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Production and Scattering in Simple Models*
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Some properties of the V8 scattering amplitude in the Lee model are discussed with reference to the inQu-
ence of production (Ntttt) on scattering. As long as the coupling is not too weak, production has important
e8ects on scattering even at low energies. For a wide class of well-behaved cutoA functions there can be no
resonance in VO scattering unless production is taken into account. Static model calculations for meson-
baryon scattering neglecting production can therefore be quite misleading. There is in general no simple
relation between the locations of resonances in Ve scattering and the production threshold, even in the strong
coupling limit Z=O. A modi6ed version of the Lee model with odd-37VO parity is discussed. Two diferent
sets of integral equations for the V8 —+ V8 and V8 —+ EH amplitudes are derived, in which the influence of
spin enters in a nontrivial way.

I. INTRODUCTION

HE Lee model' has proved useful in clarifying
many dynamical questions' ' as well as questions

of renormalization. ' In particular, V8 scattering pro-
vides an example of scattering with a production (1V88)
channel. In the first part (Sec. II) of this paper we
derive and discuss some properties of the V8 scattering
amplitude, with special attention given to the influence
of production on scattering, and the possibility of a
resonance resulting from the opening of the production
channel as proposed by Sall and I'razer. ' It will be seen
that the existence of the production channel enhances
elastic scattering even below the production threshold,
and under certain circumstances a resonance below the
production threshold is possible. The location of the
resonance however depends on the form of the cutoQ
function and in general bears no simple relation to the
production threshold. Except in the weak-coupling
limit, the inclusion of production changes the high-
energy behavior of the scattering amplitude and greatly
modihes the low-energy behavior of the real part of the
scattering amplitude. This throws some doubt on the
adequacy of static model calculations which neglect
production.

In the second part (Sec. III) of this paper we consider
a modified version of the Lee model with a pseudoscalar
8. In this pseudoscalar model the V and A8 states are
trivial modifications of the scalar model, essentially
because E8 scattering takes place only through one

(p»,) channel. For V8 scattering both p&/s and ps/s
channels are open, resulting in coupled integral equa-
tions not soluble in closed form by standard methods. '
In this model V8 scattering is analogous to low-energy
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Ztp scattering (in view of the odd ZF parity) neglecting
pionic sects. The fact that this model gives only
P-wave scattering in disagreement with experiment
may be an indication of the importance of the E—+
interaction in E—S scattering.

Q. SCALAR CASE

The V8 scattering amplitude has been obtained by
Amado' in closed form and may be written~

g' -1—(to—A)C(to)
T(to) = +p(~)

(~—~) -1+(~—~)C(~)

g'/'(~ —~)
(1)

D(to)

where g denotes the renormalized coupling constant
and we have included the (renormalized) V—X mass
difference ntv —m/v=3, . The functions P and C are
given by8

gs (co—+) (oore —1)1/2 f 2 (col)dool

p(~) =
(co r—6)s

(cot—oo —is)
and

g2

C(co) =

(cot' —1)""f'(oor)P(to+6—tot)dort

r (~r—~)'~1—P(~t) ~'(~r —~)L1—P(~+~—~r))
(3)

the cutoff function f'(to) being such that all integrals
converge and no ghost arises. This means that

1—P(oo)=Z, where O&Z&1

and we shall require that

f'(co) =O(1/to") for large oo, where v) 0.

7 Throughout this paper we consider only the case when the V
is stable: mv —m~(my. All the masses and coupling constants
appearing in the equations are renormalized quantities.

The mass of the 0 has been taken to be unity.
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We begin by first neglecting production. The function
D(o/) in this approximation is then simply 1+/(cd). s

For a resonance to occur, it is necessary that ReD(o/) =0.
Since P(1)&0, the quantity 1+P(1) is less than unity
and may be negative. 9 At the high-energy limit, we have
1+P(eo)=2—Z&0. Suppose 1+P(1)&0. If the cutoff
function f'(cd) is sufficiently smooth (differentiability
would suffice, but is not necessary) for cd&1, the real
part of /ti(/d) is continuous in the physical region so the
phase shift begins as 7r at zero energy and falls to zero
at infinite energy, passing through —,'m at some finite
energy. '0 This behavior corresponds to the existence of a
bound state in the t/'0 system according to Levinson's
theorem. " It is well known, however, that such a case
in general does not give a bump in the scattering cross
section, as follows from a theorem of Wigner. "

Suppose then 1+P(1)&0. We shall show that for a
wide class of cutoff functions, ReL1+P(o/))&1+P(1)
for co&1, and therefore no resonance is possible. "More
precisely, if f'(/d)(/d+1)'/s/(/d 6) is—a nonincreasing
function of cd for o/& 1, then Rep(cd)&/fl(1) for o/& 1. To
prove this, let

fs(cd ) (cdis —1) /sdcdl

(/dt —6) (o/i —cd)

so that Re/(o/) = —g'F(o/)/4/rs. We wish to show that
F(cd)&F(1) for cd& 1. But for cd& 1 we have

F (o/) —F(1)

P (cd i) (cd ts —1)i/'do/i
= (cd —1)F

(cdi —6) (o/t —1) (cd] cd)

X (6)
(cdi—1) / (o/t —cd)

9 That this is possible without violating the unitarity condition
(4) may be seen by letting /1 =0, f'(co) = 1/(a&+1). Then condition
(4) gives 0&1—gsLxs —1j/4n &1, or gs/4ss&2/(v —2) =1.4.
Taking g'/4vs=1. 3, for example, we have 1+P(1)=1—1.3&0."It is, in principle, possible that the function ReL1+P(&o)7 may
go through zero 3, 5, 7, etc. times before approaching the high-
energy limit 2 —Z&0. For the 2nd, 4th, etc. zeros Wigner's
theorem I'Ref. 12) does not apply. However, it is easy to convince
oneself that such behavior calls for quite unreasonable cutoB
functions.

"N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 25, No. 9 (1949).

's E. P. Wigner, Phys. Rev. 98, 145 (1955).
'3 Our result below is useful also in discussing the E8 scattering

amplitude, which has the form g'(/1 —&o) 'L1 —p(~) p', and shows
that the real part of 1—p (ca) can vanish for au & 1. It is therefore pos-
sible to have a resonance in E8 scattering, in spite of the fact
that the E8 interaction is repulsive. This conclusion has also been
reached independently by Aitchison (private communication) and
Fonda (to be published).

The principal value integral in the braces may be
directly evaluated and has the value zero. So Eq. (6)
reduces to

F( )-F(1)

= (cc—1)
(/dr+1)'/s (cd+1)'/s

G)y — M

It follows from this that

Im{LI—(~—~)C(~)3/L1+(~ —~)C(~)])&o
for all cd. Recalling Imp(o/)&0, we see that production
has the effect of enhancing the imaginary part of the
scattering amplitude above the production threshold.

(b) C(1)&0.This means that D(1)&1+P(1)&1, and
D(1) can be negative for large values of g'.

(c) For 1&a/&2 —6, C(cd) is a real, increasing func-
tion of cd. To prove this let P =g'/47rs and

"f4 (cd) (/ds 1)'/'d/d—

(cd —6)'(o/ —s)

Then (4) implieS that i/(/d) ~ —X/Cd aS Cd —+ ce, Where
'Al'(1. One has

I'-'C (cd) =

F (o/+ ~ /di)—
~ (8)

1+7 (cd —cd i) td (cd+6—o/t)

For cd&2 —2 the argument of y(oi+6 —cdi) over the
region of integration ranges from —eo to cd+6—1&1,
where p is analytic and may be differentiated under the
integral sign. We shall prove property (c) by showing

X (7)
(cdi —1) / (cdi —cd)

WhiCh iS nOnpOSitiVe if L(cd+1)'/'/(o/ —d) jf (I) iS nOn-

increasing, for then the integrand is never positive. It is
clear from (7) that our assumption is sufficient but by
no means necessary. For example, if f'(/d) =1/(cd+n),
then F(/d)&F(1) for all n&0 and /d& 1. Other examples
may also be readily constructed, but there is not much
point in pursuing this further, as the behavior of
ReD(cd) is quite different when production is taken into
account. We merely conclude that for a wide class of
well-behaved cutoff functions, there is no resonance in
t/'0 scattering if production is neglected.

Next we discuss the full amplitude (1). It is con-
venient to list here some properties of the function
C(cd). Properties (a) and (b) are obvious from the
definitions while the others will be proved.

(a) ImC(cd) =0 fOr /d& 2—6
&0 for cv& 2—~.



h t der the integra sg

ip (ei+ 6—n/i)

1+r (n/ —/di) /p(~+

p (d/d~) (1/v')

HE

( 2 1)'/2f~(eda)de/i +

( g)&
I
1—p(e/i) I

' "i
P(pi+6 1)

(15)X
1—P(n/+6 n/i)

(n/ —5)C (rd)

11 that f'( )=o('/"") "rove th» reca
large M By dehnition

ressed the argument of ip(e/+6 —&oi .where we have suppresse
For this purpose de6ne ae a function p( ) I

is boun ed there exists for
0 nergy Q suchuch that

A(s) = (1/X)+ (1/s q (s)), (10)
(n/

2 1)1/2

1 tic in the upper half-plane with awhich is clearly analyti
cut from 3=1 o

and therefore has an integral representation o

X(s)=— p(E)dE/(E s. —

Since (1/2i)[q (E+ie)—ip(E—ie)])0 over the cut,
it follows that

(M —~)'+""I1—p(~ ) I'

5&0 choose ~ to be soE Furthermore, for anyfor cubi) . ui
large that co))E and

1—Z P(/d+6 E)—
Z 1 P(/d+6 E—)—

Then we have

—[h.(E+ie)—h. (E—ie)J
2i

2i q (E+ie) qr(E ie)—
itive definite. We havefor E)1.Thus, p(E) is positive

"p(E)dE

1 E—s
(12) +

1—Z

,(
—1)I

' ( '—1)'"f'(»)d~i

(~ —~)'I1—p(~ ) I'

—co~&1 we may differentiate underand for s=n&+5—n/i( w
the integral sign, giving

(id
2 1)l/2

(e/i —6)'+"/'
I
1—p(n/, ) I

' (16)

so that

deil p)

"p(E)dE

1 B—s

1 "Ep(E)dE

X i (E—s)'

"p(E)dE

(E—s)'
1 s an absolute value less thanThe last integral as an a s

f (Goi)de/i P(co+6—edi) co—5

E +) 1 p(e/+6 e/i) Mi (d8 COi—

ade arbitrarily small since
'

ce the integralwhich can be ma e ar
Finally, we have, econverges.

G)~ 00

1 "Ep(E)dE 1

(E )'—
1 This shows that d/dhdC(n/) )0 for &o(2—5since)F(1. T is s ow

) () h th
e ——1+1/Z)' as (o -+ ~.

The function (e/ —6 C n/ app
tive real valu (

. Ph s. (N. Y.) 9, 169i
' '

d to Schwinger LAnn. y. . . 69'4This trick is ue o
(1960)g.

(~—~)C(~) ~—

(1
—Z)

ded b a constant times'~ @he integral is bounde y

(cd —A 1 1kd /(0 "/ (Cdl Gl)

h a negative c co. See R. Omnes,roaches a negative constant for large ap.
Nuovo Cimento, 316
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where the integral has been evaluated by integrating
the function (1—P(cp)) ' from po —ip to 1 i—p and then
from 1+ip to ~+i 2, closing the contour around a circle
at infinity and applying Cauchy's theorem.

It follows from property (c) that for 1&pp(2 —6 the
function L1—(p/ —6)C) (pp) 1/L1+ (cp —6)C(p/) j& 1 is real
and decreasing. This means that even below the
production threshold, the presence of the production
channel is felt through a decrease in the real part of
D (p/), thus enhancing the elastic scat tering when
1+P(p/) is positive, and inhibiting elastic scattering
when 1+P (p/) is negative. The function ReD(~) may be
rewritten, for co&2—6

ReD(pp)
= 1—L2 (Ip —6)C(p/)/(1+ (pp —6)C (p/)) $+ReP (Ip), (18)

which shows that below production threshold ReD(Ip)
consists of a decreasing part, roughly of order g', and
the term ReP(p/) which is of order g' and which, accord-
ing to the discussion following Eq. (7), in general,
increases with co at low energies. For large values of g'
the production term may dominate over ReP(p/) and
produce a zero of ReD(pp) below the production, which
is, in general, impossible if production is neglected.

The high-energy limit of D(p/) follows directly from
property (d). It is real and equal to Z/(2Z —1). If g'
is small, Z=1 and Z/(2Z —1) is positive, as is D(1).
Therefore, when the interaction is suKciently weak, the
real part of D(p/) remains positive for all p/&1 and no
resonance occurs. In the strong-coupling limit Z=O,
Z/(2Z —1) is negative. A resonance is then possible
when D(1)&0, for if ReD(pp) is continuous it must pass
through zero at least once. This need not be the case if
either the cutoff function is singular such that ReP(cp)
and C(p/) are discontinuous, or the factor 1+(Ip —b)C(cp)
vanishes for some cv)1. I.et us examine the latter
possibility a little more closely. By property (b), the
quantity 1+(1—A)C(1) is positive, and by property
(c) the function (1p—h)C(pp) is real and increasing for
1&cp(2—h. Therefore, 1+(p/ —h)C(p/) cannot vanish
for 1&co&2—A. Above the production threshold
cp&2 —6, the imaginary part of C(p/) is given by

( g2 2 m+5—1 (~ 2 1)1/2f2(~ )J~ ~(~+g ~ )
Im (,—~)'I1—p(,) I'1—p( +a—,)

/c')' ""' ( '—~P'/'( )«
&4+ I (~I—~)'I1—p(~I) I

III. PSEUQOSCALAR CASE

We now turn to the case when the EV0 relative parity
is odd. As is well known, the spins of the heavy particles
are irrelevant in Ã0 and V0 scattering in the standard
Lee model, and the same scattering amplitudes are
obtained if the V and the E are scalar particles instead
of fermions. This "degeneracy" is removed when the 0

is pseudoscalar and the interaction is of the type e V

which can Aip the spin.
We begin with the Hamiltonian

H=Hp+BI

+p=Z2N+V /v+2/2&EN $N+~ p/K/IK IIK

f(~)
Hr= g g Q'v IF' KQN1IK+lpN Ir' Kfv/IK j* (2MV)I/2

+Z82N+vV v ) (19)
where

4v=Q bv 1/. , 2 bN /2ay

u and e being Pauli spinors of the V and Ã 6elds.
Otherwise the notation is standard, ' with the commu-
tation relations

Since the integrand is non-negative, ImC(pp) can vanish
only if f'($)f'(p/+6 $—) =0 for 1(P&p/+6 —1. Hence,
the function 1+(co—A)C(pp) has no zeros for pp&1 if
the product f2(&pi) f2(p/+6 —cpi) is di8erent from zero
over a finite interval in the range 1&p/I(Ip —1+6,
provided f2(p/) is not so singular that C(&o) is dis-
continuous at or=2 —A.

For large values of g' it may also happen that
D(1)&0 and ReD(p/) remain negative in, the physical
region, so that there is again no resonance.

Summarizing, we give a set of sufhcient conditions
for a resonance (defined as a situation where ReD(pp)
decreases through zero at some finite energy) to occur
in Ve scattering:

(i) D(1)&0 and Z(-,'.
(ii) The cutoff function f2(Ip) is sufficiently smooth

such that both p(p/) and C(p/) are continuous for
M+ 1.

(jji) ji~+p If2(p/I—)f2(p/+g p/I)dp/I&0 for
AQG0(

The location and width of the resonance clearly
depend on the product gpf2(pp) in an essential way and
the resonance in general needs not lie above or close to
the production threshold.

where

and

Iill p (p/+ 6—071)
X

I1—p(~+&—») I'
~ (~ 2 1)1/2f2(~ )/f~

p (s)=
(IP1—6)'(P/I —S)

Im(p(s) =pr(s2 —1)'/'f'(s)8(s —1)/(s —6)'.

(bv"' bv') = Ls, fbN"', b—N') =Lsz
L/IK' )/IK]= 8KK', etc. (20)

The V and lV0 states are trivial generalizations of
those in the scalar case. We shall merely list the results
here as they will be needed later.
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Let Next consider the amplitudes for VO —+ VO and
VO —+ TOO. Again the calculations are quite similar to
the scalar case, ' and we sketch only those steps where
our equations look appreciably different from the scalar
case. The relevant amplitudes are

( lE

f (t) =I —&—y~y f y'(t), fp=fp(0),
dt

(2o)V)'~'( d
io) =

l

—'—+ )~ (t) i iÃ)=
f((o) ( dt

& Vp K', out
I
V, K, in)

, f(~)f(~')
=8~p8~Ki+27l16(co —M ) Tp~(K, K) ~

2 V ((oa) ')"'
Then we have

(2(o V)""
Tp. (K', K) = (Vpl j'I V.K, in)

f(~)(22)J(t) gP~ n KPy
&

g f(M)
fp(t) = bmy—byp(t) vptg ~ Ky~u„, (21) where

Z ~ (2&vV)'"

&apl jl V.)= —g~ptn K...

&Ol fpl1V. K, in)=—

(23)
and

—= up'LK K'n (a&)+Ze (KX K')p (co)j u. , (29)

&XpK', outlX K, in)
f(~')

=8 p5KK+2m'ib((o —(o')
(2~' V) l

X&1Vplg'I X.K, in), (25)

g'f(M)np'e K'o. Kn.
&/pl j'IX.K, in)= (26)

(2~V)'"(~—~)L1—0(~)l

g (cv —6) (Q)P 1) I f (G)y)dory

1 (o)= 27rf5(Mp —M —M )—
K2 (2&v V)'t'

X&XpK', outl j I
V.KO, in). (30)

Instead of (30) it is more convenient to work with
the amplitude'

&XpK', inl y I V.KO, in)=e-"'&&SpK', outl pl V.K» in).

Thus let

(coy—6)'(coy —co —Le)4m'
2 V((coo)')'t2

Their scattering phase shift 5z is given by (XpK', inl jl V.Ko, in)=—Fp. (K', K, Ko)
f(M') f(»)e' sin5~ —— fg'(or) (cu' —1)'"/4n (5—co) L1—P (~)). (28)

Equations (25) and (26) show that cV0 scattering
takes place only through the pqt2 state. This can also be
seen by inspection of the relevant Feynman diagrams,
and is the main reason of the close analogy to the scalar
case. The analogy is largely lost for VO scattering, which
has two amplitudes instead of one.

=ytptl Born term+Kp Kn. K'F((u', (oo)

+Kp' K e' KG((o',(op)+K' K e' KpH(co p)o)

+iKo (KX K')I(co', (oo)) u. . (31)

Proceedings in the standard way, ' we find

2Vga)p
Pp„(K', K,Kp)= ytpte. Ku."oK,K

f '(~o)

(2(ooV)"'

fllN+ co' Eg, Ze——M +E~ sly Mp —Se

P p I
j'I ~&(~

I jl V-K» in& P p I jl ~&&~ I
j'

I V-Ko, in&

(32)

where only
I e)=

I V) and
I I)=

I Xe& contribute. The sum over the intermediate states is therefore equal to"

Npte K'u, Npte Ku,—
g u, tl Ko Kn(ceo)+in (KoXK)y(coo)] v — v, tLKo K'n(coo)+in (KoXK')y(coo)] u

0) —6 CO
—Mp —'L6

(2~oV)'12 &&pl j'l&V~K~ in&&X,K„inl jlV Korin) &ilrpl jl&PK~ in&P. K~ inl j'IV K»in)
(33)

Q)p KI Q) —
COy

—Z6 6) +G)y —»—6—le

' In the fol1owing, repeated indices are to be summed over.
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(26) and (31) into (33) and c. y g

o' ~ (r' K(r"' pH M) (dpSp
127r2

d i r the su111 over.arr in t the angular sntegratzons we n oSubstituting

where

je K'e (Kp)(K)I(M),Mp)$—

A (M) =g'/(6 —(d) $1—P(M)]

M1+M —(dp —6—pp

(35)

is related to the E0 scattering phase shift by

(d Mp —1)p)'/4)r.8 Sln()~= f (M A (d M

the following integralancients o var' ' '
iants one obtains t e o oeKcients of various spin invarian(32) and equating coeKcients o var'Returning to

equations:
1 1—gA ((di))!

V(Mp)(((Mp)
F(M', Mp) = —

g M— —$6

)~ ( ) H (M 4Mp)+ (M43F(M)&Mp)+G(Mx, Mp)+ )~ 4H((d), (dp) G M),Mp 1,

CO
—

Ggp
—6—Z6

E(M()JM1
1+-

37r
(36)

7(Mp) ~(M p) —gA(Mp)l, . —, )
I(M1,Mp) 3F(M),Mp)+G(M(, Mp)+H(Mz&Mp(M(,Mp) —H(M1,Mp)+I Ml, Mp )q

M —6 M —Mp

1 00
Q

+— E((d1)JM1
3Ã j. M)+M —Mp —6 ppM1—M +'LP

1 1
H(M' Mp) =ah (Mo) —A(Mo)j, —, . )

1 1
(37)

00

( 1 1
Ii ', )=)I:~( )—~i )jl(,)

(38)d G(M), Mp) —H(M1p&p)+.,-„-.)~, —,', , ),3'

38 have the following crossing propert1es.

Ii ~G, B+-&-

articles: ~ ~~p —~'~ f I

the amplitude Tp~, p
'.te p Kp:d f-th--d--g t ~

(2Mpl')'" (Ol fp I&. 1»
M]Mp

(39)

which gives a er sft some straightforward algebra

1
n(Mp) =A ((dp)+

3&g
E((d))ZM1L3F(M), Mp)+G((d), (dp)+H M1~(dp (41)

V(Mo) =A(Mo)+ 3' M I (d1&Mp)] .E (M))ZM)LG(M)&Mp) — (H,M)Mp (42)



2762 H. CHEW

The equations (36)—(38) may be decoupled by introducing the amplitudes P=3F+2G+I and Q=3F—G
+3H 2I—. The decoupled equations take the following form:

2 3
P(td' pop) =g[cr(cdo)+7(coo) —2A (cdo) jl

~PO —
Cdp

—$e cd —6

3
lt(cdt)P(col cdo)I + Idrdt, (43)

(cdt td +$e cot+op poo —6—$e)

1 3
Q(~',~ )=g[2v(~ )—~(~ )—~(~ )3 +,

cd cdp $e Po DJ

1 1 1

+— E (M t)Q (M t,Mp) — t(d t . (44)
X tdt cd +$e' pot+op tdp 6 $e

All six amplitudes Ii, G, B,I, and n, y can be obtained
from P and Q by quadratures since 3F+G+II
=—'(2P+Q) and G H+I= '—(P Q). —The—decoupled
Eqs. (43) and (44) differ from the corresponding
integral equation in the scalar model' in the unequal
coefficients for the "direct" and "crossed" terms under
the integral sign. This lack of symmetry under the
tranSfOrmatiOn cd' ~ &op

—cd'+6 leaVeS an arbitrary
function in the standard solution of equations of this
type discussed by Blankenbecler and Gartenhaus, "
rendering the solution ambiguous. For this reason the
solution of (43) and (44) in closed form does not seem
easy. Numerical integration is of course possible, but it
will be necessary to specify the cutoff function. As
remarked before at the end of Sec. I, this model is
probably not sufficiently realistic to warrant extensive
numerical work.
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APPENDIX

An alternative set of integral equations for Ve
scattering and E00 production in the pseudoscalar
model may be derived by solving the Schrodinger
equation. Again for completeness. we record the results
for the V and XO states as well.

We shall denote the physical and bare V states by
I V) and

I v), respectively. The former is given, by"

with
&'f'(~)Z=1-

2V K po(M Q)

gf(~)
4-p(K) = $$p'e Kv. .

(d,—po) (2po V)'"

(A2)

(A3)

Then it is easily verified that

X p gf(tdp) upt——e Kp$$ /
(2cdoV)' (poo—h)[1—P(poo)j, (AS)

and
f(~p)f (~)4 (~o)

x-p(K) = $$pto Ko Kp$$. , (A6)
2V(pood)r'$ (cd —cdp —$e)

where P(cdp) and A(cdp) are given by (27) and (3S),
respectively. The scattering amplitude is given up to
trivial factors by the part of x p(K) which contains the
delta funCtiOn 8(po —cdp).

Similarly the Ve —+ Ve and VO —+E88 amplitudes
are contained in the state vector

I
V.Ko&+ P M.p(K) I VpK)

KQKO

+Q Q X.p(K, , K,) I$$pK, , K,)
KI K2

=—Z'"I v.Ko)+ 2 ~ p(K)I upK)
KQKp

+P P &.p(Kt, Ks) I$$pKt, Ks&, (A7)

where

For E8 scattering we need an Ee state with an
incident 0 of momentum Ko with unit amplitude,

I$$0)=
I

$K$)+pg I p(K) I$$pK&+Z'1$)%, pI vp). (A4)
KQKp

I
V.&=Z t

I u.&+2 4.p(K) l~pK& (A1)
and

A.p(K) =Z'"M.p(K) (AS)

'7 R. Blankenbecler and S. Gartenhaus, Phys. Rev. 116, 1297 g p(Kt Ks) —s[~ (Kt)y p(Ks)(1959). The arbitrary function corresponds to the function g in
their Eq. (10).
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The Schrodinger equation then gives the following relations:

f(MI)
z(M Mp+smy)A Io(K)= g P $B (KI K)+B (K KI)$ vpte' KN

Kl (2co V)

B~&(KI,Kp)+B~cj (Kp, KI) = —g(MI+cop —cop —6)

(A10)

f(») f(Mp)
n, te Kpu. bK,K,+ M.„(KI}Ip,te Kpv„+1~2 . (A11)

(2M, V) I&p (2Mp V) I~p

EllnllllRtlllg B & Rlld cal'lylllg out tile lenormallzatlon gives fol' KA Kp

g'f (Mo) f(M)
(M Mo)—L1 P(M—o+A M) j—~-u(K}= upte Koe. K u

2V(MOM)"'(M —6)

g'f(co) f(co,) upte. Kle Ku,
A, (KI) . (A12)

(2MV)I'o Kx (2MIV)'~o col+co cop—

f(Mo) f(M)
A,p(K) = „tt K, Ko(, ,)+' (K,XK}b(, .)~.„,

2V(MoM)"'

then (A12) gives the following integral equations

g2 g2i

k(M, coo)CI(M, Mp) = +
GD
—5 42%'

"fP(») (MI' —1)@'LCI(M„M,)+2b(M„M,)gdM,

where

k{M,Mo)b(Mp&o) = g

co—6 12%

f (M I) (col 1) cI (MI, M o)dMI
(A15)

k(colcoo) = (M—Mo)p —p(Mo+II —M)g ~

The equations (A14) and (A15) may also be decoupled by introducing the linear combinations c= p (CI+b) and
d=2b —a. The result is

k (CO&M p) C (CO~COp) = +
co—6 1272

"f'(MI) (MI' —1)'"~(MI,Mo)dM I

GOI+M Mp

(A16)

k(M&Mo)d(M, cop) = g g f (col) (MI —1) ~ 8(col&Mo}I'M I

M —6 12%' MI+M —
MO

—+

These equations determine 2 p(k) and therefore the V—0 scattering amplitude M' p(k) by (AS) together with
(A3). The amplitude B O(kl, kp) is then given by (A11), from which the X—8—tt production amplitude & s(kl, k,)
may be obtained with the aid of (A9).


