*, as an operator which creates an
n-particle cluster described by the momentum-space

The notion of tempered distributions occurs in very many
studies of quantum 6eld theory. See S. S. Schweber, Ref. 2,
Chap. 18.

wave function P, and we have noted that if At{&) acts
on the vacuum state vector we do get a correctly nor-
malized I-particle state vector. We may now study the
state vectors which arise when a product At{&)
A t{p"}of several of these operators acts on the vacuum
state vector. We will only be interested in the special
case of a product of two such operators, and we accord-
ingly limit our considerations to this case; the generali-
zation to more than two operators is perfectly straight-
forward.

Let%"*be the union of all the sets VP„*,n) 0. Let P'
and P" be any two functions in%*. We consider a Unit
vector

I
(P'; 0) (P";s)) in BC defined by

I
(4'; 0)(4";s)&=&L(4', 0)(4";s)l»{4')

&& U(I,s)A t{p")
I
vac), (13a)

where T is a normalization constant given by

~I:Q';0)(~"; )3
= &vac

I
A {g")U—'(I,s)A {y')A t(p')

XU(I,s)A t{P"}I
vac)—&. (13b)

The state vector defined by Eqs. (13) may be in-
terpreted to represent a state in which there is present
a tt' cluster of particles together with a disptaced p"
cluster of particles, the amount of displacement being
described by the four-vector s. Let us regard the two
momentum-space wave functions p' and p" as fixed and
consider the vector

I
(@';0) (@";s)) as a function of the

displacement s. For a finite z, the two clusters may
"overlap" more or less in the sense that wave functions
(say in coordinate space) overlap; but in the limit of
infinite s, the two clusters become effectively separated
as manifested by the fact that the normalization con-
stant Ã tends to unity. This mode of speaking is
admittedly somewhat loose. The picture may be clearest
in the case when 2' tends to infinity along a space-like
direction, although it is generally true that as s tends to
infinity along any direction (or in fact in any manner
whatsoever), the overlap of the wave function P' with
the displaced wave function p" tends to zero.

Thus we claim that if P' and P" are held fixed, then

»m,VL(y', 0) (y";s))=1,
gazoo

where T is the normalization constant defined by Eq.
(13b). We omit the proof which follows from a simple
generalization of the Riemann-Lebesgue lemma,

We are now in a position to formulate our cluster
decomposition property of the 5 Inatrix as follows:

The cluster decomposition property of the S matrix is
understood to be the property that if p', p", |p', and |p"
are any four functions in VP*, then

=&(t' 0&ISI (e' 0)&((P";0)ISI (4" 0)& (1Sa)
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where the state vector
~ (p; s)) is defined by

I (4; «))= U(I; «)A'{4» lvac). (15b)

We include in our definition of the cluster decomposi-
tion property the further condition that

lim((ip';0)
~

S
) (y', 0) (y";s))=0, (15c)

which may be regarded as a special case of the condi-
tions expressed by Eq. (15a).

The authors would like to maintain that the Smatrix,
if it is to be physically meaningful, must satisfy the
cluster decomposition properties expressed by Eqs.
(15a) and (15c).If s tends to infinity along a space-like
direction, we may say that Eqs. (15) express a spatial
cluster decomposition property, and if s tends to infinity
along a time-like direction we may similarly speak of a
temporal cluster decomposition property.

Let us discuss, physically, the spatial cluster decom-
position' property. The matrix element ((ip'; 0) (p"; s)
X ~S~ (p', 0)(p";s)) equals the transition amplitude
from an initial state consisting of a P' cluster together
with a P" cluster displaced by s, to a final state con-
sisting of a p' cluster together with a ip" cluster dis-
placed by the same amount 2'. If s now grows to infinity,
for instance along some fixed space-like direction, we
would expect the transition amplitude to factor into a
product of two amplitudes, namely the amplitude from
an initial P' cluster to a final iP' cluster, and the ampli-
tude from an initial displaced P" cluster to a final dis-
placed iP" cluster. Since the S matrix commutes with all
translations, this latter amplitude is, in fact, independ-
ent of the displacement s, and we obtain the condition
expressed by Eq. (15a). A similar argument leads to
condition (15c), which we may regard as a special case
of condition (15a) with the P" cluster being "void."

Ke may argue in favor of the temporal cluster de-
composition property along similar lines. All "free"
many-particle wave functions spread out in coordinate
space with the passage of time, and after a very long
time the probability of finding a particle in any finite
region becomes very small. Likewise such a many-
particle state is spread out at very early times. Suppose
that we follow the behavior of the particles described by
the initial state vector

~ (P; 0)) in time. At a very early
time, the state has the appearance of a much dispersed
state of a number of noninteracting particles, say n in
number. As time goes on the cluster becomes more
concentrated and eventually the interparticle forces
will play a role. During this time of interaction, the
description of the state as a state of m particles is not
meaningful, but if we wait a sufficiently long time, (how
long we have to wait depends on the wave function P),
the particles formed in the interaction will havehad
time to become sufliciently separated from each other
and the finaI state will look like a superposition of states
of 2, 3, 4, , particles which do not interact with each

P1 )' ' '~P+ )P1 )
' ')P&

where
XS-(q ", ,q.";p ",",p."), (17 )

and

—A"=p q."—p p."
v=1 0~1

r Ir. . . rfb
P1~ ' ',Pn, P1 )' ' ')Ps )

S

Xexp(ip s p ")=0. (17b)

other. There is thus, for every wave function p, a
crudely defined time, t(P), at which the interaction
takes place. Let us now consider the state

~
(~t';0)

(P";s)), where s only has a time component, s= (O,t).
The ip' cluster interacts around the time t'=t(p'),
whereas the p" cluster interacts around the time
i"=t(Q"). The p" cluster displaced by the amount
z= (O,t) interacts around the time (t+t"). We thus
expect that as I, tends to infinity the two-cluster state

~
(p'; 0) (g";z)) behaves like a state of two completely

independent clusters, which is what the condition
expressed by Eqs. (15) asserts.

The cluster decomposition properties which we have
defined correspond to very weak requirements. In
particular, nothing is said about how the correction term
tends to zero, i.e., at what rate the limiting factored
form is assumed. To find stronger statements of cluster
decomposition properties one might be guided either by
potential scattering theory or by perturbation field
theory and make some reasonable guesses. We wanted,
however, to state only the minimum requirements and
leave open the question of how the stronger conditions
may be formulated. As it turns out, even these weak
requirements give a good deal of information about the
structure of the S matrix.

Let us now restate the cluster decomposition proper-
ties in the form of conditions on the distributions S „
defined in Eq. (12).First of all, we note that because of
the relation (14) we can state the cluster decomposition
properties expressed by Eqs. (15) in the form

lim(vacua A{/")U '(I,s)A{iP')

XSAt{y') U(I,s)At{&"}
~
vac)

= (vac~ A{iP'}SAt{P')
~
vac)

X (vac~ A{/")SAt{p")
~
vac), (16a)

and

lim(vac
~
A{iP')SAt{g') U(I, «)At{&"}

~
vac) =0. (16b)

The above conditions are equivalent to the conditions

iz. 6"S r IrS~r,~8 qq1, ' ',Q,Q1, ,q
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The limits in Eqs. (17) are to be understood as limits
of tempered distributions.

Let us focus our attention on the erst of these condi-
tions; the discussion of the second condition does not
introduce any new elements. First of all we note that the
arguments q', p' and q", p" occurring in the two factors
in the right-hand side of Eq. (17a) are all independent;
therefore, we do not violate any of the rules against the
multiplication of two distributions. Secondly, we ob-
serve that Eq. (17a) trivially implies Eq. (16a), whereas
the converse is not immediately obvious. Equation
(16a) implies that a relation like (17a) holds when both
members act on testing functions of the special form
P'*(q'gi™(q")P'(p')P"(p"), but perhaps not when they
act on all testing functions in the space%'~ +„+,. How-
ever, since S is unitary we can approximate an arbitrary
testing function by a sum of testing functions of the
special product form such that the remainder can be
kept as small as we please, uniformly in z, and the rela-
tion (17a) thus follows from the relation (16a).

Before we conclude this section we wish to give an
example of an "Smatrix" which is unitary and which
satisfies the conditions (5) and (6), but which violates
the cluster decomposition properties, and indeed also
violates common sense in a most obvious way.

Let h(pi, pm, p&,p&) be any suitably well-behaved real
function of the four-momenta pi, ,p4, invariant under
all proper homogeneous Lorentz transformations; i.e.,
for every M in I.o we have h(MPi, MP2MP3MP4)
= h(pi, p~,pa, p4). We construct the Hermitian operator
H by

&'(p.) &'(p)~ (p.+p. p. p)——

parametrize the S matrix in a particular way. It is to be
noted that this parametrization is always possible and
does not in itself imply any cluster decomposition
properties.

Let n" (y) and n(p) be two c-number functions of the
momentum variable y. Let P{nt(p);a(p)} be any
formal power series functional of at(y) and n(y); i.e., P
is a formal sum of multilinear functionals of nt(y) and
u(p). We define a linear mapping K, of the set E, of all
such formal power series functionals into the set 8, of
all formal power series operators acting on the Hilbert
space K, by

K(ciPi+c2Pz) =cia(Pi)+em%(P2) (19a)

&(LII ~'(q ))LII ~(y )))

= LII a'(q.))LII a(p.)), (19b)
r~1 e~1

where c1 and c2 are any two complex numbers, and where
P1 and P2 are any two elements of 8,.

The formal power series operator

P{a'(p); a(y) }=&(P{~'(y);~(y) }) (2o)

is thus defined without any ambiguity as a formal power
series of ordered operators which are multilinear ex-
pressions in the creation and destruction operators
at(p) and a(y).

We next consider the inverse of the mapping K. To
shorten our formulas we introduce the following
abbreviations:

where

&&&(p,p,p,p ){II~ (p )(2 (p ))'}
k~1

&&at(pi)at(p2)
~
vac)(vac

~
a(pa)a(p4), (18a)

~ a'=~(y) a'(p)=

~'a=~'(y) a(y) =

d'(y)~(y)a'(y) (21a)

d'(y)~'(y)a(p) (»b)

8~(p; nto)=8(p p—nt~') for forward time-like p=0 otherwise. (18b)
and

~'~=~'(y) ~(y) = d'(y)~'(y)~(y) (21c)
We then construct the false "Smatrix" S"by

S"=exp(iH) .

It is easy to see that S" commutes with all Lorentz
transformations U(M, z), that S"satisfies the conditions
(5), and that S"is unitary. Acting on two-particle states
S" describes elastic scattering of the two particles.
However, S"acts like the identity on any state of more
than two particles, which is obviously absurd. There-
fore, S" clearly violates the cluster decomposition
properties which we have formulated.

IV. PARAMETRIZATION OF THE S MATRIX
BY CLUSTER AMPLITUDES

To study the implications of the cluster decomposi-
tion properties for the structure of the S matrix, we erst

which is easily proved from Relations (1).
It follows that if I is any operator in F„ i.e., any

formal power series operator, then

X=X(e a™(vacate 'Xe ' ~vac)). (23)

We now define the scattering functionat P by

P{at(p);n(y)}=e '
(vacate

' Se ' ~vac), (24a)

If now P{at(p); a(p)} is defined as in Eq. (20), we
have the following simple identity:

P{~'(y);~(p) }
=e t'

(vacate t'P{at(y); a(y)}e 't~vac), (22)
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and from what has been said it follows that the Smatrix
is given by

(24b)S=X(J'{n (p); n (p) }) .

and
Soo=1 and Sii(q;p)=83(q —p),

Sp =S p=0 for t8)0
Si =S ~=0 for m&1,

(25a)

(25b)

for the distributions S „defined in Eq. (12). Conse-
quently, the scattering functional E may be written, in
a unique way, in the form

F{nt,n}=exp ( Q Q Q„„{nt;a}),
m=2 n=2

(26a)

where we may write the functionals 0 {ut;n} in the
form

Q„{at;n}= (m!n!)~

It might be emphasized that all the relations dis-
cussed in this section are relations between formal power
series and, in a sense, combinatorial relations; therefore,
no question of convergence is involved, and the manipu-
lations are legitimate.

The scattering functional F, which is a formal power
series functional of at(p) and a(p), determines the S
matrix uniquely, and vice versa. All S-matrix elements
of interest may, in fact, be obtained by a process of
functional differentiation of the expression F exp(nt n)
with respect to nt(y) a,nd n(y), after which we set
at(p) =n(p) = 0. By differentiating m times with respect
to the first of these functions, and e times with respect
to the second, we thus get the matrix element exhibited
in Eq. (12), namely 5 „.

I et us consid. er the properties of the scattering func-
tional implied by the conditions (5). We immediately
get the relations

expressions E „to be symmetric functions of the vari-
ables q&,

. ,q as well as of the variables y~, ,y„, and,

we assume in the following that the E „have this
property.

We note that each expression E „, nz&2, m~2, is
formed from a finit number of distributions S
where m&m' and. e&m'. The assumption that the
expressions S „are tempered distributions implies that
the expressions E „are also tempered distributions.
The set of distributions S „determines the distributions
E „uniquely, and vice versa. The formulas (26), which
relate the distributions E „ to the distributions S
are thus of a purely combinatorial nature, and again no
questions of convergence are involved.

We shall call the distributions E „cluster amplitudes
and we may now combine Eqs. (24) and (26) to obtain
a parametrization of the S matrix in terms of these
amplitudes, namely

(27)

This expression for the 5 matrix is the goal of the
discussion in this section. ' We emphasize again that the
possibility of this particular parametrization follows
from the conditions (25) only; therefore, the expansion
(27) in no way implies any cluster decomposition prop-
erties of the S matrix. The formula (27) itself is, in a
sense, almost completely trivial, and we could have
stated it directly. However, our purpose with this
somewhat lengthy discussion was to state a few simple
facts and dehnitions which we will make use of in our
study of the implications of the cluster decomposition
properties.

Before we conclude this section we note that the
invariance of the S matrix under translations implies
that for every four-vector s

""'(P); ""(P)}=F{'(P); (P)}, (28 )

x &(qi)" &'(q.)~'(pi) "&'(p.)
(ao)

X+me(qlq ' ' '
qqm! Plq

' ' '
&pn)

X~'(qi)" ~'(q.)~(y )" ~(y-) (26b)

from which it follows that

f~ .{~ '*" '(p);~"" (y)}=~.-{ '(p) (p)}

for every four-vector s.

V. IMPLICATIONS OF THE CLUSTER
DECOMPOSITION PROPERTIES

(28b)

Formula (26a) merely asserts that the terms linear in
nt(y), as well as the terms linear in n(p), are absent in
the formal power series expansion which represents the
scattering functional F.That this is in fact the case we
see by inspection of the d.efinition (24a) for F, when we
take the conditions (25) into account. For reasons that
will become clear later we have chosen to introduce the
new functionals 0 „,which are of order m in nt, and of
order e ino. , and to write F in the particular form shown
in Eq. (26a). We have finally introduced the quantities
E „ to express the functionals 0 „explicitly as in Eq.
(26b). Without loss of generality we may select the

In this section we shall study the conditions which the
scattering functional Ii and the cluster amplitudes E „
must satisfy if the S matrix satisfies the cluster decom-
position properties postulated in Sec. III.

Let us consider Eqs. (17); to these equations we add
the equation obtained by complex conjugation of Eq.
(17b). As we let m, e, r, and s take on all positive

9 The discussion in this section should be compared with the
discussion in E.Freese, Nuovo Cimento 2, 50 (j.955), which is very
similar, except that Freese assumes the existence of local field
operators. Since this assumption is immaterial for the derivation
of the expansion shown in Eq. (27) our treatment divers from
Freese's only in unessential details.
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integral values, we thus obtain an in6nite set of equa-
tions which can all be summarized compactly by a
condition on the generating functional F(nt; n}
exp(nt n), namely the condition

lim(vac~ exp([nit(p)+e "~est(y)] u(p)}S

Xe p([ (y)+e"" (y)] ~'(y)}lvac)

= (vac
~

e 't'Se "t
~
vac)(vac( e 't' Se "t

( vac), (29)

where art(p), ns (p), crt(y) and as(p) are independent
functions of the momentum variable p. The correspond-
ing condition on the scattering functional Ii is

limF([ni'(p)+e ""nst(p)] i [ai(y)+e"&ns(y)]}

=F(~i'(P); ~i(y)}F(~s'(P);~s(y)}, (3o)

where we have made use of the fact that, in the sense
appropriate for distributions,

d'(y)[~i'(p)e""~s(p)+~s'(p)e ""~i(p)]
g~00 (31)

To avoid any possible misunderstanding we state
that Eqs. (29) through (31) are statements about limits
of tempered distributions, and are to be understood as
such. By functional differentiations of the functionals
occurring in these formulas we recover the distributions
S „,delta functions in momentum space, or products of
distributions S „and delta functions. In studying
limits of this kind it is, therefore, permissible to treat
the functions nit(p), nst(p), ni(p) and ns(y) us if they
were testing functions, although the nature of these
functions is really immaterial since they play only an
"algebraic" role in the formulas.

If we now consider Eq. (26a), we may reformulate
condition (30) as a condition on the multilinear func-
tionals 0 „as follows:

lim&„„([nit(p)+e—""as'(p)]; [ni(y)+e""n, (p)]}

~~&(+i (P) i +i(y)}+~~~{trs (P) i ns(y)} (32)

Relations (32) are thus a consequence of the cluster
decomposition properties expressed by Eqs. (17), and,
conversely, relations (32) imply relations (17).We wish
to emphasize here that the fact that these two formu-
lations of the cluster decomposition properties are
equivalent is, in essence, nothing but a combinatorial
theorem.

Let us next restate conditions (32) in the form of
conditions on the cluster amplitudes E „,introduced in
Eqs. (26). Taking into account our convention that the
E „(q;p) are invariant under any permutation of the
variables p among themselves and under any permuta-
tion of the variables p among themselves, we thus get
from Eqs. (32)

hmrC„„(qi, ,q; pi, ,p„)e'*. =0 (33a)

where the four-vector 6 is any expression of the form

~=+ e,"p.-g 0,'q„ (33b)

and where each one of the numbers 0 is either zero or
one, except that they are neither all equal to zero nor
are they all equal to one. The limit in Eq. (33a) is of
course to be interpreted in the sense appropriate for
tempered distributions.

What condition (33a) roughly states is that the
cluster amplitude E „does not contain any delta func-
tions, nor any derivatives of delta functions, the pres-
ence of which would imply conservation of energyor
momentum within a subset of variables picked from the
set of variables gi, ,q~, pi, , p„." On the other
hand, E „does have a delta function as a factor which
implies conservation of to/al four-momentum of the
particles whose momentum variables occur in E „.We
return to this question later.

It may be illuminating to consider the operator S"
defined in Eqs. (18) as an example of a false "Smatrix"
for which the cluster decomposition properties are
violated. Since S"still satisfies conditions (25), we may
represent S" in the form (27), where the corresponding
"scattering functional" F" is expressed [as in Eq.
(26b)] in terms of certain distributions E „".In this
particular case we have E „"=0 whenever m&e, and
furthermore we have the particular relation

&ss"(qi, qs, qs, yi, ys, ys)

TaE&5s('qi pi )+ss (qs qs'; ys', ys'), (34)

where the sum is over all permutations (qi', qs', qs') of
(qi, qs, qs) and all permutations (yi', ps', ps') of (pi, ys ps).
The distribution E33", therefore, violates the cluster
decomposition property expressed by Eq. (33a).

Since we know that the cluster amplitude E „must
contain as a factor a delta function which enforces
conservation of total energy and total momentum in the
scattering process, we may exhibit this factor explicitly
and write

It tnt(ql) ' ' iqm i pi&
' ' ' tp~)

=54(E e.—Z P.)(II [2~(q.)] '}
x~1 e=l r=j

&&(II[2 (p)] }(:-(I "v- P " P.) (» )
s=1

"That the S matrix should have a structure of this nature is, of
course, nothing new. A statement to this effect can be in fact found
in the previously cited article by W. Heisenberg, Z. Physik 120,
513 (1943), p. 527, and our conditions (33) are, therefore, merely
an elaboration of Heisenberg's results. For a discussion of this
structure in the case of local Geld theory see %', Zpnmermann,
Nuovo Cimento 13, 503 (1959),
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in which case we may rewrite Eq. (26b) in the form

Q~~{at ~ n) = (y~tml)H d'(qi) "d'(q-)d'(pi) "d'(p-)

m

&& {II~+(q. ~s)L2~(q.)7'~'(q. )
r~l

X{II&+(p. ' ~s)L2&(y.))4(y.))
a 1

m

X~ (Z q Zp—)C-(q " q- p, ",p-) (35b)
r=l e 1

where the function 5~(p; ms) is defined in Eq. (18b).
We call the distributions C „ the invariant cluster

amplitsldes These. amplitudes are defined only on the
physical manifold, OR, in momentum space defined by
the conditions

q.=(q.,~(q.)), p.=(p.,~(p.)),

Z q.=Z p'
r~1 e 1

(36)

for all point q, p in the manifold OR „.This condition is
meaningful since the manifold 5K is mapped onto
itself ue.der any Lorentz transformation. The distri-
butions C „are naturally invariant under all permuta-
tions of the variables q among themselves, and under
all permutations of the variables p among themselves.

The reason why we did not introduce the distributions
C „immediately in our discussion was that we did not
wish to mix two separate issues, namely the cluster
decomposition properties of the S matrix, and the
invariance of the S matrix under homogeneous Lorentz
transformations. A moment's reQection will show that
our discussion applies equally well to nonrelativistic
scattering theories, as it should, provided we employ the
Donrelativistic expression for the energy of a particle as
a function of its momentum instead of the relativistic
expression &u (p). Furthermore, the "covariant notation'"

These amplitudes are to be regarded as distributions
associated with this manifold. This manifold 5R „is of
dimensionality (3m+3m —4); since the distributions
C „have indices m and e, which satisfym~2 and n~2,
we consider only the manifolds 5K „for indices m and n,
which satisfy the same conditions.

The name invariant cluster amplitude derives from
the fact that the necessary and sufficient condition for
the S matrix to be invariant under all Lorentz trans-
formations is that the distributions C „be invariant
under all Lorentz transformations in the sense that, for
any matrix 3f in I.o,

C „(Mqi, ,Mq; Mpi, ~,Mp„)
(q»' ' ')q~ p»' ' ')p&) (37)

employed in connection with the amplitudes C „(qi,
~ ~,q; pi, ,p„) can easily lead to misunderstandings
as it obscures the fact that the invariant amplitude C „
is not defined at all ou/side the manifold BR „.Therefore,
Eq. (35b) must be understood in the sense that the
integrations over the fourth components of the four-
momentum variables q and p are to be carried out first,
leading to the form (26b), with E „replaced by the
right-hand side of Eq. (35a), if we like. In this paper the
question of whether it may be useful to extend the
definition of the distributions C „outside the manifold
BR is not considered.

We have stated that the C „may be regarded as
distributions acting on suitable testing functions defined
on the manifold 5K „.A precise statement of the nature
of such distributions would involve a technical discus-
sion of the nature of the corresponding testing functions,
which we feel we can properly omit. Anyway, it should
be clear that the fundamental property of these dis-
tributions is that E „,as given by Eq. (35a), is a dis-
tribution of the postulated kind; i.e., a tempered
distribution for the purposes of this paper.

The cluster decomposition property of the distribu-
tions E „, as expressed by Eqs. (33), may be reformu-
lated as a similar condition on the distributions C „,
namely

hm+mm(q»' ')qm j pii)
' '&pa)8" (38a)

where the four-vector 6 is any expression of the form

~=P e."p.-g 8,'q„ (38b)

where each one of the numbers 8 is either zero or one,
except that they are neither all equal to zero, nor all
equal to one. The interpretation of the relation (38a) is
again that the distributions C „cannot contain any
delta functions, or derivatives of delta functions, the
presence of which would imply conservation of energy
or momentum for a subset of the particles whose momen-
tum variables occur in the expressions C „.
VI. REPRESENTATION OF THE PARAMETMZATION

OF THE S MATRIX BY CLUSTER AMPLITUDES
IN TERMS OF SCATTERING DIAGRAMS

It is possible to represent the expansion of the S
matrix given in Eq. (27) by a system of very simple
diagrams, "and as such a representation may aid in an
understanding of the nature of this expansion, we dis-
cuss the construction of the diagrams.

We thus associate with the cluster amplitude
E „(qi, ~,q; pi, ~ ~,p„) (or, if we like, with the in-
variant cluster amplitude C „) a diagram like the one
shown in I'ig. 1. The e lines which enter the diagram
from below, and which we might label by the momen-

"Compare with the discussion in Freese (Ref. 9).
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turn variables p&, ,p„, represent m particles initially
present, whereas the m lines which leave the diagram
above, and which we might similarly label by the
momentum variables q~, .,q, represent m particles
which are present in the final state.

I-et us now consider the matrix element of the S
matrix which represents a transition amplitude T
from a state of e initial particles to a state of m 6nal
particles, namely

(vac~Ag ")SAt(lf„')~v ac)=T „=PnT (D), (39)

where P„' is a normalized and symmetrized n-particle
momentum-space wave function, and P " is a normal-
ized and symmetrized nz-particle momentum-space
wave function. To find the matrix element T „we have
to pick out all terms in expansion (27) that have, as
factors, at most e destruction operators, and at most m
creation operators: clearly there is only a 6nite number
of such terms. We may describe all these terms graph-
icaHy by drawing all possible diagrams composed of one
or several connected components, each connected com-
ponent being either a single vertical line, or else a
diagram like the one shovrn in Fig. 1, where the com-
ponents are dravrn next to each other and not inter-
connected in any vray; the total number of lines entering
from belovr is e, vrhereas the total number of lines
leaving the diagram above is nz. For every factor 0
in the expansion. (27) we have a component in the
diagram of the kind shovrn in Fig. 1, and for every pair
of momenta (q', p') that do not occur as arguments in
the distributions E „ in the integral giving a particular
contribution to the matrix element in Eq. (39) we have a
vertical line. We note that if any particular term in the
expansion is to give a contribution which is nonzero,
then the number of variables q "left over" must equal
the number of variables y "left over. "

To every such diagram D, there corresponds a can-
tribution T „(D) to the transition amplitude T „,and
by summing over the contributions associated with all
the diagrams we obtain T „,as stated in Eq. (39).It is
hardly necessary to state the detailed rules vrhereby the
numerical value of T „(D) may be found, given the
diagram D, as these rules should be obvious. Instead,
vre can illustrate the procedure by an example: consider
a matrix element describing four incident and 6ve out-

FIG. i. Diagram corresponding to the cluster
amplitude X

(c)

Fxo. 2. The four diagrams contributing to the matrix element that
describes four incident and fIve outgoing particles.

going particles. The possible different types of diagrams
are shown in Fig. 2. The contribution to the matrix
element associated with the diagram (a) is thus given by

Tg4(D.)=

XE54(q&, ~ ~ ~,qq', pl, ~ ~ ~,p4), (40a)

vrhereas the contribution associated with all diagrams
of Type (b) is given by

T~4(») = («)' ~(q)~(p)4f*(q)4.-(p)

where
X+32(ql q2 q3 pl P2)+22(q4, q5, pa, p4), (40b)

d(q)&(p)=d'(ql)" d'(q6)d'(Pl) . d'(P4),

4v(q) =tv(q~, ,e), 4;(p) =0;(pi, ,p4).

These diagrams can be compared vrith the Feynman
diagrams of perturbation theory, "and we next comment
on the relationship between these two types of diagrams.
Let us therefore consider the S matrix within the frame-
work of perturbation theory.

To 6nd the matrix element describing a transition
from e initial to m 6nal particles we must consider all
Feynman diagrams with the corresponding system of
external lines. Among these there will be diagrams that
consist of a single connected piece, as well as diagrams
composed of several disjoint components. Novr a coe-

"S.S. Schrveber, Ref. 2, Chap. 14.
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(a

FIG. 3. The two dia-
grams contributing to
the matrix element that
describes three incident
and three outgoing par-
ticles.

mected diagram like the one shown in Fig. j. corresponds
in perturbation theory to the sum of all corIrlected

Feynman diagrams that have the corresponding system
of external lines. The amplitudes E „therefore simply
describe the sum of all connected Feynman diagrams,
or, in other words, a process in which atl the particles
involved really interact with each other. Our discon-
nected diagrams, on the other hand, correspond to
disconnected Feynman diagrams, and thus describe
processes in which two or several clusters of particles
interact independently of each other.

As is well known, there corresponds to every con-
nected Feynman diagram a delta function as a factor in
the matrix element which implies over-all conservation
of four-momentum, but there is no other delta function
which would imply conservation of energy or momen-
tum for a slbset of the particles whose momentum
variables occur in E „.This property makes the identi-
6cation of our connected diagrams with the sum of all
corresponding connected Feynman diagrams unam-

biguous, and expansion (27) is therefore nothing but a
statement of the combinatorial rule whereby one ob-
tains the contribution to the matrix element from all
diagrams, given the amplitudes corresponding to all
connected diagrams, and it is easily veri6ed that this
correspondence holds in every detail.

We expect, of course, that the perturbation theory
formulation of 6eld theory should automatically contain
the cluster decomposition properties since a local
interaction is introduced from the beginning, and the
conclusion that this is the case is, therefore, almost a
triviality.

Thus, within the framework of perturbation theory,
the cluster expansion given in Eq. (27) has a very trivial
interpretation. In the case of a general S-matrix theory,
not necessarily based on a local field theory, we may say
that the procedure leading to Eq. (27), which can al-

ways be carried out for a physically meaningful S
matrix, tells us how to find those contributions to the
S-matrix elements which correspond to the situation in
which all the particles interact mutually. Therefore,
these contributions have to vanish when the particles
become separated into two or several clusters of parti-
cles such that the "regions of interaction" of the sepa-
rate clusters have large separations in space and time.

In this connection we wish to discuss the relevancy of
expansion (27) to the so-called substitution principle
(or crossing symmetry) in particle interactions. "It is a
commonly held belief that the matrix elements for two
diferent processes which are described by diagrams
with the same number of external lines are related, and
that one amplitude can be obtained from the other by a
process of analytic continuation, which, if it is to have
any physical meaning at all, involves only those invari-
ant scattering parameters which can actually be varied
in the experiments. A detailed general formulation of
this principle, which would involve a detailed statement
of the domain of analyticity together with a detailed
statement of the path to be followed in the continuation,
has not been given yet. In spite of this, it is believed-
and we share this belief —that some principle of this
kind relating large classes of otherwise completely un-
related processes holds, and that it represents an im-
portant, although presently not well understood, feature
of elementary particle interactions.

To illustrate this principle let us consider the dia-
grams shown in Figs. 3 and 4. It should be clear that,
whereas the amplitude corresponding to the diagram in
Fig. 4 might be related by an analytic continuation to
the amplitude corresponding to diagram (a) in Fig. 3,
the total amplitude corresponding to both diagrams in
Fig. 3 cannot be obtained from the amplitude described
by the diagram in Fig. 4. We therefore believe that the
substitution principle, if valid at all, can hold only for
the connected diagrams; i.e., C „might be obtainable
by analytic continuation from C „whenever (m+e)
= (m'+e'). Expansion (2/) thus enables us to identify
the partial amplitudes of the S matrix for which a sub-
stitution principle might be formulated. We are, of
course, not in a position to say anything more about the
substitution principle since we assumed so little about
the nature of the interactions.

VII. CONCLUDING REMARKS

We have studied some very simple properties of the
Smatrix which reQect the approximately local nature of
the interparticle interactions. We should again empha-
size that our considerations apply both to nonrelativistic
and relativistic scattering theory. We have only made
use of the translational invariance of the scattering
description, but not of any invariance under the
homogeneous Gallilei or Lorentz groups, except in the
discussion of the distributions C „, which refers speci-
6cally to relativistic scattering theory.

Our results are not in any way surprising. Within the
framework of the perturbation theory approach to field
theory, these cluster decomposition properties are a
triviality. If, again, we consider S-matrix theory in the
spirit of Heisenberg's original formulation' we note, as

"Crossing symmetry is invariably included in the programs
based on the analyticity properties of the S matrix; see Refs. 5.

'4 See W. Heisenberg, Z. Physik 120, 513 (1943). In this con-
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we have stated, that our conditions (33) together with
expansion (27) are at least implied in Heisenberg' s

work, although the conditions are not spelled out in full
detail. We felt it would be worthwhile to emphasize the
importance in principle of these conditions, to formulate
them in detail, and to trace their origin back to the very
transparent physical conditions discussed in Sec. III.

We feel that the simple cluster decomposition proper-
ties which we have studied are only the simplest ex-

amples of a whole hierarchy of related properties that
all derive from the approximately local nature of the
interaction. On the next level we would expect to find
conditions which would tell us something about the
manner in which the remainder in Eqs. (15) tend to
zero. We could, for instance, consider a three-particle
scattering event. For a certain initial configuration this
event would look as if particles 1 and 2 would scatter
6rst, after which one of the final particles in the first
scattering event would scatter with particle 3. The
bonafide three-particle cluster amplitude E33 must,
therefore, for certain initial configurations, "factor"
approximately in such a way that the event can be
described as a succession of two two-particle scattering
events. This kind of cluster decomposition property is
certainly different from those that we have studied, but
it is likewise a property which must be satisfied if the S
matrix is to have a sensible interpretation. "As far as
we can see, this property, as well as the direct generali-
zation to several particles, does not follow from the
properties already assumed, but has to be imposed
separately. We cannot display an example in support of
this belief, as it is a nontrivial problem to find an S
matrix that is unitary and that has the structure given

by Eq. (27) and condition (33).
We have no reason to believe that the additional

cluster decomposition property just mentioned in any
way exhausts the possibilities, but rather that more and
more such properties may be formulated and supported

nection we also wish to draw attention to some remarks made by
¹ N. Sogoliubov, I'roceeCings of the 1958' Annlal International
Conference orr Hr'gh ENergy Physics (C-ERN, Geneva, 1958),
p. 129.

'5 Very closely related problems of this kind have been studied
by M. L. Goldberger and K. M. Watson, Phys. Rev. 127, 2284
(1962), and by M. Froissart, M. L. Goldberger, and K. M. Watson,
Phys. Rev. 131,2820 (1963).We wish to thank Professor Watson
for showing us the manuscript prior to publication.

FIG. 4. The only diagram contributing to the
matrix element that describes four incident and two
outgoing particles. If crossing symmetry holds, this
diagram is related to the diagram of Fig. 3(a).

by physical arguments. It then becomes an interesting
problem how to find atl of these without resorting to
some kind of configuration space formulation of scatter-
ing theory. "

Note addedin proof. Dr. Henry Stapp, Lawrence Radi-
ation Laboratory, University of California, Berkeley,
informs us that he has previously considered the factori-
zation property of the S matrix within the framework
of the so-called analytic S-matrix theory. In a study by
Dr. Stapp of the connection between spin and statistics
this factorization property was added as an additional
postulate to the previously formulated postulates of
analytic S-matrix theory.

We thank Dr. Stapp for showing us his unpublished
manuscript on these questions, and for interesting
discussions.
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"Cluster decomposition properties of a somewhat different
kind, which may be said to correspond to common sense properties
of vacuum expectation values of products of local quantum Geld
operators, have been studied fairly recently within the framework
of local field theory: H. Araki, Ann. Phys. (N. Y.) 11, 260 (1960);
H. Araki, K. Hepp, and D. Ruelle, Helv. Phys. Acta 35, 164
(1962);A. S. Wightman, Ref. 4. We do not know what the precise
connection is between these cluster decomposition properties and
the cluster decomposition properties we have discussed and hinted
at in the present paper, although it is clear that there must exist an
intimate relationship. It would appear that the cluster decom-
position properties known in Geld theory would be much stronger
(because they are based on the assumption of a strictly local Geld)
than any property which one might arrive at on the basis of a
merely approximately local interaction.


