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A proof of Pomeranchuk's theorem regarding the high-energy limits of the total cross sections is presented.
The proof consists of assuming the usual analyticity for the forward elastic amplitudes and the assumption
that these amplitudes become pure imaginary in the high-energy limit. This proof does not require that the
total cross sections have finite limits. It is also shown that the total cross-section o(s) as a function of s, the
total c.m. energy squared, behaves asymptotically as o.(s) =o(~)+b/s&+O(1/s) when S(ao) is nonzero,
where 8 is some constant. This asymptotic form is based upon a more speci6c assumption that high-energy
elastic scattering is described by an effective complex and energy-dependent potential which satisfies a dis-
persion relation in the energy variable. However, the above asymptotic form is valid independently of the
dependence of this effective potential on the spacial coordinate. It is argued that the term g/st in the above
asymptotic form should be regarded as genuinely asymptotic, while the term of the order of 1/s is not.
According to this criterion, the available high-energy p —p data are not so close to the asymptotic region as
the w+ —p data in the same laboratory momentum range.

1. INTRODUCTION AND SUMMARY

E denote by o (s) and a (s) the total cross sections
for a particle and its antiparticle, respectively,

incident on the same target as functions of s, the total
c.m. energy squared. Pomeranchuk's theorem' states
that o (s) and a(s) approach the same limit as s h oo

if they have 6nite limits. Several proofs' of this theorem
were given which consist of assuming the forward dis-
persion relation together with some additional assump-
tions. The experimental check' ' on its validity is not
yet conclusive, not only because of large experimental
errors but also because nothing is known theoretically
about the asymptotic forms of o-(s) and tr(s).

The purpose of this paper is to present another proof
of this theorem and also the theoretical asymptotic
forms of o.(s) and o.(s) which are given by (14) below.
Besides its considerable generality and simplicity, our
new proof does not require that the total cross sections
have 6nite limits. We assume, as the alternative as-
sumption, that the forward elastic amplitude becomes
pure imaginary as s ~~.This is equivalent to assum-
ing that high-energy elastic scattering becomes domi-
nantly absorptive. We show that our assumptions imply
that a(s) a(s)~s', s ', etc., as s~~. This result is
even stronger than Pomeranchuk's theorem.

The asymptotic forms (14) are based upon a more
speci6c assumption, that high-energy elastic scattering
is described by an effective complex and energy-
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dependent potential V(r,s) of the type proposed pre-
viously. ' Since this model cannot' give rise to zero
asymptotic limit of o(s), the asymptotic forms (14)
apply to the case when o.(~) and a(co) are nonzero.
However, these forms are valid independently of the
dependence of V(r, s) on the spatial coordinate r The.
asymptotic forms (14) are due to the dispersion. relation
in s satisfied by V(r,s), which is in turn due to the micro-
scopic causality. ' The comparison of (14) with experi-
ments' ' and the relating discussion are given in Sec. 4.

2. ASYMPTOTIC LIMITS OF TOTAL
CROSS SECTIONS

Let A (s) and A(s) be the forward elastic amplitudes
for the particle and its antiparticle, respectively. We
normalize them such that A(s) so.(s) and A(s) so.(s)
as s~~. The crossing relation which connects these
amplitudes is written as

A (u) =A. (s), (1)
if we introduce I, the covariant total energy squared in
the crossed channel. One knows that s+u= 2(trt'+trt"),
where rn and nz' are the masses of the colliding particles.
The usual analyticity assumption implies that A (s) and
A (s) are analytic in s except for finite numbers of poles
and cuts which are given by ~&s&so and ~&u&ND
for A(s) and by oo&s)us and ~)u&ss for A(s),
respectively, where so and No are some constants. If
3(s) is the phase of A (s) along the cut, co )s) ss, and
3(s) is that of A(s) along the cut, ~)s&us, the
phase representations' for A(s) and A. (s) are written
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where P;(s)'s and P,(s)'s are finite real polynomials.
The crossing relation (1) then implies that these poly-
nomials satisfy

Pi(u)/Ps(u) =Pi(s)/Ps(s) .

Therefore, the asymptotic limitsr of A(s) and A(s)
are given by

—s - 5(&g))/~-I —0(to)/m
0 0

A (s) -+ cs"—
s s—

exp[i'(~ )],
- ~ —5 (ro) /2t. —. —5 (ao) /2i.

SQ NQ

A(s) —+ c(—s)"—
s s

exp[i' (~ )],
(4)

where ri is an integer due to the polynomials in (2) and
c is some real constant. It is assumed in deriving (4)
that 8(s) and 8(s) approach their limits not too slowly.
This is equivalent to assuming that the amplitudes A (s)
and A(s) exhibit the power behavior in s as s ~~. It
is clearly seen in (4) that o ( ~ ) and o ( ~ ) do not have to
be the same as long as b ( ~ ) and 8( ~ ) remain arbitrary.

Our additional assumption, that the forward elastic
amplitude becomes pure imaginary as s —&~, implies
that 8( oo) and b( ~) can only be + isa except for some
integer multiples of x. It then follows that the limits in
(4) are both proportional to s, m being an integer. One
can argue that this integer m must be unity or less. Let
A(s, t) be the scattering amplitude as a function of s
and t, the covariant momentum-transfer squared, nor-
malized such that A(s, t=0) =A(s). In the case when

A(s, t)res P(t) as s —+Do, where P(t) is sufficiently
peaked in t around t=0, one estimates the total elastic
cross section, o.,i(s) ~ J'~A(s, t) ~'dt/s', as proportional
to s' '. Since o,i(s)(o(s), one finds 2ris —2&res —1,
that is no&1. One can argue similarly and conclude the
same, also, in the cases when A (s,t) ~ s P(t) exp(nt lns)
or even s (lns) "p(t) exp(nt lns) as s —& ~, where n is a
positive constant and e is an integer.

One then proves Pomeranchuk's theorem by direct
computations. First, the case of no=1 can be attained
in (4) by various combinations of 8(~) and 5(~).
However, one finds always that the limits in (4) are the
same. For example, when 5(m) =a./2 and 8(oo) = —ir/2,
one finds that n, =1 and the limits in (4) are both
ics (ss/us)' ', implying that o ( oo )= o ( ~ )=c (ss/us)'~s. In

r The asymptotic limits of the exponential factors in (2) are
derived in Ref. 6.

Pi(s) s " 8(s')ds' u " b(s')ds'
A (s) = exp — +-

Ps(s) a. „s'(s'—s) ir, s'(s' —u)
(2)

P, (s) s " 8(s')ds' u " b(s')ds'
A. (s) = exp — +-

Ps($) 7I gs $ (s $) r gs $.($ u)

the case of no=0, however, one Ands always that the
limits in (4) have diferent signs. Since this contradicts
the optical theorem, the case of m=0 is not permissible.
One Gnds similarly that the case of m= —1 is permissible
and that o(s) o(s) ~s -'as s~ao in this case. This
way one proves that the total cross sections behave
asymptotically only as ss, s ', etc. , and always o (s)~o (s)
as s~~.

It is likely that the forward elastic amplitudes for
strongly interacting particles become pure imaginary
in the high-energy limit. If this is actually the case,
our proof indicates that Pomeranchuk's theorem is
valid in all pairs of the total cross sections which involve
strongly interacting particles.

3. ASYMPTOTIC FORMS OF TOTAL
CROSS SECTIONS

Suppose that ImV(r, s) —(s)'~'Vz(r) for $&b, where
Vz (r) is a real positive function of r, and b is some large
number. Then, the prin. cipal value integral in (5) ap-
proaches a 6nite limit as s —+ ~, since

s
—P
7r

"Im V(r,s')ds' s ' Im V(r,s')ds'

g, S S —S 7l ~ S S —S

" (s')'"Vz (r)ds'

s s —s
—~ —(1/ir)

Im V(r,s')ds'/s' (2 (b)'"/rr) Vz (r) .—(6)

Therefore, V(r,s) behaves as s~~ as

V(r,s) —+ Vir(r) —i(s)'"Vz(r), (7)

where Vzr(r) is some real, finite function of r. However,
the sign of Vir(r) cannot be determined by that of Vz(r)
alone.

The asymptotic form (7) of V(r,s) then determines
the asymptotic form of the phase of the forward ampli-

We assume in this section that high-energy elastic
scattering is described by an effective complex and
energy-dependent potential V(r,s) of the type proposed
previously. ' According to our previous work, ' the re-
quirements that V(r,s) does not vanish at s= oo and
becomes pure imaginary as s —+ oo and that V(r, s) is
analytic in s, imply that ImV(r, s):diverges as s-+ ~
as s'", s'", etc. We assume in this paper that ImV(r, s)
diverges as (s)'~s, because this is probably the only
physically plausible behavior. Then, V(r,s) satisfies a
dispersion relation

s "ImV(r, s')ds'
V(r, s) = V(r,0)+— +poles. (5)

s'(s' —s)
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tude A (s) by mean. s of the well-kn, own formulas

A (s) = 42ris 1—exp
2 (s)'"

V(r, s)ds bdb,

(8)

P (s) - s -'&"&/ - eo
A(s) = Q v($) (1o)

P2($) sp s 2zp —I
where Q is a positive real constant and

"b(")—b(-),
y(s) =exp- ds

S —S

"b(s')—b( )ds', (11)
S —I

and a similar expression for A(s). In terms of (9) for
s&$1 and b(s) —b( ~) b/(s)'/2 for s&ut, where s1 and
n~ are some large, but Qnite numbers, one Gnds after
simple computation that

1 5
y (s) —+ 1+ +0 — +i

(S)1/2 $ ($)1/2
(12)

as s —+ ~. One thus obtains our Anal results,

b p1 ii

A(s) is.( ) 1y +0~—
($)1/2 I S (S)1/2

)1 b

A(s) ~ is~(~) 1+ +0~ — +i
($)1/2 (s ($)1/2

(13)

and, therefore,
fi )1q-

o(s) —&o(~) 1+ +Oi —
i(s)'" ks)

as s~~ ~

o ple-
o(s) ~o-(~) 1+ +0~ —

~

&$)
'

(14)

' The expression (8) is the same as the equation (7) of Ref. S.
This is explained in full detail in Ref. 6.

where V(r, s) is given by (7). One easily finds from (8)
that the phase 8(s) of A (s) behaves as s —+ oo as

b($)—b(")=~/(s)'"

where 8 is a real constant.
The asymptotic form (9) of the phase should be valid

for both 8(s) and b(s) in (2) because both A (s) and A(s)
are the forward elastic amplitudes. In order to compute
the asymptotic forms of A(s) and A(s) by means of
(2) and (9), one rewrites' (2) as

We remark. that the 1/(s)' ' terms in (13) and (14)
depend only on the asymptotic phase (9) and, therefore,
are entirely due to the asymptotic form (7) of the ef-
fective potential. However, the 1/s terms in (13) and
(14) depend also on the low-energy aspects, such as
the branch points so and No. Therefore, it seems reason-
able to regard those energy regions as asymptotic in
which the 1/s terms in the total cross sections becomeinsignificant.

We cannot estimate even the signs of 8 and 5 in
(13) and (14) because they depend on both V/2(r) and
Vz(r) in (7). However, we can argue that 8= b at least
in the case of 2r+—P scsttering. If 808, then o (s)—o (s)
approaches zero as (s) '/'. This means that A (s)—A(s)
diverges as (s)'/'. However, A(s) —A(s) is known em-
pirically to satisfy a no-subtraction dispersion relation
in the case of 2r+—p scattering. Therefore, one must
have 8= 8. In fact, the asymptotic forms (14) become
consistent with this empirical fact if 8= b.

0.48 0.71-
o. +~(s) = 23.2 1+()"

1.6 5.6
o„(s),o;„(s)=35 1+()'"

(15)

These formulas 6t the data very well, though they should
not be taken too seriously because the experimental
errors are large and also the arbitrary choices are made
for the parameters. It is, however, interesting to note
that o»(s) in (15) varies from 38 mb very slowly to
39 mb over the momentum range concerned.

The major point of our asymptotic forms (14) is
that both o.(s) and o.(s) have relatively slow approaches
to their limits at s= .Furthermore, it is the asymptotic
phase of the amplitude for its antiparticle (not the par-
ticle itself) that determines the asymptotic form of the
total cross section. According to (14), therefore, one
should judge whether the energy is high enough to be
asymptotic, not merely by a nearly constant behavior
of o (s), but rather by observing both o (s) and o (s) to
see if they behave similarly in the sense of (14). For

4. COMPARISON WITH EXPERIMENTS

We now compare with (14) the experimental cross
sections for 2r+—P', P—P', and p —P' scattering in the
lab momentum range 10 to 20 BeV/c Lin s, 20 to 40
(BeV)2). All these data clearly do not satisfy (14)
without the 1/s terms. This is because o. -„(s)—o. +~(s)
is still appreciable and o~„(s)—o»(s) decreases too
rapidly to fit a (s) '" dependence in spite of large
experimental errors. Therefore, we have done the fol-
lowing analysis. We put, for simplicity, b=5 in (14)
also for P—P and p —P scattering. Thus, we fit o.(s) —1r(s)
by a pure 1/s term. We then fit o (s)+o (s) by a constant
plus a (s) '/' term alone, also for simplicity. The results
in mb and (BeV)' units are
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this reason and also based upon the fit (15), we are
inclined to conclude that available p —p data are not so
close to the asymptotic region as the w+ —p data for the
same available momentum range. We recall that the
model underlying the asymptotic forms (14) predicts'
no shrinkage in the forward peak of high-energy elastic
scattering. Therefore, we understand at least qualita-
tively the reason why the recent experimental data"
indicate no shrinkage in w+ —p scattering, but appreci-
able shrinkage in p —p scattering.

If one combines the fit (15) with (13), one can esti-
mate a deviation from the optical point as

) Red (s)/ImA (s) ~

'~5'/s~1% (15)
' K. J. Foley, S. J. Lindenbaum, W. A. Love, S. Ozaki, J. J.

Russel, and L. C. L. Yuan, Phys. Rev. Letters 10, 376 and 543
(1963).

at the lab momentum 10 BeV/c for n.+—p scattering.
This figure violently disagrees with 23&10%, a figure
suspected in a recent report. "The same estimate gives
a deviation of 13% for p —p scattering at the same lab
momentum.

We remark Anally that all our arguments are valid
also when the particles have spins. Our arguments then
apply individually to the amplitudes with the spin
directions specified and the corresponding total cross
sections. Therefore, our arguments apply also to the
spin-averaged ones.

We thank Professor L. Van Hove for pointing out an
error in our earlier version of this paper.
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The two-pion-exchange contribution to the three-body h.-nucleon interaction is derived from a static
model and also from covariant perturbation theory. It is found that the local part of the potential cal-
culated by the latter method is similar to that part of the static-model potential which corresponds to
the formation of lambda-antisigma pairs in intermediate states. This potential is noncentral and has the form
(s's')(a'rq) (a'rr) f(rq, rr), where e' and s' are the spin and isotopic-spin operators for the two nucleons,
and rj and r2 are the h.-nucleon separation vectors. An estimate is made of the importance of this potential
in the binding of the hypertriton by calculating its expectation value with respect to hypertriton wave func-
tions corresponding to two-body interactions with hard cores. In these calculations, the three-body potential
is found to contribute less than 5% of the expectation value of the total A-nucleon interaction.

I. INTRODUCTION

NALYSES of the binding-energy data for the
hypernuclei with A ~&3 have been made to deter-

mine characteristics of the A-nucleon interaction. ' ' Un-
certainties in these analyses have precluded the deduc-
tion of a complete set of parameters characterizing these
interactions; in particular, it has not been possible to
establish the presence of A-nucleon-nucleon three-body
interactions. When three-body interactions have been
neglected, these analyses have led to the specification of

*This work was partly supported by a grant from National
Science Foundation.
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parameters characterizing central two-body 5-wave
potentials which include the effect of possible tensor
components. ' ' The resulting two-body potentials are
strong and highly spin-dependent. It has been noted
that the deduced spin dependence depends critically
upon the assumption that the effect of three-body inter-
actions is negligible in the binding of hypernuclei. '4'
Bodmer and Sampanthar4 have recently made a quanti-
tative connection between the assumed strength of
three-body potentials of the form

(~'e') (tr'er') V(Ri,R,,RA),

and the spin dependence of the corresponding two-body
interactions required to account for the binding energies
of the lightest hypernuclei. LIn (1), 1, 2 and A denote the
coordinates of the two nucleons and the A. particle,
respectively. ]Previously, Weitzner had similarly deter-
mined the required strength of a potential of the form

s H. Weitzner, Phys. Rev. 110, 593 (1958).


