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High-Energy Scattering Amplitude in Perturbation Theory*

T. L. TRUEMAN AND T. YAO

Brookhceee Nutiorral Laboratory, UPtorI, , Pew Fork
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The consequences of keeping terms in addition to the leading terms in each order of perturbation theory
are investigated. The model is the gp3 theory and the method is that of Bjorken and Wu. When the second-
most dominant terms in each order of ladder graphs are summed, a second-order pole in the angular momen-
tum plane is obtained and the contribution to the amplitude dominates the sum of leading terms at high
energy. When the class of terms to be summed is further enlarged in a vrell-de6ned @ray, the simple Regge
behavior is restored. The divergence at threshold in the trajectory function obtained by summing the lead-
ing terms is not present in the 6nal result. The question of the high-energy behavior of the complete sum of
the ladder graphs is still unsettled.

I. INTRODUCTION
' 'N recent months a number of authors' have
~ - employed perturbation expansions to study the
high-energy behavior of scattering amplitudes for
various 6eld theoretic models. The common procedure
in these studies has been first to choose a restricted
class of diagrams, usually the class of ladder graphs.
Next, the leading terin (i.e., the term which is largest
as the energy s'~' increases to infinity) is determined in
each order of perturbation theory. These leading terms
are then summed. It has been realized by several
authors that the procedure of summing leading terms
has not been justi6ed mathematically. However, the
general hope is that an indication of the high-energy
behavior may be obtained in this way.

The aim of this paper is simply to investigate the
consequences of keeping terms in addition to the
leading terms in each order of perturbation theory.
For this investigation, we will confine our attention to
the ladder graphs in the gp' theory. As is now well

known, the leading term in Z„(s,t), the amplitude for
the ladder of v+1 rungs, Fig. 1(a) behaves as (1ns) "/s
for large s. However, Z„(s,t) also contains terms which
behave as (1ns)"/s, p(is, (lns)"/ss, etc. A consistent
scheme for calculating the high s behavior of the
complete amplitude Z(s, t) =P„Z„(s,t) would involve
keeping at least all terms which behave as (1ns)"/s.
Since this task is formidable, we have decided that the
most instructive approach is to enlarge the class of
terms that are summed in several steps and to study
the resulting high-energy behavior at each step. In
Sec. II the method used is presented and the result of
sumrriing the leading terms is rederived, Eq. (2.19). In
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Fio. 1. (a) Ladder graph. (b) Ladder graph with s &-+ g,

addition, the terms which behave as (ins) "/ss are
calculated and are shown to be negligible compared
with the leading terms, Eq. (2.24). By enlarging the
class to include some terms which behave as (lns)"/s,
we obtain a result which has the same s behavior but
a modified dependence on t and g', Eq. (2.26). In Sec.
III, the second leading terms, those that behave as
(lns)" '/s, are sunnned and the high-energy behavior
(lns)s~ "i is obtained; i.e., the sum of the second leading
terms dominates the sum of leading terms and the
simple Regge behavior is lost. In Sec. IV, the remaining
terms are discussed; when a well-de6ned class of these
is summed, the simple Regge behavior is restored. The
new cr(t) obtained at this point has the nice feature
that the threshold divergence which had been obtained
in the earlier calculations is no longer present. Some
algebraic details are given in the Appendixes.

One simple example of the importance of additional
terms in these series is provided by the crossed graphs
(s ~ u) of Fig. 1(b). If these are included with Fig. 1(a),
one quickly finds that the sum of leading terms is
identically zero. If one keeps additional terms, such as
those used in obtaining Eq. (2.26), the usual Regge
behavior is obtained. We do not present these results
in detail since they are obtained by trivial modification
of the calculations presented below.
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by parts once more:
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to zero faster than s ' as s ~~ . Thus, we may calculate
the asymptotic behavior of Z„(s,t) to order s ' by
simply evaluating the integrals around the small
circles of Fig. 2.

To calculate the leading term from the pole at
e= —1, one simply sets a= —1 in all factors of Kq.
(2.11) except (1+a)"+'. The integrals may then be
done, using the fact that for all xi=0,
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Thus, the leading contribution from the pole at
n= —2 gives rise to a term in Z(s, t) which at t=0 may
be neglected as s —+~.

At this point, an example is given of the rather
diRerent behavior that may be obtained if we keep
some of the terms that have so far been neglected.
Suppose in Eq. (2.11),n is set equal to —1 only inside
the integral sign. In this way we keep some of the
terms that go as s '(1ns)", p&e, in 2 (s,t). Then

Note that y i(t) becomes infinite at t=4. The
inverse Mellin transform of (2.15) gives us
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m2 el

t'ig)' 1 d"
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The result of summing Eq. (2.25) over e is
When this expression is summed over all orders of
perturbation theory, the usual Regge behavior is
obtained" ' 2

00 .g
z(s, t) = Q z„(s,t)- —i—s"~- &'~—'.

n=O 7r2
(2.19)

The leading term from the pole at n= —2 may be
studied in exactly the same way; integrate Eq. (2.11)

Xl'[1—g'q i(t)]s-'+"~-~io. (2.26)

While the dependence of Z(s, t) on s is unchanged, the
dependence on t is drastically modified. If we write
p(s, t) P(t)s "&, we see that P(t) is completely deter-
mined by the Regge pole a(t). Note that now the
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entire amplitude becomes singular at an infinite
number of points and that if g2&1 it becomes singular
even in the physical region, t&0. (Presumably, the
perturbation calculation ceases to be valid when g'
becomes so large. )

III. EXPANSION ABOUT 0.= —1 AND SECOND
LEADING TERMS

2/2= 1, in the series expansion (3.1) is
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In this section, we investigate the terms which go as

(lns) //s, 2&2&22, as s —+~. In particular, we shall

discuss the second leading term, m=n —1, in some
detail. The easiest way to obtain these terms is to
return to Eq. (2.11) and expand the integrand in

powers of (1+n).
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(Notice for 22/)n, L„( )((2,t) has no singularity at
a= —1.) The first term, 222=0, is of course, just the
term previously evaluated.
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The geometric series converges provided that the radius
R of the circle in Fig. 2 is taken as R)g2y i(t); the
pole in Eq. (3.4) then lies within the contour. (This is
possible only for a restricted range of t.)

The inverse Mellin transform of F"&(a, t) is
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(See Appendix A for further reduction of these integrals
and evaluation for special cases. ) Equation (3.6) now
becomes

The sum over n is

F(') (n t) = P I. (') (n t)
n=l
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p( n)s ita/s—
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of Eq. (3.3) behaves like (lns)"/s, and the inverse
Mellin transform 2„")(s,t) of Eq. (3.13) behaves like
(lns)" '/s as s ~n, there are more terms of the latter.
LNotice the factor n appearing in Eq. (3.13).$ There-
fore, for fixed s, no matter how large, we will eventually
reach a number Np, such tllat fol' tz)tsp, 2„(')(s,t))2„(p) (s,t)

Taken at face value, Eq. (3.15) indicates a second-
order pole in the angular momentum plane at
=g'7 i(t) —1.'p Although it may disappear when addi-
tional terms are kept, a second-order pole is not in
contradiction with the general result of Lee and
Sawyer"; i.e., the scattering amplitude of the sum of
the ladder graphs is meromorphic in l for Rel& —2.

It is now natural to study further terms in the
expansion (3.1) for ttt) 1. Our objective is to see
whether by including more terms we may not regain a
simple Regge behavior. To put it succinctly, can we
obtain

(4.1)

n(t) = 1+gsV -(t) gCP (-t)

+v-i(t)~-i(t) j+ (4 2)ff"'(s,t) = —&"'(s t) g'L 6-i(t)+n-i(t) 3

Note that F("(n,t) has a second-order pole at n= —1 with
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such that (3.5) and (3.15) are but the first two terms
in the expansion of Eq. (4.1). The calculation of

(s,t) becomes rapidly more complicated Howe. ver,
we are able to show that F( ) (n, t) has the general form
(see Appendix B),

g2
F(m) (n t) F( n)s—itttt/2( 1 )m+1

Lg'P-i(t)+g'n-i(t) (n+1)j
+R("'(n,t), (4.3)
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Thus, the sum of the second leading terms behaves
asymptotically as (1ns)s~(t) and dominate the sum of
the leading terms provided the coeS.cient of lns in
Eq. (3.15) is different froin zero. The integrals r/ i(t)
and P i(t) are rather complicated, but, at t=0, it may
be shown that I8 i(0)+y i(0)t/ i(0)AO. (See Appendix
A.)

IV. THE REMAINING TERMS AND DISCUSSION

It is clear from the foregoing results that the hope
that summing leading terms of the perturbation series
will give the correct high-energy behavior is open to
serious question. By keeping various additional terms,
we have obtained results quite different from the sum
of leading terms alone. In particular, we have shown
that the sum of second leading terms dominates the sum
of leading terms. This conclusion is not as strange as it
sounds. While the inverse Mellin transform 2„(p)(s,t)

1.(n, t)= P F(")(n,t)-—
m=o

gpss ( n)s im tt/2—

~'Li+A-i(t)1

or

X- (4.4)
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where

Z(s,t)-
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'Li+g'~- «)j
Sn(t)

7 (4.5)

(4.6)

'P R. Oehme, Phys. Rev. Letters 9, 359 (1962)."B.W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962).

where R (n, t) is a sum of poles of order m or lower at
n= —1+g'y i(t). If the "leading term" in F(~)(n,t),
i.e., the first term in Eq. (4.3), is now summed over its,

the result is
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&&i-z) &i&a Ei(—zM)dyes(y+'

0

in(1 —) ')—16
L-,i3j2

2.—'-, in2 1+

g temar1 Ma- „,y,ense~«n&14 A Erdelyi, &'&"' 'H
t~ gook «~ ect (McGraw'-script Pro&

1953), Vo

Then

P lnl4 ~ (S5)

(g6)D ~j —1=(m—t)' ~, l
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with

P m/, =m —l.
k=1

OQ

p(m, /)(~ «) p I (ml)(~ «)~, p( ~)e—in. a/2

n=xr«+ l ~2

X (—1)'"+'——$g'/3 i(«))'Lg')) i(«) j"'—'

(m —l)!l!
Pg2~ («)]n—m—l (/« l) !

n=m+/ (i) +] )™+'(r/ —m —l)!
The infinite sum over e can be done,

Lg'&-i(«)3™'
(/« l)'—

a=m+[ (i)+1)™+1(~ m l) l

(88)

Bx" i=o (i).+1)/'+'+'

Consider those terms in the expansion of Eq. (82)
which can be expressed solely in terms of P i(«), y i(«)
and q i(«). To this end, note that, if p, +i)p,+1 for ail

j, ~ and e'~ break up into factors which depend only

sp; 3'p-i sp, i r—n O'Jk si/ p/«pJ 1 (The
analogous electrical circuit is a very useful means for
obtaining this result. ) Thus, the integrals break up
into products of fivefold and twofoM integrals. From
Eq. (83) we select only those terms with l,=0 or 1
with the condition that ll=l„+~=0 and /j ]=0 when

l, =1. There are (e—1)!/l!(/« —2l)! terms which satisfy
this prescription. From Eq. (86) we select those terms
with mI, ——0 or 1 with the condition that if lj=1, then
m, =m;, =0. There are (e—2l)!/(m —l)!(e—m —l)!
terms which satisfy this prescription. The contribution
of all of these terms taken together to I.„™~(o(,«) is

g2 ( ])m+1
I ( /)m(~ «)~ 1 ( ~)e '~~/z

~2 (~+ 1)n—m+i

(/« —l)!
X- - ——[g'p i(«)j'

l!(m —l)!(n —m —l)!
X&g' —()~" Lg —(«)~™:

LHere the symbol denotes the contribution of these
terms to I.„( "(n,«).j Summing over )«, we obtain

Now we can sum over l,

p(m) (~ «) p p(m, /) (~ «) ~ F ( ~)e an—n/2( 1)m+i
3=0 x2

m

Lg'«L («)3'LA- («)3'" '
(=o (m —l)!l!

x
Bx" (n+1)'n+1 —x

g=—I'(—u)e " ""(—1) +'—
7r2 mt ()x

g'&-i(«)
X —+g'g i(«)

n+1 —x ++1

( &)e i w rr/'/ (
—1)us+)

7t.2

rg'~- («)+g — («)(+1)~"
X ---—

(n+ 1—x)"'+'
(810)

which is the first term in Eq. (4.3).
The remaining terms in I.„( ')(()(,«), when sumnied

over n, produce a pole at n= —1+g'y i(«) of order m

or lower. To see this, notice that the only factors which
depend on e in the expansion of Eq. (82) are (1++)
and 7 i(«), because the power of 7 i(«) is determined
by the number of y», s» integrations remaining after
all the logarithms have been integrated. The dependence
on e of the number of any speci6ed type can be deter-
mined quite simply for e&)m. For the type just con-
sidered, the dependence is e'e '=m . For any other
type of integral, there will be p&0 conditions on the
indices of the variables; e.g. , p;+i=p,+1 for some j
1k=3 for some k, etc. There can be only e J' terms of
this type. For large e the sum of these terms over e is
proportional to

(g'v-i(«) )"
gg

tl/ —p.. ( 1+n )

where x=g'y i(«)

Q fn
@fan

(8V)
Bx (n+1) ' i).+1 x—which produces a pole of order m —p+1 at u= —1

+g'p i(«). We do not answer the question of what;

happens when these poles are summed over / and m.


