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this reason and also based upon the fit (15), we are
inclined to conclude that available p —p data are not so
close to the asymptotic region as the w+ —p data for the
same available momentum range. We recall that the
model underlying the asymptotic forms (14) predicts'
no shrinkage in the forward peak of high-energy elastic
scattering. Therefore, we understand at least qualita-
tively the reason why the recent experimental data"
indicate no shrinkage in w+ —p scattering, but appreci-
able shrinkage in p —p scattering.

If one combines the fit (15) with (13), one can esti-
mate a deviation from the optical point as

) Red (s)/ImA (s) ~

'~5'/s~1% (15)
' K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.

Russel, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 and 543
(1963).

at the lab momentum 10 BeV/c for n.+—p scattering.
This figure violently disagrees with 23&10%, a figure
suspected in a recent report. "The same estimate gives
a deviation of 13% for p —p scattering at the same lab
momentum.

We remark Anally that all our arguments are valid
also when the particles have spins. Our arguments then
apply individually to the amplitudes with the spin
directions specified and the corresponding total cross
sections. Therefore, our arguments apply also to the
spin-averaged ones.

We thank Professor L. Van Hove for pointing out an
error in our earlier version of this paper.

"S. Brandt, V. T. Cocconi, D. R. O. Morrison, A. Wroblewski,
P. Fleury, G. Kayas, F. Muller, and C. Pelletier, Phys. Rev.
Letters 10, 413 (1963).
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The two-pion-exchange contribution to the three-body h.-nucleon interaction is derived from a static
model and also from covariant perturbation theory. It is found that the local part of the potential cal-
culated by the latter method is similar to that part of the static-model potential which corresponds to
the formation of lambda-antisigma pairs in intermediate states. This potential is noncentral and has the form
(s's')(a'rq) (a'rr) f(rq, rr), where e' and s' are the spin and isotopic-spin operators for the two nucleons,
and rj and r2 are the h.-nucleon separation vectors. An estimate is made of the importance of this potential
in the binding of the hypertriton by calculating its expectation value with respect to hypertriton wave func-
tions corresponding to two-body interactions with hard cores. In these calculations, the three-body potential
is found to contribute less than 5% of the expectation value of the total A-nucleon interaction.

I. INTRODUCTION

NALYSES of the binding-energy data for the
hypernuclei with A ~&3 have been made to deter-

mine characteristics of the A-nucleon interaction. ' ' Un-
certainties in these analyses have precluded the deduc-
tion of a complete set of parameters characterizing these
interactions; in particular, it has not been possible to
establish the presence of A-nucleon-nucleon three-body
interactions. When three-body interactions have been
neglected, these analyses have led to the specification of

*This work was partly supported by a grant from National
Science Foundation.
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Houston 1, Texas.

f Address during academic year 1963—64: Department of
Theoretical Physics, The University of Oxford, England.' R. H. Dalitz and B. W. Downs, Phys. Rev. 111,967 (1958).' R. H. Dalitz, Proceedings of the Rutherford Jubilee International
Conference, Manchester, 1961 (Heywood and Company, Ltd. ,
London, 1961),p. 103; and other references cited there.' B.W. Downs, D. R. Smith, and T. N. Truong, Phys. Rev. 129,
2730 (1963).

4 A. R. Bodmer and S. Sampanthar, Nucl. Phys. 31, 251 (1962).

parameters characterizing central two-body 5-wave
potentials which include the effect of possible tensor
components. ' ' The resulting two-body potentials are
strong and highly spin-dependent. It has been noted
that the deduced spin dependence depends critically
upon the assumption that the effect of three-body inter-
actions is negligible in the binding of hypernuclei. '4'
Bodmer and Sampanthar4 have recently made a quanti-
tative connection between the assumed strength of
three-body potentials of the form

(~'e') (tr'er') V(Ri,R,,RA),

and the spin dependence of the corresponding two-body
interactions required to account for the binding energies
of the lightest hypernuclei. LIn (1), 1, 2 and A denote the
coordinates of the two nucleons and the A. particle,
respectively. ]Previously, Weitzner had similarly deter-
mined the required strength of a potential of the form

s H. Weitzner, Phys. Rev. 110, 593 (1958).
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(1) corresponding to an assumed spin-independent two-
body interaction.

In the absence of phenomenologically determined
three-body potentials, estimates of three-body inter-
actions have been made on the basis of meson field
theory to indicate the extent to which the neglect of
these interactions may be justified in analyses of hyper-
nuclear binding-energy data. ' ' It is the purpose of this
paper to present such a study of two-pion-exchange
(TPE) contributions to the A-nucleon three-body
interaction.

The lowest order pion-exchange process which can
contribute to a charge-independent A-nucleon inter-
action involves the exchange of two pions. The TPE
process leads to a two-body interaction when both pions
are exchanged between the A particle and a single
nucleon, and it leads to a three-body interaction when
the pions are exchanged between the A particle and
two different nucleons. These lowest order pion-
exchange contributions to both two-body and three-
body A-nucleon interactions are of the same order in the
pion-baryon coupling constants. It is therefore possible,
a priori, that the A-nucleon three-body potential may
play a significant role in determining the binding of
hypernuclei. The range of the interaction between the
A. particle and each nucleon in the TPE three-body
potential is approximately twice the range of the TPE
two-body interaction; this would be expected to enhance
the relative importance of the three-body interaction.
On the other hand, it is expected that the probability
will be small that the three particles are sufficiently close
together in a hypernucleus for the effect of the three-
body interaction to be appreciable. These range and
correlation eQects tend to counteract one another, so
that the relative importance of two-body and three-body
TPK interactions in hypernuclei is not obvious on
general grounds.

Two-pion-exchange contributions to A.-nucleon three-
body potentials have previously been calculated by
Weitzner, ' Spitzer, ' and Bach by methods which are
equivalent to nonrelativistic perturbation theory with
the baryons treated as fixed pion sources. These TPE

R. Spitzer, Phys. Rev. 110, 1190 (1958).' G. G. Bach, Nuovo Cimento 11, 73 (1959).

Fn. 1. TPE diagrams of the type which contribute to the three-
body A-nucleon potential in nonrelativistic perturbation theory.

potentials correspond to diagrams of the types shown
in Fig. 1. Weitzner obtained a potential of the form (1)
by consideration of the pion-pair interaction represented
by diagrams of the type of Fig. 1(c).Spitzer' calculated
the contribution of diagrams of the type 1(a) to the
three-body potential, and Bach" calculated the contribu-
tions of all diagrams of the types shown in Fig. I.
Spitzer and Bach obtained different expressions for the
contribution corresponding to diagrams of the type 1(a);
and their estimates of the contribution of these poten-
tials to the expectation value of the total A-nucleon
interaction in the hypertriton were quite different.
Moreover, Bach and Weitzner obtained different forms
for the potential corresponding to the diagrams of
type 1(c).

On account of the disagreement between the results
of previously published calculations of three-body
potentials, we calculated the TPK three-body potential
corresponding to diagrams of the type of Fig. 1 in non-
relativistic perturbation theory. This calculation, which
is sketched in Sec. II, led to potentials which agree with
those obtained by Bach apart from mass-dependent
multiplicative factors.

The main part of this paper is concerned with a calcu-
lation of the TPE three-body potential on the basis of
covariant perturbation theory (Dyson S-matrix for-
malism) in which the baryons, as well as the pions, are
treated field theoretically. This calculation is described
in Sec. III, where it is shown that the leading term in
this three-body potential for large separations is essen-
tially the same as that calculated in Sec. II, correspond-
ing to pair diagrams of the type of Fig. 1(c).The expec-
tation value of this three-body potential in the
hypertriton is calculated in Sec. IV, and the three-body
potential is found to contribute less than 5%% of the
expectation value of the total A-nucleon interaction.
The results of this paper are discussed in the final Sec. V.

II. THREE-BODY POTENTIAL FROM
A STATIC MODEL

In order to use a static-model approach for a system
of nucleons and hyperons, the initial step is to define a
model which is, in some sense, a nonrelativistic limit of
the relativistic theory. For this purpose, it is convenient
to extend the field-theoretic generalization of the Foldy-
Wouthuysen transformation, carried out by Osborn' for
a system of nucleons, to the case in which A and Z
hyperons are included. We assume a universal pion-
baryon interaction and even relative A —Z parity. ' The
corresponding interaction Hamiltonian density is then"

s R. K. Oshorn, Phys. Rev. 86, 340 (1952).
Evidence that the A.—Z parity is, in fact, even is given by

R. D. Tripp, M. B. Watson, and M. Ferro-Luzzi, Phys. Rev.
Letters 8, 175 (1962).

"The inclusion of the term sgzz ~y, )&Qq P yields additional
interactions, all of which are bilinear in the Z field operators; such
terms do not play a role in a calculation of the fourth-order
h.—E—1V potential.

'
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Kr (x) =gNN~QKVS'e' /Pic
+giz.fav54 Qz+giz fzv5 P4~ (2)

Following the example of Osborn, ' one frees the Hamil-
tonian of odd operators to order 1/M (M =mass of any
baryon) by successive canonical transformations. In the
first of these Lexp(iSi)3'. (x) exp( —iSi)j, Si includes the
terms

ZgAZ~
d &Qz Vs' P4'x,

Mg+Mz A Z

ZghZ~
d'&~'V~ii 4z ~

M +M

which serve to eliminate the second and third terms in

(2) and which introduce gradient and pion-pair inter-
action terms, etc. In this way one obtains the trans-
formed (total) Hamiltonian density

3("( x)=IN'P(M~+y'/2M')&N+4i. 'P(Mi+y'/2M')pa+ &zt p(Mz+y'/2Mz) &z+ (~'+Vii 7'11+&')/2

+(g ./2M )~ V~V +i~-.'/(M. +M.)h~.tf3~V.+L~-.'/(M. +M.)l(e.t~ ~)(~ e.)
+(g~~ /2M')QNtX ('7~ P)P~+(gaz /2)[1/2Mg+1/(Mg+Mz)]gp&(X V'P) gz

+ (iggz /4) (1/Mii —1/Mz)ltgtp (X y) Qz+ (gaz /2) [1/2Mz+ 1/(Mg+Mz))itizt (X V'p)pg

+ (t'g»-/4) (1/Mz —1/M~) Cz'0(X y)0a (3)

In (2) and (3), it~, Qadi and Qz denote baryon field

operators, and it and m represent the pion fields and
their conjugate momenta; and

&O e/
(4)

"The omission of the interaction terms involving p results in a
Hamiltonian which is no longer Hermitian. The Hamiltonian can
be made Hermitian, if desired, by modifying two of the coefBcients
in (3) Iin the following way:

P1/2Mg+1/(Mg+3fz) j/2
P1/2iVz+1/(Mii+Mz) g/2

"One can show that the use of the Tamm-DancoG method in
conjunction with this model leads to the same result as that ob-
tained in ordinary perturbation theory. The bare diagrams appear
regardless of whether or not one iterates the energy in the inter-
mediate-state Green's functions.

"This is a rather severe approximation.

is expressed in terms of the Pauli spin operators e.
In a static model, the terms involving the momentum

operator y in (3) are neglected, and the baryon field

operators are replaced by creation and destruction
operators for baryons at fixed positions. " It should be
noted that, if the terms in (3) which involve X y were

retained, they would lead to velocity-dependent con-
tributions to the potential. The calculation of the
A —N —N three-body potential, using ordinary per-
turbation theory, is straightforward. The TPE contribu-
tion breaks up naturally into three parts, which corre-

spond to diagrams of the types shown in Fig. 1. Dia-
grams of the type 1(b) (bare diagrams) are characterized

by an intermediate state with no pions present. "
The integrations required in obtaining the potential

contributions corresponding to diagrams of the types
of Figs. 1(a) and 1(b) are not difiicult if the Z —A mass
difference is neglected relative to the pion energies in the

energy denominators. "With this approximation, we ob-

tained results identical with those of Bach7 when the
mass modification, mentioned in Ref. 11 was made.
Since the Z —A mass difference appears explicitly in the
denominator of the expression for the potential corre-

sponding to the bare diagrams, this modification should

not be regarded as an approximation in which M~ is set
equal to Sf'.

For the potential corresponding to diagrams of the
type of Fig. 1(c), we obtained

l'.= Ii (g~~-'/47r) (g--'/4s ) (fi'/2M ~') &/ (M.+Mz) j
&& (~'~') (~'ri) (+.r~)

)& (1+ri) (1+r2)e "' "2//ri3rg, (5)

where r~ and r2 are the separation vectors between the
A-particle and nucleons 1 and 2, respectively, in units of
the pion Compton wavelength p '."The expression (5)
agrees with the result obtained by Bach' for these dia-
grams, except for a numerical factor SMq'/p(Mi+Mz)
=31,by which his result must be multiplied in order to
obtain (5).Bach' also multiplied his result by a damping
factor to account for possible pair suppression due to
radiative corrections. Apart from the multiplicative fac-
tor in (5), our work corroborates Bach's results rather
than those of Spitzer' and Weitzner. '

III. THREE-BODY POTENTIAI. FROM
THE S MATRIX

The fourth-order A-nucleon three-body potential is
derived in this section by means of the covariant
S-matrix formalism. In this approach, the full rela-
tivistic interaction Hamiltonian (2) is used, and the
baryons are not considered to be static, but are ulti-
rnately subjected to the condition y'/M'(&1. We shall
actually retain only the local part of the three-body
potential obtained by this method.

The S-matrix method of defining a potential is based
upon choosing a potential which reproduces the same S
matrix as the one calculated from field theory. "The
elements of the field-theoretic T matrix, defined by

Sp =8p —2s.i5(Ep —E )Tp (6)

are identified with the elements tp of the" transition

'4 In Eq. (5) and in the remainder of this paper we shall use the
the units A=c=1.

'~ See, for example, J. M. Charap and M. J. Tausner, Nuovo
Cimento 18, 316 (1960).
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FIG. 2. TPE diagrams which contribute to an S-matrix calculation
of the h.-nucleon three-body potential.

operator in ordinary quantum mechanics. The integral
equation connecting the latter operator with a potential
can be iterated to obtain t in terms of V. A series ex-
pansion of t in powers of the pion-baryon coupling con-

between the terms of fourth order. Since there is no
charge-independent A-nucleon or A.-two-nucleon poten-
tial of second order in the pion-baryon coupling con-
stants, the second term on the right-hand side of (7) does
not enter into a calculation of the TPE A-nucleon three-
body potential; and the oG-energy-shell matrix elements
in (7) play no role in this case.

The TPE diagrams which contribute to the 5-matrix
calculation of the A-nucleon three-body potential V3 are
shown in Fig. 2."With the interaction Hamiltonian (2),
we obtain the following matrix element corresponding to
the sum of these diagrams:

MN43lg'

(2~)'-&(qi)~(q2)&(q3) ~(pi)~(p2)+(pa)-

(—i)
(~sq3 ~2q2 ~lqll +

I
pirl P2r2 P3ra) gal% gAZ

[u"(q2) r,psu"'(P2) ][u"(qi) r,p&u"'(pi)]
X 6 (/1+$2+$3 pl p2 p3)

I:4 —p2)' —u'][(Ci —p )'—~']

(V [p2 V2+pa]+—~» Lpi V i+p3]+~—z
x ~"(qa)~~l + y~~" (p,)

4 [p2 $2+pa] MZ [pl pl+pa] ~Z
(8)

In Eq. (8) the u" (y) are eight-component spinors, characterizing the spin and isotopic-spin states of the nucleons,
and the operators ~ and &5 within the nucleon spinor products are understood to be generalized to the direct-
product spinor space. The &a"(p) are four-component A.-particle spinors.

The elements of the TPE T matrix corresponding to the diagrams of Fig. 2 can be obtained by dividing (8) by—2iri and dropping the energy-conserving part of the four-dimensional delta function, in accordance with Eq. (6).
Following the remarks made in connection with Eqs. (6) and (7), the elements of this T matrix (in the nonrela-
tivistic limit) are then taken to be the matrix elements of the TPE potential Va. In order to obtain a potential
appropriate for use in a Schrodinger equation, it is convenient to express the small spinor components in (8) in
terms of the large components. The transition to the nonrelativistic limit is then made by neglecting terms of higher
than second order in

I p I/M and expressing the large spinor components in terms of two-component Pauli spinors.
~e obtained that part of the resulting expression which leads to a local potential by neglecting the A.-particle
momentum p3 and the momentum sums (q;+p, ) for i=1, 2, while retaining the momentum transfers (q;—p,).
These approximations imply that the corresponding potential Vs will be valid only for baryon kinetic energies
which are small compared to the Z —4 mass difference. These steps lead to the following expression for the mo-
mentum-space representation of the potential operator in the spin and isotopic-spin space of the baryons:

V, (q,—p, , q, —p,)= [g~~ 'g~ '/—z(2~)'(2M )']ii(~' ~ ~')

[~'(q2 p2)][~'(qi —yi)]

[(q2 P2) +u ][(ql Pl) +u ]—(q2 P2)'+~z' —~~' (qi —pi)'+~z' —M~'-

gt should be pointed out that the singularity in the Z-particle propagator, corresponding to the Z-particle being on
its mass shell, disappeared in the transition from (8) to (9) when the nonlocal terms in V3 were discarded

The local A-nucleon three-body potential in configuration space is the Fourier transform of (9) with respect to the

'6The exchange-scattering diagrams, which are the same as those in Fig. 2 with g& and q2 interchanged, need not be con-
sidered in a calculation of the potential.
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two nucleon momentum transfers lt;= (q;—p;):

Vs(rt rs) = dgtdgsz~(~~ ~ r~+I 2 rs) V(Q lr ) .

Vs ——u(giver '/4n) (ggz '/4z) [p'(~z —Mg)/(Mz' —M~' —p') (2Miv)'] (z' ~ z') (rr'ri) (e'rs)
X{(1+rs) (e "&/rs')L(1+rt) (e "&/ris) (1+O—Rrt) (exp( —Oui)/rt')]

+ (1+ri) (e "'/ris)L(1+rs) (s "'/rs ) (1—+ORrs) (exp( —mrs)/rs')]} . (10)

In (10) the interparticle separations have been expressed
in units of the pion Compton wavelength, and

OR'= (Mz' —Mg')/y'.

The potential (10) is to be compared with the static-
model potential discussed in Sec. II. The S-matrix
potential is similar to the potential V, given in Eq. (5).
The differences are the terms in (10) which contain OK

and the additional y' in the denominator of the over-all
coefficient in (10).The terms involving OR arise from the
momentum-transfer terms (q;—p;)s in the denominators
of (9); the static-model potential (5) corresponds to the
neglect of these terms with respect to (Mzs —Mq'),
which is tantamount to neglect of the recoil of the inter-
mediate Z-particle. (We have already neglected ps.)
Since these terms involving 5K are of opposite sign from
the static-model terms, it is clear that the recoil of the
intermediate Z-particle tends to decrease the strength
of the three-body potential. Since 5R= 3, however, these
recoil terms contribute very little in the region of large
A-nucleon separations, where the TPE potential can be
expected to be valid.

The static-model potential V, results from the
presence of the pair term ij~pqlji' in the transformed
Hamiltonian (3). Since this term accounts (approxi-
mately) for the effect of Z particles in intermediate
states, the discussion of the preceding paragraph indi-
cates that the S-matrix potential (10) arises primarily
from intermediate states which contain A —Z pairs.
There is some reason to believe that corresponding pair
contributions may be suppressed in the nucleon-nucleon
interaction by higher order radiative corrections'7; how-
ever, there is as yet no experimental evidence for A —Z
pair suppression. Moreover, the fourth-order nucleon-
nucleon S-matrix potential derived by Gupta" (without
pair suppression) has been used by Breit et al." to im-
prove the theoretical fit to nucleon-nucleon scattering
data. It therefore appears that the degree of pair sup-
pression is in doubt even in the nucleon-nucleon inter-
action. Considering the uncertainty which exists on the
question of possible pair suppression, one can conclude
that, in the absence of significant damping, the main

'7 For a discussion of pair suppression see, for example, R. J. N.
Phillips, Rept. Progr. Phys. 22, 623 (1959).

's S. N. Gupta, Phys. Rev. 117, 1146 (1960)."G. Breit, K. E. Lassila, H. M. Ruppel, and M. H. Hull, Jr.,
Phys. Rev. Letters 6, 138 (1961).See also G. Breit, Rev. Mod.
Phys. 34, 766 (1962).

contribution to the A-nucleon three-body potential for
large separations is the Vs given in Eq. (10).

IV. EFFECT OF THE THREE-BODY POTENTIAL IN
THE BINDING OF THE HYPERTRITON

In this section we calculate the eQ'ect of V3 in the
hypertriton to investigate whether the presence of the
potential (10) would significantly affect the deterinina-
tion of the A-nucleon two-body potentials in an analysis
of this hypernucleus.

Bach' has previously estimated the contributions to
the expectation value of the total A.-nucleon interaction
in the hypertriton which arose from the static-model
three-body potentials corresponding to the diagrams of
Fig. 1.His results indicate that the presence of the three-
body potentials which he considered would not greatly
modify the two-body potentials deduced (without three-
body potentials) from the binding energy of zH'. Bach's
estimate of the effect of the static-model potential (5)
was, however, incorrect: He took the expectation value
of (5) to be zero for a hypertriton wave function with nu-
cleon correlations. Although the expectation value of (5)
is zero for a wave function having no nucleon-nucleon
spatial correlations, its expectation value is not zero for
a realistic hypertriton function with correlations. The
over-all (mass and coupling constant) coeKcient on the
potential (5) is much larger than the over-all coefficients
on the potentials which correspond to the diagrams of
Figs. 1(a) and 1(b), being about two orders of mag-
nitude larger than the former and about an order of
magnitude larger than the latter. The neglect of (5) in
an estimate of the eGect of static-model three-body
potentials could therefore be a significant omission. As
we have previously noted, the static-model potential (5)
is essentially the same as the S-matrix potential (10) in
the region of large A-nucleon separations where the TPE
potential can be expected to dominate the interaction.

Our estimate of the effect of the potential (10) in the
hypertriton will be made on the basis of perturbation
theory, the unperturbed wave function being one deter-
mined in an analysis of the hypertriton binding energy
in terms of two-body potentials. Such wave functions
have been obtained for potentials both with and without
hard cores."'"For the estimates of this section, we use
the hard-core wave functions of Downs, Smith, and

ss R. H. Dalitz and B. W. Downs, Phys. Rev. 110, 958 (1958).
s' B. W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959).
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X(" ")( ' ') (»b)

I = r»r2f g&gfr2dr3

TABLE I. 0. Optimum parameters and expectation values
for DST wave function.

D
(F)

0.4
0.6

$0

(F) (F ')

0.7 0.325
0.3 0.389

P y 8 E
(F ') (F ') (F ') (F')

6.94 0.578 4.55 288.8
i i.28 0.606 4.79 23i.i

(Vxx)
{MeV)

i 2& i—35.4

2' For the hard-core radius D=0.4 F, DST re orted
potentials with attractive wells havin tw

Th t t' 1
' H

Ref. 3.
c a ion va ues given in Table I do not appear in

X [(r2+res —rss)/2r, r,][(1+r,)/rts]

X[(1+re)/rssje "&r' D& s'frs & "&r8 & 13) 13c

where the arg; are numerical factors arising from the
square of the wave function (12). In (13c) the radial
variables r; and the hard-co d' hre ra ius ave been ex-
pressed in units of the pion Compton wavelen th the
parameters u.;, ~;, c;, w" ich are derived from the ex o-

ppearing in the wave function and
in the potential, are then dimensionless. In (13b) the
normalization factor X has also b
o p . he integration in (13c) is over values of r; from
D to ~, subject to the triangular inequalities r&+re& rsi ies r» r2~ r~)

The tntegrations required in (13c) cannot be carried
out in closed form on account of the factors r»' and r2'

w ic occur in the denominator of the integrand. To
obtain integrands which lead t l da o c ose expressions, we
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I 2.0
f(r)-

r2

expectation value of the total two-body A-nucleon
interaction (for gAB '/42r=gs()11 '/42r=15):

-.Odor -3.280 r
IO0

-----— F(r) = l.7I e + 23.8e 0.046(Vs')

2(VA))r) 0.014
for D=

0.4F

0.6F
(17)

8.0—

6.0—
O

4.0—

2.0—

0.0
0.0 I.O 2.0 3.0

Fio. 4. The function f(r) and the function F(r) appropriate
to a hard-core radius of 0.6 F.

approximate the factors

f( )=(1+ )/ ',
which appear in the potential (10), by

F(r;)= Ye P"r'+Ze r(—

(14)

(15)

The coe%cients I' and Z which we used are given in
Figs. 3 and 4, which show that (15) provides a very good
representation of (14) for values of r; which make
significant contributions to the integrals (13c). When
the factors (14) are replaced by (15) 2' the integrals to
be evaluated in (13) are all of the form

The relatively small contribution of the three-body
potential provides a justification for the use of the
perturbation method which led to (17). In a proper
variation calculation, the three-body potential should,
of course, be included from the beginning. The smallness
of the ratios (17) indicates, however, that the results of
such a calculation would probably not be very difterent
from those given in Table I for the two-body potential
and in (17) for the three-body potential.

The smallness of the expectation value of the three-
body potential can be traced to the presence of the
factor

('= (ri'+r2' —r3 )/2rir2 (18)

in the integrand of (13c). The factor (18) arises from
the factor ((r'ri)((r'r2) in the potential (10) and ac-
counts for the attribute of (10) which requires spatial
correlations between the nucleons in order for the three-
body potential to be effective. Such correlations are
present in. the wave function (12) both because the
nucleon part (12c) vanishes at the hard core and because
that function is not constant outside the core. If these
correlations were not present, the integrals (13c) would
vanish. If the three-body potential (10) were included
in a variation calculation from the beginning, the
principal modification in the perturbation results ob-
tained here could be expected to arise from increased
nucleon-nucleon correlations introduced into the opti-
mum wave function by the presence of the correlation
function (18). A qualitative indication of the effect of
(18) can easily be obtained from its expectation value
with respect to the simple wave function

I(1)— driers(irsr12rse —A(ri D) B(rs—D)—c(r3——D) (16a)— &
—a(rP+r1) —5 (r3)

) (19)

ol

1(2) o(r (frsdrsr33e A(rl D) B(r2 D) c(r3—D—) — ——(16—b))

which is a counterpart of (12) for potentials without
hard cores. With (19), the expectation value of (18) is

«)=L(b/ )+5(~/ )V«~/ )+5(~/ )+». (20)

when use is made of the symmetry of the wave function
and the potential in the radial variables r~ and r2. These
integrals (16) can be readily evaluated by the technique
described by DST.'

With the hypertriton results of DST given in Table I,
we obtained the following values for the ratio of the
expectation value of the three-body potential to the

~ A rough estimate of the error introduced by this approxima-
tion was made by evaluating the integrals

f(r)e r"dr and F(r)e r'dr,

for values of p representative of the exponential parameters which
enter in the integrals (13c). In this comparison, the values of the
two test integrals never differed by more than 5/0.

The expectation value (20) vanishes for (f)/a)=0 (no
nucleon correlations for finite a) and approaches unit. y
for (f)/a) —+ ~ (complete nucleon correlation for a/0).

V. CONCLUDING REMARKS

The estimates of Sec. IU indicate that the TPE
three-body potential (10) can reasonably be neglected in
analyses of the binding energy of the hypertriton. This
conclusion is even stronger than the comparison (17)
indicates because the terms involving the mass diGer-
ence quantity 9R in (10)were omitted in the calculations
leading to (17).It is not obvious from these calculations,
however, that the three-body potential (10) can also be
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neglected in other hypernuclei. Since the parameters of
the two-body A-nucleon potentials have been deduced
primarily from analyses of ~H' and ~He', '2 it would

appear to be of interest to investigate the effect of the
potential (10) in sHes. The spatial correlations among
pairs of nucleons in ~He' are stronger than those in ~H',
and this would tend to increase the effect of the three-
body potential. The same remark applies to very heavy
hypernuclei (and nuclear matter), in which the average
nucleon-nucleon separation is smaller than it is in the
hypertriton.

The binding energy 8 of a A. particle in nuclear matter
is currently an object of some interest. "The importance
of 8 stems from the fact that it is determined, in part,
by the h.-nucleon interactions in states with angular
momentum /&Op "whereas the binding energies of the
light hypernuclei are determined almost entirely by the
5-wave interactions. We estimated the contribution of
the three-body potential V3' to the binding energy 8 by
the perturbation technique of Bodmer and Sampanthar, 4

2' For a review of experimental and theoretical estimates of B
see, for example, B.W. Downs and W. E. Ware (to be published);
and B. W. Downs, "The Nuclear Well Depth for h.-Particles, " a
paper presented at the (CERN) International Conference on
Hyperfragments, St. Cergue, Switzerland, March, 1963.

M J. D. Walecka, Nuovo Cimento 16, 342 (1960).

in which nuclear matter is treated as a Fermi gas. When
cuto8 factors of the form f 1—expL —c(r—D)j) are
taken for each interparticle separation and the nucleon-
nucleon correlation function' ' L3jt(kFrs)/k~rsf' is ap-
proximated by an exponential, the result can be ex-
pressed in the form (13) with the normalization factor
(I/N) replaced by the square of the density of nuclear
matter p. Since the appropriate p' is about 10 times as
large as the values of (I/1V) used here, we obtained a
result which suggests that the contribution of the
potential (10) to 8 may be significant. In fact, the result
was so large that the perturbation approximations upon
which it was based may not be justified; and a more
careful study of this eGect will have to be made before
a reliable statement can be made. "
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responding to the diagrams of Figs. 1(a) and 1 (b) make a relatively
small contribution to B.


