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The bootstrap model of the V (vector) meson octet, in which these particles produce themselves as reso-
nances in the P wave, two-particle states of the PS(pseudoscalar) meson octet, is generalized to include the
effect of mass splitting. The three V-meson masses and five V-PS-PS interaction constants are considered
as functions of the three PS-meson masses. Only terms linear in the deviations from degeneracy are included
in the dispersion relations. The physically observed PS-meson masses lead to a calculated p/E~ mass ratio
significantly smaller than one, while the calculated ratio of the mass of the isoscalar V meson to that of the
E* is either somewhat larger than or approximately equal to one. The mass splittings lead to deviations in
the ratios of the interaction constants from the values corresponding to unitary symmetry, but the deviations
are small enough so that unitary symmetry is satisfied approximately. The calculated p7rm- and IC*zE inter-
action constants are about 2 or 2~~ times larger than the experimental values.

I. INTRODUCTION

T has been shown by the author that if the V (vector)
- - mesons p, K*, and either the q or co are regarded as
degenerate resonances in the two-particle, P-wave
states of the degenerate, I'S (pseudoscalar) mesons z.,
E, and g, a simple bootstrap model predicts that the
ratios of the U-PS-PS interaction constants are equal
to the ratios predicted by the octet model of unitary
symmetry. ' In the present paper the degeneracy
assumptions are removed. The bootstrap model leads
to eight independent equations involving the masses
and interaction constants, so that if the PS-meson
masses are specified, one may solve the equations for
the three V-meson masses and the five interaction
constants y„rcrc, y, rrrr, y, , , year rr, and ysr„rr, (where
the symbol M represents the K*). We will take the
PS-meson masses from experiment.

There are three related purposes for this calculation.
The first is to calculate the splitting of the V-meson
degeneracy that results from the experimentally
observed splitting of the PS degeneracy. The V-meson
mass differences will be compared with experiment,
providing a test of the bootstrap model.

The second purpose has to do with the physical
interaction constants. In most comparisons of unitary
symmetry with experiment only partial correction for
the eBects of mass differences is made. For example, it
is often assumed that the ratios of the physical inter-
action constants or, equivalently, of the reduced widths
of resonances, are given exactly by unitary symmetry.
This assumption is certainly not correct, but one does
not know how to improve it without using a dynamical
theory. ' The assumption of exact interaction symmetry
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' R. H. Capps, Phys. Rev. Letters 10, 312 (1963).' This problem is most famous in connection with the pseudo-
scalar meson-baryon-baryon coupling constants. One often hears
the question, "Are the pseudoscalar coupling constants G' or the
pseudovector coupling constants f' to be related by unitary
symmetry?" This question is misleading since it is clear that the
problem would exist even if only one set of coupling constants had
been defined. The question of how the PS-meson mass differ-
ences affect interaction constants can never be answered without

seems particularly dangerous when applied to PS-meson
interactions, since the ratios of the squares of the masses
of the PS mesons are very difIerent from unity. In the
bootstrap model, one makes no such assumption, but
actually calculates the physical interaction constants.
In this model one can see whether or not the unitary
symmetry of the interaction constants is preserved
approximately when the large PS-meson mass splitting
is included. Furthermore, the predicted deviations from
exact symmetry may be tested experimentally.

The third purpose of this calculation is to clear up
the question of the importance of the degeneracy
assumptions in the results of Ref. 1. In a recent letter,
Sakurai shows that if one assumes degenerate PS and
V-meson octets, and assumes that the second-order,
"bubble-diagram" mass corrections resulting from the
V-PS-PS interactions are such as to preserve the
degeneracy in both octets, one obtains four equations
that imply that the ratios of the interaction constants
must be those corresponding to unitary symmetry. ' The
implication is given that this prescription is essentially
equivalent to the bootstrap prescription of Ref. 1, and
that unitary symmetry is predicted in Ref. 1 only
because both PS degeneracy and V degeneracy are
assumed. Actually, the considerations of Sakurai are
not equivalent to the bootstrap model, as may be seen
from the fact that there are eight, independent, self-
consistency equations in the bootstrap model. These
equations may be used to determine not only the inter-
action ratios, but the magnitude of the interaction and
all three V-meson masses separately. The V-meson
degeneracy assumption of Ref. 1 is almost superfluous. 4

a dynamical theory. Furthermore, one cannot avoid the problem
of mass differences by discussing amplitudes rather than inter-
action constants, unless he considers only energies that are very
high compared to all the masses.' J. J. Sakurai, Phys. Rev. Letters 10, 446 (1963). This letter
may be divided into two parts. In the first part it is argued that
the conclusions of Ref. 1 are obvious. In the second part (last half
of the last paragraph) it is argued that the conclusions of Ref. 1
are not obvious. We are concerned here only with the first part of
this letter.

4 Since the self-consistency equations are nonlinear, it may be
that if one relaxes the V-meson degeneracy assumption, he admits
additional individual solutions. It is not known as yet whether, for
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Furthermore, as is shown in Sec. III B of the present
paper, the PS-meson degeneracy assumption is not
necessary for the prediction of approximate unitary
symmetry.

II. THE METHOD

A. Basic Equations

Experimentally, there appear to be four types of
strongly interacting vector bosons, the p, E~ (denoted
here by M), the to and the p.' The hypercharges and
isotopic spins of these particles are, respectively, (0,1),
(&l, rs), (0,0), and (0,0). Only one of the two isoscalar
V mesons can occur as a resonance or bound state of
two I'S mesons in our model; this follows from the fact
that there is only one P wave, PS+PS state of the
appropriate quantum numbers, the E+K state. ' For
definiteness, we denote the included isoscalar V meson

by the symbol p, although in reality this particle Inay
correspond to the ~ or to a linear combination of the y
and co.

The dispersion technique used here is a modification
of that used in earlier works. '» The coupling of the
PS+PS, P-wave scattering states to multiple-particle
states or states involving other than I'S mesons is
neglected. The only forces considered are those resulting
from the exchange of the V mesons p, M, and p, the
V-meson widths are neglected in computing the forces.
The scattering amplitudes in Born approximation are
then taken as the numerator function E in the expres-
sion T=ED ', and a once-subtracted dispersion relation
is written for D. It is demanded that three resonance or
bound-state poles develop, which may be identified with
the p, M, and p, and that no other such poles develop.
The requirements that the masses and coupling con-
stants of these resonances or bound states be equal to
those assumed initially for the corresponding V mesons

give rise to eight self-consistency equations for the five

coupling constants and three V-meson masses. The q

meson is coupled only to the E+E state; this system
yields two self-consistency equations. The p is coupled

Axed PS-meson masses, the requirement that each particle has
at least one nonzero coupling constant defInes a unique solution
to the model.' For experimental evidence concerning the q meson, see P.
Schlein, W. K. Slater, L. T. Smith, D. H. Stork, and H. K.Ticho,
Phys. Rev. Letters 10, 368 (1963); P. L. Connolly, E. L. Hart,
K. %. Lai, G. London, G. C. Moneti, R. R. Rau, N. P. Samios,
I. O. Skillicorn, S. S. Yamamoto, M. Goldberg, M. Gundzik,
J. Leitner, and S. Lichtman, Phys. Rev. Letters 10, 371 (1963).

'Our assumption that one of the isoscalar V mesons is not
strongly coupled to the E+E state is common to the best-known
theoretical models that accommodate two such V mesons. In a
simple model of unitary symmetry, one of the two V mesons must
be a unitary singlet, which has the wrong symmetry under hyper-
charge reQection to be coupled to a P-wave, PS+PS state. In
Sakurai's V-meson model LJ. J. Sakuri, Ann. Phys. (N. Y.) 11, 1
(1960)g, the coupling of one of the V mesons is proportional to
the baryon number, so that this particle is not coupled strongly
to mesons. It should be noted that Sakurai's model and unitary
symmetry are compatible.

r F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).' R. H. Capps, Phys. Rev. 131, 1307 (1963).

T,s
——
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—'P(s)Frs,
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n.;(s)=
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(2cl)

where s& is the value of s where the subtraction is made.
The equation for T» is obtained by reversing the sub-
scripts 1 and 2 in Eq. (2a).

Following the procedure of Refs. 1 and 8, we define
n. ..to be the real part of n; and T;;, and

I D„l to be the
expressions for T,, and

I
D

I
that result if n; is replaced

by e; „.The condition that a resonance or bound state
occurs at the energy mp' is

ID, (mv')
I
=0.

The interaction constants (reduced partial widths) of
the resonance or bound state at m&' are defined by the

' J. D. Bjorken, Phys. Rev. Letters 4, 473 t', 1960}.

to the 7r+s. and E+E channels, and the M is coupled
to the s.+E and ri+E channels; each of these two-
channel systems gives rise to three self-consistency
equations.

We define the I'-wave amplitude T;; between two
PS+PS states i and j in terms of elements of i.he

unitary U-matrix by the equation,

T ~= (~'~—4)~'"(2t'q'"qr'") ',
where s is the square of the total energy, and q; and q,
are the magnitudes of the particle three-momenta in
the states i and j.All quantities refer to the center-of-
mass system, and 5 and c are taken as unity. We
illustrate our method by considering one of the two-
channel systems, denoting the channels by 1 and 2. The
matrix XD ' method is used. ' We assume that the Born-
approximation amplitudes X for the three processes
1 ~ 1, 2 —+ 2, and 1 ~~ 2 are proportional to a common
function of energy p(s), so that we may write

E;,(s)=F;,P(s),

where the F;;are constants. LWhen the meson octets are
not degenerate, the proportionality condition of Eq. (1)
is an approximation. The accuracy of this approxima-
tion is discussed in Sec. III C.) The unitarity condition
for the inverse amplitude T ' is

Im(T-');;= —8;, (q.,s/s'~')0, (s),

where the function 0, (s) is unity if q;s~0 and zero if

q,'(0. If one solves the once-subtracted dispersion
relation for the denominator matrix D, using the above
unitarity condition, the resulting expressions for the
amplitudes T;, are,

T = ID(~)l 'P(~)(F +n (&)I:F '—F F )} (2a)
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equation,

V*V /(4~) = gL(~v' —~)TV..P.=-V (4)

which applies to all three processes 1 —+ 1, 2 ~ 2, and
1 ~~2. It can be shown that one of the four equations
represented by Eqs. (3) and (4) is implied by the other
three, so there are three independent self-consistency
equations.

The application of Eq. (4) to the inelastic amplitude
gives a simple equation, i.e.,

vie s 3 FisP(~)

4+ 8 aiD, i/r)s, =„v
(5)

Two other simple equations may be obtained by
combining Eqs. (3) and (4),

Vlrrl(priv )F12 VsLI rr2(itrv )F22j (6a)

+2Cr2(tNV')Frs= yr&& —rri(mv')Fir j (6b)

These last three equations are the self-consistency
equations for either of the two-channel systems,
expressed in a simple form. "

C. Approximations Necessary for
Quasidegeneracy Solution

If large deviations from degeneracy are considered,
the equations of the model become very complicated.
In this paper, we will consider the simpler case of quasi-
degeneracy, i.e., we include in the equations only terms
linear in the deviations of the squares of the masses and
coupling constants from their values in the degeneracy
solution. This method will shed no light on the problem
of the number of different solutions to the bootstrap
model, of course. 4

"This choice of equations cannot be used if either pI or p2 is
zero.

» R. H. Capps (to be published).

B. The Degeneracy Solution

It has been shown that if the PS mesons are de-
generate and the V mesons are degenerate, and each of
the six types of particles has at least one nonzero
coupling constant, there is only one solution to the
eight self-consistency equations. '" We shall refer to
this solution as the "degeneracy solution. " The ratios
of the interaction constants in this solution are those
predicted by unitary symmetry, i.e.,

2. 2. 2. 2. 2 1 .2 .1 .1 .1
7pKK "/pe~ 'ypKK VprwK .VM(K I s .s s s ) (7)

y,zz&o.
The absolute magnitude of p„~~' and the resonance
energy are obtained if one chooses the subtraction
energy at the end of the left-hand cut. A careful
integration yields values slightly different from those
given in Ref. 1, i.e.,

y„KKs/(4~) =2.58, sisv'/mps' ——5.89.

The deviations from degeneracy affect the quantities
in Eqs. (2), (5), and (6) in several ways. The quantities
F;,P(mv') and cr, (mv') depend directly on the mass of
the resonating V meson. In addition, the forces
F;,p(mvs) are quadratic in the interaction constants
y;, and depend on the masses of the exchanged V
mesons and of the PS mesons. The integrals n;(mv')
depend on the masses of the exchanged V mesons
through P(s') and the subtraction energy s&. The
rr;(mv') depend on the PS-meson masses through P(s'),
s~, and the relation between q and s."

The proportionality condition of Eq. (1) is an
approximation when degeneracy is not assumed. Some
such approximation is necessary since, as discussed in
Ref. 8, the scattering matrix T generally is not sym-
metric in an approximation to the E/D method when
the numerator functions are not proportional. In the
two-channel cases, we define P(s) so that PrsP(s)
represents the Born approximation to the inelastic
amplitude exactly. This is convenient since in both two-
channel cases, only one V meson (the M meson)
contributes to the force in the inelastic process. In order
to describe the proportionality approximation used for
the elastic amplitudes, we define X;; to be the exact
expression in the Born approximation for the amplitude
T;;."The Born-approximation amplitudes enter in the
self-consistency relations both through their values at
the resonance energy and through the dispersion
integrals. Accordingly, we make two alternate propor-
tionality approximations, defined below.

(I) The constant P,; is chosen so that the ratio
F;,/F» is equal to the ratio of the Born-approximation
amplitudes at the resonance energy, i.e.,

P„/F rs
——X;,(Iv')/LF „P(mv')].

(II) The constant F;,;is chosen to g. ive the correct
dispersion integrals, i.e.,

F,,/Prs n;;, ,(mv')/rip ——„(mv'),

where no „is the value of n,; „occurring in the degeneracy
solution, and n,;;,„ is the expression for no, , obtained
when P(s') is replaced by X;;(s')/Fis.

In order to compare the above proportionality
approximations, we consider the contribution of a
particular vector meson to the Born approximation for
a particular amplitude, and define 8y and 6~ to be the
deviations from the degeneracy-solution values of the
square of the V-meson mass and the sum of the squares

' The numerical crossing coeKcients in the Born-approximation
amplitudes may be obtained from Ref. 1, while the energy depend-
ence of the amplitudes and the relation between q and s corre-
sponding to nondegenerate PS mesons are given in Eqs. (6), (7),
and (8) of Ref. 8. Eqs. P) and (8) of Rei. 8 are not completely
general in that they refer to an amplitude with a common particle
in the initial and Anal states. However, in the quasidegeneracy
approximation, a Born-approximation amplitude depends on the
I'S-meson masses only through the sum of the deviations of the
squares of the masses of the four I'S mesons involved in the ampli-
tude, so these equations are sufficiently general for the present
derivation.
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of the masses of the four PS mesons involved in the
amplitude. A numerical calculation shows that to first
order the ratios of two such contributions at the
resonance energy is

TABLE I. Calculated U-meson masses and deviations in the
coupling constants resulting from the physical, PS-meson input
parameters 8 = —0.92 and (b„/8 }= ——„'. The symbols AI, AII,
etc. refer to the subtraction and proportionality prescriptions
defined in Sec. II C.

Kt(mv')/Ks(my') = 1—0.225 (8y, t—8v, s)pp
'

+0.0628(8g, z
—5z, s)pp ',

where the indices 1 and 2 denote the two contributions
and po' denotes the square of the PS-meson mass in the
degeneracy solution. On the other hand, the correspond-

ing ratio of the dispersion integrals of these two contri-
butions is

trr t (my )/ter s (my )= 1 0.132 (8y t 5y s)pp

+0.0274(8r. , t—8r, s)pp '.

Case

8p

&yA A.

&p~m.

&pK.K
&&V~K

~n+I (MeV)
(m p/m, ~)'
(m„/m~)'

—3.88—0.21
0.35
0.26—0.21

—0.17
0.15

—0.10
1180
0.35
1.10

—2.60—0.54—0.39
0.10—0.09—0.04
0.05

—0.02
1144
0.61
1.03

—3.86
0.28
0.38
0.26—0.26

—0.18
0.18—0.10
1228
0.30
1.02

—2.59—0.27—0.39
0.10—0.12—0.04
0.055

—0.01.
1173
0.59
0.98

—2.98—1.25—0.75
0.085—0.03

—0.085
0.07—0.07
1066
0.63
1.11

—2.49—1.18—1.11
0.02—0.01

—0.03
0.04

—0.04
1074
0.72
1.01

AI AII BI BII CI CII

~.= —
s Q.+&p)+4~~

gp ————s(5p+5„+assr)+28 +28a,
~~= —

g (~~+~,)+2&~+~-+~p

(9a)

where 6, is the value of 6 used in the dispersion relations
for the resonance i and 6; is the deviation from the
degeneracy-solution value of the square of the mass of
the I'S or V meson i, (i.e., m '= pp'+5, m, '= mps+ft„
etc.).

"We take such an average only for choosing subtraction
energies, and not for computing any other factors in the equations.

The differences between the corresponding coefficients
in these two expressions represent an inaccuracy in-

herent in the method. Therefore, we compute all results

separately with the two proportionality prescriptions I
and II, and regard as meaningful only results common
to the two prescriptions.

The choice of the subtraction energy also presents a
tricky problem since, when the degeneracy assumption
is removed, the ends of the left-hand cuts are in different
places. We denote by 6 the deviation in s& from the
degeneracy-solution value. To first order in the devia-
tions of the m', the end of the cut corresponding to the
contribution of a particular U meson to a particular
amplitude is s~

——4pp' —mp' —8y+5q, where mps=5. 89pp'

is the square of the degeneracy-solution value of the
V-meson mass. Thus, if there were only one such
contribution, an appropriate choice of 6 would be,

(8)

In order to choose an appropriate 6 for each of the
three sets of dispersion equations that generate the
three resonances, one must take a suitable average over
the contributing V and PS mesons. "We consider the
following three alternate averages, denoted by A, 8,
and C.

(A) In each of the three cases, 8v of Eq. (8) is

averaged simply over the V mesons that contribute
forces. In the two-channel cases, 8z is set equal to the
value appropriate to the inelastic process. The result of
this average is

(B) The 8y and 5-„in Eq. (8) are averaged according
to the contributions of the different V and PS mesons
to the resonance in the degeneracy solution. In the
degeneracy solution,

~
D,

~
may be written in the form

~
D„~ = 1—np Q; Ii;;, so that the relative contributions

of the V mesons may be computed from the relative
contributions to P, Ii,, The relative contributions of
the PS mesons may be taken from the partial reduced
widths of the resonance, i.e., the m+s. state contributes
twice as much to the p as does the X+X state, since

yp„'/yp~lr' 2. The res——ults of such an average are

,'(8~+8p)+—4-olr,

~ p
= s(~p+

—~p)+ (8/3) ~-+ (4/3)~Jr

~sr= —s4r —s&p+2~x+~ +&,

(9b)

III. RESULTS FOR QUASIDEGENERACY SOLUTION

We adopt the convention that the E mass is fixed,
and set m~'= p()'= 1. There is no loss of freedom in this
assumption, since the dispersion relations do not in-
volve absolute masses but only mass ratios. We denote
the degeneracy-solution value of p«z' by po'. The
quantity e,yo' represents the deviation from the
degeneracy-solution value of the interaction constant
VP Thus) 'YpKK 7p (1+erplrK)& ypww = Yp (a+spxx))
etc. , as may be seen from Eq. (7).The notation for mass
deviations is the same as in the preceding section.

A value of (—4) for the input ratio 8„/8 corresponds
to the physical PS-meson masses, m = 1.38 MeV,

(C) The same subtraction energy is used for all three
sets of dispersion equations; this energy is computed
by averaging the 8v and 8z of Eq. (8) over the eight I'S
and eight V mesons. The results of this average are

a,=n, =asI= —Pp
—sb„—s8M+ sb.+-.'8,+281'. (9c)

The prescription C is rather unphysical since the
subtraction energy for a particular dispersion equation
is determined partly by the masses of particles not
involved in the equation. We include this prescription
only for purposes of comparison.
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mz= 495 MeV, and m, =550 MeV. We may make any
convenient choice for the magnitude of b, since the
quasidegeneracy equations are linear and homogeneous
in the 8's and c's. In order to facilitate comparison with
experiment, we have listed in Table I the results corre-
sponding to the physical PS-mass input values
5„/8 = —~2 and 8 = (m '/222x') —1=—0.92. We consider
as physically meaningful only the results corresponding
to the subtraction prescriptions A and B, and thus
quote only results common to columns AI, AII, BI, and
BII of the table. It is seen from these columns that the
most striking effect of the PS mass differences is that
the calculated p mass is lower than the 3f and q masses,
which is in agreement with experiment.

A. The Vector-Meson Masses

In order to make further comparisons with experi-
ment, we shall assume that the linear (quasidegeneracy)
approximation is valid even for the large physical value
of 6 . It is seen from Table I that the percentage devia-
tions of all derived quantities are smaller than the input
deviation of m ', so this procedure is reasonable.
However, it is expected that if the linear assumption
were dropped, significant modifications would result.
This point is discussed further in Sec. IV.

We use as experimental U-meson masses nz, =750
MeV, no~ ——885 MeV, m„=785 MeV, and nz„=1020
MeV. The value of 222,2/m2I2 from the A and B columns
of Table I is in the range 0.30—0.61, while the corre-
sponding experimental value is 0.72. The computed
value of m„2/m2r2 is in the range 0.98—1.10, while the
corresponding experimental number is either 222 2/2222/

=0.79, m„2/m2r2 ——1.33, or somewhere between if the
isoscalar member of the unitary-symmetry octet is a
linear combination of the co and y. The present calcula-
tion is not accurate enough to be considered as evidence
concerning whether the co, y, or a linear combination
belongs with the octet. '4 However, it is clear that the
predicted V-meson mass ratios are in rough agreement
with experiment. It should be pointed out that when
one replaces a wide resonance by a pole in convergent
dispersion relations, an appropriate position for the
pole is below that of the resonance. "Hence, a predicted
value of 222,2/m2r2 somewhat lower than the experimental
value is desirable.

The calculated M mass is in the range 1145—1230
MeV, while the experimental value is 885 MeV. YVe

note that the value no~ 885 MeV obtained in Ref. 8
did not result from a complete bootstrap calculation for
the V mesons, since m, was taken from experiment.
These two calculations are compared in Sec. IV.

'4Tn the author's opinion, it is also dangerous to decide this
question on the basis of the Gell-Mann —Okubo mass formula,
since this formula is also based on the nonphysical assumption
that the deviations from degeneracy are 'small, (see Ref. 16).

"This is shown clearly in the work of Ball and Wong on form
factors; J. S. Ball and D. Y. Wong, Phys. Rev. 130, 2112 (1963).

The basic reason that the p mass is smaller than the
M and p masses in the present calculation is quite
simple; the largest term in the p wave function results
from the 2r+2r state, so that the small value of the 2r mass
l.eads to a small value of the p mass. A large assumed
deviation of the g mass leads to a corresponding effect.
In order to illustrate this, we have calculated the effect
of the unphysical input assumptions 8 =0 and 5„=1,
using the proportionality and subtraction prescriptions
A and I. The results are

6,=0.075,

8„=0.23,
e p

= —0.16,
e~ ~=006,

0css ——1.77,

e~~~ =0.02,
epgg~ = —0.025,

~~,x= —o.05. (10)

(~ 2
222 2) — 3(222 2 I 2)

The assumptions on which this formula are based are
quite different from those of the present paper, except
for the one common assumption that only terms linear
in the deviations from degeneracy are important. There
is no relation between PS and V-meson masses implied
by the Gell-Mann —Okubo assumptions. In the present
model, one may choose the PS-meson masses to satisfy
the Okubo formula (i.e., 8„/8 = —2). However, it does
not follow from such a choice that the U-meson masses
satisfy the formula exactly. We have been unable to
find a simple recipe for the proportionality and sub-
traction prescriptions that does lead to such an exact
causal relation, and we do not know whether or not
this causal relation would apply if a more exact pro-
cedure for writing and solving partial-wave dispersion
relations in the quasidegeneracy approximation were
found.

M. Gell-Mann, Phys. Rev. 125, 1067 (1962); S. Okubo, Prog.
Theor. Phys. (Kyoto) 27, 949 (1962).

In this case the M is the only V meson whose mass is
changed greatly, because the g+K state is important in
the M wave function, while the p and p are not coupled
directly to the g. Because the quasidegeneracy equations
are linear and homogeneous in 6; and e;, Eq. (10) and
column AI of Table I may be used to compute the
results of any choice of 8, and 6 corresponding to the
proportionality and subtraction prescriptions A and I.

The fact that the calculated relative deviations from
degeneracy are smaller for the U-meson multiplet than
for the PS-meson multiplet also has a simple explana-
tion, namely, the wave function for a particular V
meson is an average over the different PS mesons. Thus,
in our model, the p is light because the 2r+2r is light, but
222,/222„ is not as small as 222 /222rr because the p is a K+K
part of the time.

The Gell-Mann —Okubo mass formula, " applied to
the PS and V-meson octets, yields the relations

(222
2 222K2) 3 (2t2 2 222x2)
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B. The Interaction Constants

It is seen from the A and 8 columns of Table I that
the calculated deviations e; of the interaction constants
from the values of the degeneracy solution (exact
unitary symmetry) depend somewhat on the propor-
tionality and subtraction prescriptions used. However,
two important features of these calculated deviations
are common to all the prescriptions. First, the e; are
not huge; i.e., the calculated interaction constants are
not extremely sensitive to the ES-meson mass splitting.
Unitary symmetry remains a reasonable approximation
to the interaction ratios despite the huge deviation from
unity in the input value of m '/mlr2. This result is
encouraging to the point of view that unitary sym-
metry may describe the physical ES mesons.

Secondly, the signs of the various deviations are a
feature of the calculated ~; that is common to the differ-
ent proportionality and subtraction prescriptions. For
example, the predicted ratio y, '/yM rr' is lower than
the unitary symmetry value of —;.Future experimental
measurements of the y will provide further tests of the
bootstrap model. If these measurements indicate that
unitary symmetry is approximately valid, and if the
measurements are sufficiently accurate to detect devia-
tions from the exact ratios of Eq. (7), they will dis-
tinguish between the bootstrap model and other models
involving unitary symmetry. In those cases where the
V-meson rest masses are lighter than those of the two
I'S mesons in the appropriate states, experimental
determination of the coupling constants is difFicult, of
course, since it depends on some sort of extrapolation
procedure.

Part of the reason for the insensitivity of the calcu-
lated e; to the PS-meson masses is that the two most
important effects of deviations in these masses partially
cancel. The most important such effect is the decrease of
the momentum q, of a state i (at 6xed energy) that
results from an increase of the mass of either I'S meson
in the state i. This causes the dispersion integral n; to
decrease. However, this effect is cancelled partially by
the increase in the Born approximation to the amplitude
T;; that results from an increase in the mass of a I'S
meson in the state i.

The most striking features of the relative magni-
tudes of the calculated e; may be understood from
the following considerations. For each resonance,
the determinant of the denominator may be written,
~&~ =1—g;n;F;,+x, where the F,; are quadratic in
the coupling constants, and x is either zero (for the q)
or is quadratic in the o.;. This quantity x is small in all
three cases, so that g; n;, ,(my')F;, 1, where m~' is
the resonance energy. In the resonance region, the n, (s)
are increasing functions of s. Therefore, if the rest mass
of a vector meson is small compared to that of the
constituent PS mesons, the n;(mv') are small, and large
values of the coupling constants in the F;, are required.
For example, the p-meson rest mass is smaller than that
of the M and q, but is large compared to that of the

most important constituent state, the m. +7r state.
Hence, the p coupling constants are smaller than the
degeneracy-solution values. Similarly, the p/(K+K)
mass ratio is small compared to either the p/(m+~) or
M/(~+K) mass ratio, so e„xx is positive.

Since the deviations of the y,' from the degeneracy-
solution values are not large, the problem discussed
in Ref. 8 is still present; the predicted y, ' and

y~ ~' are about 2 or 2—,
' times as large as the experi-

mental values. This problem is discussed further in
Sec. V.

IV. COMPARISON WITH NONQUASIDEGENERATE
CALCULATION

The author has applied the bootstrap technique to
the M(E*) meson, without using the approximation of
small deviations from degeneracy. ' The M system is
not completely self-determining; there are two more
input than output parameters in the calculation of
Ref. 8. Barbour and Nishimura are investigating the
possibility of determining all the V-meson masses and
V-I'S-I'S interaction constants from the observed PS-
meson masses without using the quasidegeneracy
approximation. "These authors also have treated the p
meson separately. '

Some insight into the effect of removing the quasi-
degeneracy assumption may be obtained from a com-
parison of the present results with those of Ref. 8. The
calculated M mass in Ref. 8 is approximately the
experimental value of 885 MeV, which is lower than
that of the present paper. This discrepancy does not
result from the fact that the p mass is taken from
experiment in Ref. 8 because the calculated M mass is
not very sensitive to the p mass. Part of the discrepancy
results from the different subtraction prescriptions
used. The calculated M mass is sensitive to the sub-
traction energy used in the M-meson dispersion rela-
tions. In Ref. 8, only the cuts resulting from exchanged
M mesons are used to determine the subtraction energy.
Ke may use a corresponding prescription in the present
paper, by writing A~ ———5~+PS-meson terms Lsee

Eqs. (8) and (9)].The calculated M mass then depends
only on the M-meson dispersion relations, and is 1065
MeV or 1080 MeV, depending on which proportionality
prescription is used. %e believe that the discrepancy
between 1070 MeV and 885 MeV results primarily
from the quasidegeneracy assumption used here.

In Ref. 8, only two relations between the three
interaction constants yM x', y~„rr', and v2y, y,xlr are
obtained. However, if we assume that the ratio
y~„sP/y~ x' lies in the range 0.59—0.88 (obtained from
the A and B columns of Table I of the present paper),
then the equations of Ref. 8 yield the results,

1.85( (y~ x2/47r) (2.12,
1.09( (gyp ~yplrx/y~, rr') (1.13.

I. Barbour and K. Nishimura (private communication).
'" I. Barbour and K. Nishimura, Nuovo Cimento 29, 288 (1963).
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The corresponding quantities, determined from the A
and 8 columns of Table I of the present paper, are in
the ranges,

1.42& (ysr rc'/4s. )&1.75,
0.52& (gyp ~gpss~/ps' res) &1.05. (12)

It is seen that both models predict that the ratio
V2yr y,xx/ysr rr' is smaller than the value 4 predicted
by exact unitary symmetry. Much of the discrepancy
between Eqs. (11) and (12) is associated with the
smaller M mass occurring in Ref. 8 (see the discussion
in Sec. III B of the present paper). However, we may
conclude tentatively that if the quasidegeneracy
assumption is removed, the comparison between
calculation and experiment will be better for the
average V-meson mass, and worse for the magnitudes
of the interaction constants.

V. CONCLUSIONS

In the bootstrap model of the V-meson octet, the
sensitivity of the physical V-PS-ES-meson interaction
constants to the PS-meson mass ratios is suKciently
small so that the ratios of the interaction constants are
described approximately by unitary symmetry, even if
physical PS-meson masses are used. The calculated
average V-meson mass, and the calculated V-meson
mass splitting that result from the physically observed
ES-meson mass splitting, are in rough agreement with
experiment. On the other hand, the absolute magnitudes
of the calculated interaction constants are about 2 or
2—', times larger than those obtained from the observed

p ~ v+7r and M ~ vr+E decay widths. It has been
pointed out that if the coupling of other states to the
PS+PS states is important, inclusion of the other
states probably would improve the agreement between
the calculated and experimental values of thP interac-
tion constants. " However, the question arises as to
whether or not such an inclusion wouM at the same time
destroy the agreement with respect to the average
V-meson mass and the V-meson mass splitting. We
discuss this question here.

It is likely that the inclusion of other states in the
model would a6ect the magnitudes of the interaction
constants more than it would affect the average V-
meson mass. Such an effect has been observed in Ref. 1,
and also by Balazs. ' In the bootstrap model of the
V-meson octet in the degeneracy approximation
(Ref. 1), the coupling of the isotopic spin 1, v.+sr state
to the E+E state reduces p, ' by s, but does not
change the (V-meson/PS-meson) mass ratio at all.
Similarly, in the bootstrap model of z+v resonances of
Balazs, the effect of approximating other channels by
including inelastic processes in the unitarity condition
is to reduce resonance widths without altering the
resonance positions signi6cantly. ' In order to make
clear the basic reason for this kind of effect, we note

"Louis A. P. Balazs, Phys. Rev. Letters 10, 170 (1963).

that if the matrix X/D method used in Sec. II A is
applied to the P wave, z-+v. elastic amplitude
in the presence of an arbitrary number of coupled
channels, the amplitude may be written in the form,
&= (&+y)/~D~, where X is the Born approximation
for the T, ID~ is the determinant of the denominator
matrix, and y is a sum of terms of order ~1 in the
dispersion integrals Lintegrals analogous to the n; of
Eq. (2d)j. If y is zero and.

~
D

~
is linear in s, the calcu-

lated p mass depends only on the v+s- channel, although
the ~m reduced partial width may depend on many
channels. Hence, the average V-meson mass will be
insensitive to the inclusion of other channels if the
added terms y in the numerators of the appropriate
amplitudes are small and

~
D

~
is approximately linear.

We now turn to the question of the V-meson mass
splitting. Let us assume that unitary symmetry is a
valid approximation for all strong interactions. The
deviations from degeneracy of the V multiplet then
depend on the deviations from degeneracy of other
multiplets. It is observed experimentally, both for
states of baryon number one (the baryons and the Ps~s,
baryon-PS meson resonances) and for states of baryon
number zero, that the relative mass splittings are
greatest within the lightest multiplet. This effect is in
agreement with the predictions of the present bootstrap
model. It is reasonable to suppose that the greatest
relative deviations from degeneracy occur within the
E'S-meson multiplet. These deviations are important
in the V-meson dispersion relations because the left-
hand cuts are close to the physical regions for the
PS+PS states. Therefore, one expects the PS-meson
mass splitting to be the dominant cause of the V-meson
mass splitting, provided that the important forces car be

described approximately by limitary symmetry In fact, .
one advantage of applying dispersion relations to
particle multiplets in a theory in which a basic inter-
action symmetry is present, is that the approximation
of neglecting distant singularities is expected to be
particularly good when one compares the different
states within a multiplet.

We conclude that the present bootstrap model is
incomplete, but that the basic relations between PS
and V-meson masses occurring in the model may be
real. If the model is extended so that the I'S mesons
themselves develop as poles in the appropriate states,
as was done in Ref. 11 for degenerate multiplets,
additional relations among the various mass splittings
will be obtained.
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