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and Decay Processes*

C. KACSER

Columbia University, N'em York, Sex York

(Received 16 July 1963)

We consider a model theory for studying overlapping final-state interaction effects in 3-body production
and decay amplitudes. The model is given in terms of dispersion relations similar to those given by Khuri
and Treiman for the process IE —+ 3~. We extend the partial-wave projections into the complex plane, and
determine their analytic properties, giving explicitly a set of cuts and discontinuities. These consist of the
usual right-hand cut with normal discontinuity, together with a "left-hand" cut for which the discontinuity
is expressed as an integral over the projections. The right-hand cut can be factored out in the usual way, and
thus one can hope to obtain the solution by iteration for the left-hand cut contribution.

I. INTRODUCTION

~ 'HERE has been a great deal of interest recently
in the problem of overlapping final-state interac-

tions in production and decay processes. One particular
viewpoint is that of Peierls and Tarski' in which one
uses a model theory. This model is defined by a disper-
sion relation of the type 6rst proposed by Khuri and
Treiman, ' for the process E—+ 3m..

In this paper we study the 5-wave projection of such
an amplitude. We determine its complete analytic
structure, and obtain a possible set of cuts and associ-
ated discontinuities. We hence obtain a single-variable
integral equation for the partial amplitude. This equa-
tion is somewhat similar to that found by MacnowelP
for the partial amplitudes in m+E-+rr+E; there
being a right-hand and a left-hand cut. The discontinu-
ity across the right-hand cut is given directly by uni-

tarity, while that for the left-hand cut is given in terms
of an integral over the partial amplitude. It is straight-
forward to factorize out the right-hand. cut, and one
may therefore hope to obtain a complete solution by
iteration.

The organization of this paper is as follows. In Sec. 2

we de6ne the basic model, being rather careful about
the de6nition of "S-wave projection. " In Sec. 3 we
extend the de6.nition into the whole complex plane,
proceeding in several stages. Thus, we study a crucial
mapping transformation, make an initial foray into
the complex plane in Sec. 3.2, digress brieQy into the
second sheet in Sec. 3.3, and present the final analytic
structure in Sec. 3.4, obtaining a possible set of cuts and
discontinuities. Finally, in Sec. 4, we consider the in-

tegral equation satis6ed by the S-wave projection,
and outline in iterative method of solution, based on a
factorization of the problem into a right- and a left-hand
cut, the right-hand cut having the usual Omnes type
solution.

*Work supported, in part, by the U. S. Atomic Energy Com-
mission. An initial account of this work was presented by Tran
Truong and the author in Bull. Am. Phys. Soc. 8, 300 (1963).

' R. F. Peierls and Jan Tarski, Phys. Rev. 129, 981 (1963).
This paper gives an up to date review of the recent literature on
this subject.

s N. N. Khuri and S. B.Treiman, Phys. Rev. 119, 1115 (1960).' S, W. MacDowell, Phys. Rev. 116, 774 (1959}.

M (Si,Ss,Ss) —D+A (S i)+B(SQ) +C (Ss),
with

(2.1)

(s—sp)
A(s) =

ds'n (s')
; etc. (2.2)

( b+ .)'(s' s ie)(—s' —sp ie)— —

Here and throughout "etc."will denote cyclic permuta-
tions on (A,B,C), (n,P,y), (a,b,c), and (1,2,3). The
spectral functions are given by

n(s) =f,*(s)Mi(s), etc. ,

fi*(s)= exp/ —ib&(s)] sinb&(s), etc. ,
and

(2.3)

(2 4)

Mi(s)=D+Ai(s)+Bi(s)+Ci(s), etc. (2.5)

Here 8,(s) is the S-wave phase shift in the two-particle
scattering channel b+c ~ b+c.'

4 At certain points in the following we will have to assume all
the 8; are real; that is, we ignore the competing inelastic channels
in f;. This is reasonable since they are ignored in the model
dispersion relation for 3f,

There is also a brief Appendix in which we present
an alternative method of expressing our conclusions.
(I am very grateful to Tran Truong for suggesting this
method. )

2. BASIC FORMULATION

We consider processes of the type A —+ a+b+e or
A+B~ a+b+c in which all the structure of the
matrix element M is due to the final-state interactions
(fsi) taking place between the final-state particles
(which, for simplicity, are assumed to be neutral and
have spin 0). Again, for simplicity, we consider only
tzvo-body S-wave interactions, but assume that these
occur between more than one pair.

I.et the 4 momenta of the final-state particles be k 1, k2,

ks, with E=ki+ks+ks. Define si ——(ks+ks)'= (E—ki)',
etc. , with si+ss+ss =—3sp ——E'+m, '+mss+m, ', where
kl' ——m ', etc. Our assumption that all the structure is
due to final-state interactions can now be more pre-
cisely stated in the form that, for a axed E'=m', the
amplitude M depends only on s&, s2, s3. We wish to
determine the form of this dependence.

The dispersion relation which defines the model is
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Finally, we must define the quantities in (2.5). We go
to the "1"reference frame in which K—k~ ——ks+ks= 0,
and define the angle between ks —ks and kr as Oss. We
express s2 and s3 in terms of sj and z~=—cos023. Then

Mr(s) =-,' dstM(st, st)
—1

(2.6)

' The method underlying our notation is that A and Qf refer to
quantities expressed naturally in the s& variable appropriate to
the two-body (6+c) channel; while A; is the projection of A
relevant to the ith channel. Since f; and 8; will only appear in their
natural variables the notation for these is straightforward.

'Actually the methods of this paper as well as the model can
be generalized immediately to deal with higher partial'wc:aves.
The partial projections for diferent angular momenta: will be
coupled, but the basic nature of the equations will not chahgc; In
particular, the partial projections will be defined by:irit@ials
over paths precisely identical to those we find explicitly for the
S-wave projections, the only difference being that the integrand
will contain Legendre polynomials.

and similarly, for At(s&), Bt(st), C&(s&) Lof course
Ar(sr)=A(sr)]. (The circle across the integral sign
should be ignored at present, though it will be very
important later on.) Thus, M&, At, &&, C& may be
though of as being the S-wave projections of M, A, 8,
C in the reference frame "1." Similarly, M2, A2, 82,
C2 are the S-wave projections taken in the "2"reference
frame I—ks ——ks+k, =0, and similarly for 3.' The
definition (2.6) is only meaningful for (ms+m, )'&st
& (m —m, )', and has to be given an appropriate meaning
by analytic continuation for s&) (nz —nz, )'.

The structure of the model should now be evident,
and can be symbolized in the set of dispersion relation
diagrams of Fig. 1, in which the double line represents
the incoming particle or particles, the broken line is the
absorptive part intermediate state, all permutations of
a, b, c are to be taken, and also all higher iterations.

It is apparent that the restriction to S-wave scattering
is not essential. ' Further, the basic production or decay
process can also be made more general, if one replaces
D by a suitable polynomial in the s;, and then makes
further subtractions. In most applications only a few
partial waves will be necessary, and the generalization
of our method should be straightforward. FI'om now
on, we formally ignore even the first subtraction,
though it will be resuscitated in the 6nal equations.

We wish to determine 3f from a complete knowledge
of the 8;. M is a function of three variables, and there-
fore a direct solution will be rather involved (except in
certain kinematic limits, such as the static limit ). We
prefer to convert the problem to a determination of the
various S-wave projections. Once these are known, it
is straightforward to obtain M. The great advantage of
the projections 3f; is that they depend on only a single
variable.

One can obtain integral equations for the M, by
taking projections of (2.2), at least in the physical
region. These equations can then be extended for all
real s, and so one is led to integral equations in the real

I'zG. i. The basic
dispersion theoretic
diagrams defining the
model.

+ ~ ~ ~

G(s) = st (Z —s); 2=m'+3= 3ss, (2 g)

F (s) = f (s—4) fs —(m —1)']Ls—(m+1)']/4s}'". (2.9)

Define s+= G&F, then

1 S+(S1)

Mt(sr) = tSssM ($1 ss Z sr ss) . (2.10)
2F (st) ~ (~))

The limits s+(sr) are the two ss roots of the physical
region boundary curve'

F:—stssrs —(@is—1)s
=srss(m'+3 —st—ss) —(m' —1)'=0, (2.11)

which is plotted in Fig. 2. The "decay" region is indi-
cated by D, and has 4(s;& (m —1)'; while the other
regions are the related "scattering" regions, e.g., I:
E+kt ~ ks+ks, st) (m+1)', ss&0, ss&0, etc.

Since we certainly require the projections for all s&& 4,
and in fact will also consider all complex s~, we define
F(s) in the whole complex plane by the cuts and limits
shown in Fig. 3. Then s+(s) &s (s) for real s in the re-
gions s&0 and 4&s& (m —1)' (the decay region) but
s+&s for s) (m+1)' (region. I). We call the cuts I.:
0&s&4, and R: (m —1)'&s((m+1)', with suffices +
denoting the upper and lower edges.

r J. Bronzan, thesis, Princeton University, 1963 (to be
published).

s D. R. Harrington, Phys. Rev. 130, 2502 (1963).' T. W. B. Kibble, Phys. Rev. 117, 1159 (1960).

variable s for the 3;. These can then be solved by
iteration. ~

In this paper we instead extend the definitions of
the M;(s) to all conzplex s, on one Reimann sheet. This
sheet is defined with certain cuts, and the discontinuities
across these cuts are obtained, leading to a rather dif-
ferent type of integral equation.

In order to simplify the presentation, we now assume
that all the final-state masses are equal. Thus, keeping
E'=m' we set k '=ks'=ks' ——1 (this is at least ap-
propriate for three pion 6nal states from E or q decay,
or even e+e annihilation' ).

We consider M &, the projection in the reference fraxne
1. One has

ss ——G(s,)+F(sr)st,

s,=G(sr) —F(s,)s„
with
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(m+ 1 )
2

prescription

Bi(~i)=
2F (si)2r

..(.1)

(f~'P (&')

s-(sy) s s
(2.14)

2(m- I)
I /2 (m~ -I )

I+ m~1 J

i(
0 4 1+m I/2(m~-I) ~(m-1)~

I-m

( m+i)'

Fro. 2. The physical regions; i.e., the curve I'(s2, s2) =0.

Now from (2.5) we see that Bi(s) is a typical example
of a nontrivial projection, and once Bi(s) is fully under-
stood, the full consideration of the M; is straightforward.
For most of the time we therefore will consider speci6c-
ally the projection 8j and only at the end do we turn to
Mi. From (2.10) and (2.2) we have (ignoring
subtractions)

S+

S+ i S
IY

s+
s+

where the integral with circ]e denotes a contour integral
along any path between s and s+ which avoids the real
s' axis for 4(s'& oo. Further, where necessary, s+(si) are
taken indnitesimally above or below the real axis ac-
cording to the prescription obtained by replacing
m'-+m'+ib, 8 —+0+, with si real, in the defining
equations (2.8)-(2.11).

These paths are shown in Fig. 4, for the ranges (i)
si& (m+1)', (ii) (m+1)'& sr) (m —1)', (iii) (m —1)')si
& iz (m' —1), and (iv) is(m' —1),)si) 4. At s,= i (m' —1),
s (si) =4, so that the transition from (iii) to (iv) takes
place in a continuous fashion. "

Both (iii) and (iv) belong to the physical-decay re-
gion, yet only for (iv) are Eqs. (2.6) (2.10), (2.12),
and (2.13) actually correct (the significance of the
integral sign with circle is to indicate that the integra-
tion must be performed in a specified and nonstraight-
forward manner). It will turn out that the definition of

1 .+(.1)

Bi(si)=
2P(s,)wf (.,| ds'p(s')

ds2 (2.12)
4 $ $2 Z6

FIG. 4. The paths appropriate to (2.14); the diferent cases are:
(i) si & (m+1), (ii) (m+1)')s2) (m —1)', (iii) (m —1)')zI
&s2(m2 1), and —(iv) 2(ms —1)&si)4.

Bi(si)= ds'P(s') ln
2F (st) 2r 4

$ —s sy —zE

s' —$+(si) —se
(2.13)

where the log is on its principal sheet, for 4 &s( (m —1)'.
However, such a de6nition disagrees with perturbation
theory. This question has recently been investigated
by Bronzan and the present author. "They 6nd, for all
real s&&4, that perturbation theory leads to the

+)Ft
0

+ i lFl

t
-ilFl

-i t Fl

+IFI , -IFI—
4 (m-1) t ( m+ 1)

+i IFl

FIG. 3. Cuts and definitions of F.

"J.Bronzan and C. Kacser, preceding paper, Phys. Rev. 132,
2703 (1963).

Since the spectral functions p usually correspond to
sums over intermediate states and, since B~ is one such
term (cf. 2.3), the natural definition of the projection
operation would seem to be a normal average over
s&= cos8», or equivalently over s2, at least in the decay
region itself. Thus, one would expect that an interchange
in the order of integration in (2.12) would be permissible,
at least in the decay region, i.e.,

the channel-1 S-wave projection appropriate for the
absorptive part is obtained by suitable uealytic continua-
tion in s~, for fixed unstable m', of the straightforward
definition applicable to the scattering process I into
the decay region. This prescription therefore has some
plausibility, even if it does not agree with the straight-
forward definition as given in the decay region. Since
our dispersion relation is only a model theory, (and no
such relation has ever been proved) it might be argued
that we are at liberty to define the projection operation
in the straightforward way in the decay region. We
disagree, and feel that one should always follow the
dictates of pertubation theory provided they do not
lead to meaningless conclusions. "

"After the completion of the work described here and in Ref.
10, we were informed by Professor V. V. Anisovich of a paper by
himself, A. A. Ansel'm, and V. N. Gribov, Zh. Eksperim. i Teor.
Fiz. 42, 224 (1962) Ltranslation: Soviet Phys. —JETP 15, 159
(1962)) which gives a prescription identical with that given by
our Fig. 4, though only for the lowest order triangle graph.

'~ In fact it is possible to proceed from the "straightforward"
definition by following the same methods as presented here. One
finds a rather more involved analytic structure, in which the
"left-hand cut" divides the complex plane into two completely
separate regions, there being a cut along the positive real axis to
infinity.
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Equation (2.14) forms the basis for a set of real
variable integral equations for the 3f;, which can be
solved by iteration. In this paper we extend (2.14) for
all complex s~, in the next section.

S (0)

r
S~(l+m)

S (0)

S+ (ta) I/2

S ( m)

( I-m)

S+ (-)

CO

S,(0) l

S„(m+I ) S (m-I)

FIG. 5. The section of the mappings s~(s&) for s& moving along
the real axis, below the F cuts. The dots are at 0, 4, (m —1)e and
(m+1)'.

rs(m' —1)(st((m—1')]. It is this which makes the
problem more than a trivial generalization of that for
scattering amplitudes.

It is clear that the mapping st~ s+(sr) is funda-
mental to our problem, so we digress somewhat to
present its more important features.

3.1. The s+(st) Mappings

The mapping st —+ $~(s&) is given by the two ss roots
of I'(st, ss) =0 fcf. (2.11)].This is actually symmetric
under s&~+s2 for the equal mass case. The mapping
from the entire real s~ axis is straightforward, in part
being given by Fig. 2. The ranges 0&s~(4 and
(m —1)'&sr& (m+1)' are also straightforward, but one
must observe the F cuts of Fig. 3. We show the results
In Flg. 5, for sy —$6.

One next asks for the locus of all complex s& ——x+sy
such that one of s+ (sr) or s (st) is real. Since
ImG= ——,'y= WImP is needed, therefore F=ReF&-,'iy,

3. K&TENSION INTO THE COMPLEX PLANE

Equation (2.14) seems eminently suitable for analytic
continuation into the st complex plane, since F (st) and.

$~(s&) are known analytic functions of st, and the s'
and s2 integration paths are stipulated to be non-
intersecting. However, we have already remarked that
for real s& in the decay region the location of s+(s&) rela-
tive to the real axis is to be obtained by the prescription
m' —+m'+ib, rather than by either st~st+is or
st~sr —ie. In fact, for 4&st&m+1, neither of the
latter two prescriptions agree with the former Pand if
we were foolhardy enough to follow the straightforward
prescription, we would encounter difhculty also for

+
R

(m-l) ( m+I )

R

(m-I)

V

FIG. 6. The curves S and P.

implies one of $~(x+iy) real. There are two branches of
(3.1) which we call S and H, respectively. Each of these
has parts S+ and S (H+ and H ) depending on whether
y~~0. We show S and H in Fig. 6, where we also intro-
duce names for certain domains. We remark that be-
cause of the s&, s2 symmetry in the equal-mass case, the
complex curves in Figs. 5 and 6 are identical.

Figures 2, 5, and 6 together with some algebra contain
all the information we need. Since G and F are both
real algebraic functions of s~, we have the mirror
property

s+(st )—Ls+(st)]*, s (sr )= $$ (sr)]*, (3.2)

We 6nd that the various domains Q+, v+, m+ map into
each other, i.e.,

s+. Qy~ ~
Vg~ Qp

ZVy ~ Qy

s: Qg~ Roy

Vy ~ 'Ng

Ry ~ Vy.

(3.3)

Further, we 6nd that certain arcs map into each other,
l.e.)

s+ '. Lp —& Hg

R~ —+ Sp

H~~ Hp

S~—+R

s Lp —+ Hg

R~ —& S~
Hg —+L

S~—+ Sp.

(3.4)

Equations (3.3) and (3.4) are the most important fea-
tures of the mapping; other details can be read off the
6gures.

While the equal-mass case mapping has the great
simplification of (s&,ss) symmetry the more important

and, hence, F'=L( Re F)'—y'/4]&iy ReF. Therefore,

ReF'= L(imF')/y]' y'/4.

Since F is a rational algebraic function of s~ x+——sy,
we can always 6nd ReF' and ImF' explicitly, and sub-
stitute into the above. One obtains, for the equal mass
case,

Lx——,'(m' —1)]/x—(1+m)]Lx—(1—m)]
(3.1)

Lx—-', (ms+3)]
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l
r—

I/2( m —
I )

CUT

(m-I )

I'IG. 7. The function
B,(q,) —=8, (si) for the
rIght half s1 plane The
dashed curve represents
the s' path I', and the
solid curve is the sg
path C.

ds2

(3 9)Bi(si)= ds'P (s')
2F(si)n. $ —$2

where I' is a suitably distorted contour from 4 to ~,
obtained by following the motion of s+(si).

in s will remain the same for Thus, By is cut along &nz f J(m+1)(si((m —1)', and thefeatures of the mappings wi remain
physical limit of 8& is from below the cut. Nonethelessarbitrary masses.
Bi is still a suitable definition of Ai both in the upper

3.2. Init 1 Extension into the Complex Plane and lower s~ half planes, starting from the real axis,

F; 4 for real z, for alt si)m+1. (We deliberately do not sPecify how
far the continuation m pro eed 'nto the half planes. )D

S f tlli i till dit b odfore de6ned for all real s~&4. Ke define, or a p
din so cautiously. The answer comes~gyd extension w y we are procee ing so cthe fu ct,o obta, „d by t„ i~hif

of (2.14), i.e.,
The prescription of I'"ig. 4 has small positive imaginary

if'' z', (3.5) parts for both s~, yet this cannot be achieved by either
sixie (cf. Fig. 5). In. fact, as we move slightly below the

where C denotes a contour from s (si) to s+(si) which

does not cross the real s2 axis above s2=4.
to push through the s' integration path from above, at

Ke see immediately that si ——m+ 1, s+ ——(m —1)'.
si& (m+1)'. Bi(si+ie) =Bi(si—ie) =Bli,hi,s($1) . (3 6) The perturbation theory analysis" has no singularity

in the physical limit at this point; hence, the projection
must be analytic at this point. This implies that the

f pu hes ahead of 't elf the s' i te r t'on

ath. As long as the (negative) imaginary part of s
is infinitesimal, the necessary distortion is also infinitesi-
mal; nonetheless it is necessary. Once this has beenthat point, and the path C.

~

l
~ realized, we see that this generalizes to 6nite (negative)Since F(s) changes sign on crossing the rea axis

the ke remark of the present analysis.d go into eac ot er, we see that this continuation
satisfies

the s' path into the lower half plane (actually u )can
(m 1) —~i —(m+1): be achieved without encountering any singularities of

8i si ie =i(si i~)=Bi,—i,i,.(&i), (3 7) P(s') (we discuss this in Sec. 3.3). Then we see tha
~ (3.5) must be generalized tothat is, the right-hand F cut is not a cut of 8i. We find

that s= (m —1)' is a branch point of Bq, since for real
si in 4&si& (m —1)' both s~ are real &4. From Figs.
2, 4, and 5, we see that

m+ 1(si& (m 1); Bi(si $e):Bippy (si)
WB, (s,+is). (3.8)
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FIG. 8. The function
Bi (s~) for the left half s&

plane (cf. Fig. 7).
l-m I/2(m -I )

From (3.3) we see that for si in the lower half plane
the distortion of P away from Pe (the undistorted path)
is only necessary in m; and that the distortion is always
within u . Further, as s crosses 5 from m to v, the
distortion becomes unnecessary, so that (3.9) links up
analytically with Bi(si). Formally, throughout I we
take P as maximally distorted, going along the real
axis from 4 to 2r(m' —1) and then along H to
however, this distortion of P can always be reduced to-
wards Po until it encounters s+(si).

In u and v we can take P —+ Po, i.e., the undistorted
definition (cf. Bi), and we have therefore obtained a
definition Bi(si) for all complex si in the lower half
plane which properly approaches the physical limit. In
the upper half plane we do not have the added restric-
tion that 8» must tend to a specified limit. We therefore
take P~ Pe, i.e., Bi=Bi. The choice in the upper
half plane is somewhat arbitrary, but we emphasize
that the choice in the lower half plane is really forced
upon us by the physical limit definitions obtained from
perturbation theory.

We present our choice for P and C in Fig. 8, for the
left half s» plane, stressing that the distortion of P can
always be undone until it encounters C. However, we
must now turn to the problem of the analyticity of p(s')
in the region through which the distortion PO~P
is actually performed, i.e., uo. Now

p(s) = f2*(s)I.~ 2(s)+B2(s)+C2(s)j
A ~ and C2 have similar properties to 8», while 82 has a
cut for real s& 4, and f2e has cuts for real s &0 and s& 4.
Thus, we have a self-consistency problem, in which we
must show that our choice of distorted contours P does
not lead to cuts of p(s) which prevent the distortion. We
hence turn to this question.

3.3. Digression onto the Second Sheet

In order to distort the s' contour P in the integral
(3.9), we must ensure that P(s') in (3.10) is analytic
between Po and P; and, further, we must explicitly
analytically continue p in this region.

f*ii= fi= —e"—sin5—. (3.13)

This general result proves our assertion that 6rst
(second) sheet singularities of fe correspond precisely
to second (first) sheet singularities of f.We see that the
continued integrand in (3.9) contains f, and so has sio-
singularities between Pe(s —ie) and P.

We next turn to M2 As+B2+Ce. Consider 6rs—t—B2.
» R. Oehnie, Phys. Rev. 121, 1840 (1961); R. Blankenhecler,

M. L. Goldberger, S. W. MacDowell, av, d S. B. Treiman, Phys.
Rev. 128, 692 (1961).

We consider the various factors in (3.10) in turn.
f2*(s)= exp/ —F2(s)) sin62(s) has cuts along the real s
axis for —~ &s&0, and 4&s& oo (note that we ignore
any inelastic threshold branchpoints). It also has the
possibility offirsf sheet poles, arising from resonances in

f2 (s) = expl+i82 (s)j sin52(s) due to second sheet poles of
f2(s). (It is straightforward to verify this interchange
of second and first sheet properties of f and f* in a
Breit-Wigner relativistic resonance formula, but the
result is general, as we shall see immediately. ) These
possible first sheet singularities of f* do ssot cause any
difhculty, because in the integrand of (3.9), 5 is to be
taken in its physical limit, which is from above the right-
hand cut. Thus, when we continue P downwards from
Pe to P, we must continue f* onto its secossd sheet
reached by crossing the right-hand cut from above.

I.et 5+ and 5 be the physical-sheet limits of 82 just
above and below the right-hand cut, and similarly for
other quantities. Then applying elastic unitarity to
7=osf/k, i.e., ImP~= (P+—F )/2i= k

~
P~

~
'/o~ and not-

ing that k+= —k, we have immediately (cf. Ref. 13)

(3.11)
Hence,

(f )+——exp( —ib+) sinb+= —exp(+i5 ) sin8
= (—f)-. (3»)

That is, (—f) has, as its boundary value on the lower
edge of its right-hand cut, the value which f* has on
the upper edge of that cut. Thus, (—f) provides the
necessary second-sheet continuation of f*;formally we
write
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Now
1 " ds'P(s')

Bs(s)=B(s)=—
7i 4 s —s—z6

(3.14)

P= fMs, etc. — (3.18)

'4 We emphasize that the presence of branch points of A 2 and CI
«(ei —1),which is on the undistorted contour Po, does not aGect
the distortion of the path of integration to P, since the integrand
is the same analytic function along all of Po. This is not the case if
we were to include inelastic contributions, in the form of other
distinct spectral functions P;, with integrals running along un-
distorted P;;p. s; &s& ~. In that case we would be misled when
writing a single total spectral function Pt,~, and path Po, and we
would not be able to distort P0 to P away from the inelastic thresh-
old s~. We have neglected inelastic contributions throughout this
work. (I am grateful to Professor S. 3. Treiman for raising this
question. )

Here again 8 comes naturally as the limit from above
the right-hand cut, and must be converted to its second
sheet. We delne

B *()=B()+24(), (3.15)

where P(s) is the analytic continuation of P into the
region I that we are seeking, with the required property
that the limit onto the real axis s&4 from below repro-
duces P, the spectral function in (3.14). From (3.14)
and (3.15) we see that Bzz B+ ——Bnzr,——.

In principle, B~z can introduce new singularities into
our problem. While B (3.14) possesses only a right-hand
cut, Bzz also has the singularities of P. Since P contains
fs* as a factor, P has first-sheet resonance poles if fs has
second sheet poles. For our present purpose such poles
cause difhculty only if they are located in I+.Through-
out the rest of this work we assume that the various f;
do rot contain second-sheet poles in the domains N~,
associated with resonances (but see note added in proof).
With this assumption 8 causes no difficulty in the
distortion Pp ~P.

Finally, we consider A 2 and C2. These have properties
very similar to 8&. Thus, they have "left-hand" cuts,
with, in particular, a cut along 4&s& (m —1)'; but no
cuts or singularities in the lower half plane. The physical
limit appropriate for p is reached from below this cut,
so that there is no difficulty in the continuation from
Pp to P.'4

We have now expressed each factor in P as the limit
from below of some function, if necessary on the second
sheet. Thus, from 3.15, using (3.13) and (3.10), we
de6ne M2 as a function in the lower half plane by the
condition that the limit fron1 below reproduces the
factor in P; and similarly for Bzz. Hence,

Bzz=B+2iP= B+2i ( f)buzz+As+—Cs].
Therefore,

Bzz =exp( —2ils) EB—2i f(A s+Cs)], etc. , (3.16)

where each factor is defined as a function of a compf&&

variable;

~s=As+Cs+Bzz
=exp( —2iBs)(B+As+Cs), etc. , (3.1/)

and

0 4 I+m I/2(m -I) (.m-~)

Fzo. 9. The cuts of Bi(sg).

Equations (3.16—3.18) enable us to perform the dis-
tortion Pp —+ P which we introduced in Sec. 3.2.

B 1($1&1e)
2F7r

4$
-(sI) $ $2

dS2

$ $2&1'
p(s') .

Therefore,

dzscBz(sz) —=Bz(sz+se) —Bz(sz—se)

1 " ds'P(s')
d$2

R $ —$2

F (Sz)
dSsP(ss) )

where R denotes an anticlockwise contour encircling
the real axis 4(s( ~, of infinitesimal width. (This
contour is to go below any singularities of P on the real
axis, so that we only get the pole contribution. ) In this
way we find the following discontinuties (always taken
from the side with greater positive imaginary part).
—co &sr&1—m; s+) (m+1)':

&+ (zf I)

dlscBz(sz) =-
F(sz)

P (s,)ds„(3.19a)

3.4. The Cuts and Discontinuities of Bi

In Figs. 7 and 8 we have given a prescription defining
the function Bz(sz) of a complex variable sz, for each of
the six regions N~, ~+, and z+. The cuts of B~ occur at
the boundaries between two such regions, for which the
prescription is discontinuous. By inspection we see that
the only possible cuts are the real axis for sz& (m~1)'-,
5+, and5 .

Actually S is not a cut of Bi, since along S s (sz)
is on S+, while s+(sz) is on R: (m —1)'&s& (m+1)'.
Thus, the distortion Pp —+ P can be undone, leaving no
discontinuity. /It is an essential feature of this that the
ds' integration contour is not tied down to (m —1)'.]
Similar arguments show that 1—m&st&0 is not a cut
of Bz(sz). We have already shown that (m —1)'&sz
& (m+1)' is not a cut, and, in fact, the cuts are S~,—ao(sr& 1—m, and 0&s& (m —1)', and are shown in
Fig. 9.

The discontinuities of Bi across these cuts can be
obtained straightforwardly. We consider the cut
—~&s&&1—m as a typical example. On this cut
s+)4, s &4 and Ims+/Imsz&0. Hence,

d$2



ANALYTIC STRUCTURE OF PARTIAL —WAVE AMPLITUDES 2719

sl+S+, (m+1)'& s+& (m —1)':

dlscBt(sl) =-
F(sl)

P (ss)dss, (3.19b)

(m+1) &sl&-,' (m' —1); (m —1)')s+) —,
' (m' —1);

(m+1))s &4:

P(ss) dss, (3.19c)
F(s1) s- (s 11

-', (m' —1)&sl& (m —1)', -', (m' —1)&s+&m+1) s &4:

dlscB1(sl) =—

discB1(sl)

F(sl) 4 4

P (s,)dss, (3.19d)

4(st&m+1; -'(m' —1)&s &m+1:

dlSCB1(st) =+
F(sl)

0(sl(4; s++H:
—2z

dlSCB1(sl) =
s+(») —s-(»)

P (ss)dss, (3.19e)

P (ss)dss. (3.19f)

The only discontinuity which may cause difhculty
is (3.19f). This is resolved by specifying that s~ are
evaluated below the F cut 0&s&4 for both limits of
Pl (sl)

We make some comments on (3.19).The discontinuity
joins continuously from each range to the next except
at s~= 4. This is evident everywhere except at
st = s (m' —1),while at this points (sl) =4, so the transi-
tion is smooth. The discontinuity has inverse square-
root singularities at sl ——4 and at sl ——(m —1)', arising
from the vanishing of F. Near s~=0, Ii —+ ~, so that
the discontinuity goes as (sl)'", provided p has suitable
asymptotic behavior (see below).

As further remarks we state again that Bj has no
singularities in the lower half s~ plane, so that the dis-
tortion Po~ P encounters no diKculty. The choice of
prescriptions for B~ in the upper half plane s, and,
hence, of the cuts is not unique, but our choice seems
the most natural one. An alternative choice in m+
would continue the distortion Po —+ P —+ P where P
is just the negative real axis —~&s'&4; pushing the
0&san&4 cut up through m+ to S+. Whatever choice is
made, it seems likely that at least one discontinuity will
involve an integration over P taken to an unphysical
s+ or s (in our case for 0&st&4, cf. 3.19f).

Finally, we remark that the branch points we have
found for Bj are consistent with the singularities one
would find by investigating all possible pinch and end
point singularities of (3.9). However, such an analysis
does not determine which singularities are on the
physical sheet. (The arbitrariness in the choice of pre-
scriptions is of course just an arbitrariness in the defini-
tion of the physical sheet. One has ore single analytic
but many sheeted function. )

4, THE INTEGRAL EQUATIONS

In the previous section we have obtained a possible
set of cuts and discontinuities for 8&. Exactly similar
results will hold for A2 and C2. Hence, we know the
complete analytic structure of M2,

Ms exp( 2—its) (B+As+Cs), etc. (3.17)
There are two sources of singularities for M&. The cut

structure is independent of the detailed dynamics, and
is already implicit in the above. However, the factor
e ""=fs*/fs may possess (first sheet) poles arising
from resonances in fs, since these are then present in fs*.
In such a case M2 possesses these poles with certain
residues. These poles then lead to an inhomogeneous
term in the integral equation for M2, the homogeneous
terms arising from the cuts of M2.

The discontinuities across the various cuts of M~ can
all be expressed in terms of the n, P, y, and so we get
a set of coupled integral equations for the M, (in the case
of identical particles these uncouple). Thus, recalling
that 82, 8, A2 and C2 may all have discontinuities at the
same cut I 4(s ( (m —1)'], we have most generally

M2+ —M2
=exp (—2ibs+) (B+.+A s++C~)

exp—( 2ibs—)(B +As +Cs )
=Lexp( —2i8sl.)—exp( —2ils )](B +As +Cs )

+exp( —2ibs+)f(B+—B )+(As+—As )
+(C~—Cs-)j

=exp( 2ibs+—) exp(—2ibs —)$ exp(+2ibs )Ms

+ exp (—2i8~)L2iP+ discA s+discCs), etc. (4.1)

By integrating a Cauchy denominator around all the
cuts of M;, we hence can obtain integral equations for
the M;.

In fact a much more straightforward approach is to
keep the cuts of B, and As and Cs, separate in (3.17)
and never go into the second sheet as regards the integral
equation. Thus, from the original equations Ms(s)
=B+(A 1+Cs) where Bhas a right-hand cut 4(s( ~,
and A~ and C~ have "left-hand" cuts as in Fig. 9. The
physical limit is then obtained from above the right-
hand cut, and below the left-hand cut, so that we have
a situation as in Fig. 10. The discontinuity across the
right-hand cut is that of 8, given by unitarity in terms
ofM2~q~„while we have already expressed the left-hand
cut discontinuities in terms of o. and y. The only place
where the second-sheet continuation is needed is for
the discontinuity across 0&s&4, and this can be dealt
with straightforwardly (cf. next paragraph).

The great advantage of this method is that one can
immeChatety factor out the right-hand cut. That is, one
writes M&=E2L2, where R; and L; have only the
right- and left-hand cuts, respectively. Then E, can be
written down immediately in the standard Omnes
form, " leaving the left-hand functions L; to be ob-

» R. Omnes, Nuovo Cimento 8, 316 (1958); N. I. Mushkheli-
shvili, Sirlgllar Irltegra/ Eguatiorls (P. NoordhoG Ltd. , Groningen,
The Netherlands, 1953); also G. F. Chew and S. Mandelstam,
Phys. Rev. 119,467 (1960).
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2(m-l~ PHYSICAL
LIMIT

4
on the erst sheet.FIG. 10.The cuts of am on

1I1We then Perform a Cauc y

s ) ~i(z )dzf (E'—~)("—*O~

z—so~ (z)—Mi(sp)
a(s )ds

s' —z

djscMi(z )dz
(4 7)
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On the other hand, Bonnevay prefers to distort the
left-hand cut away from the physical region. This he
does by defining M2 in the upper half plane by analytic
continuation from below the cut 0&s&(m —1)'. He
therefore ends up with a left-hand cut consisting of the
two parts —ao(s&0 and (m —1)'&s&+ oo. In this
way he avoids troubles arising from a singular kernel,
but requires a knowledge of the phase shifts 8; on the
left-hand cut. Of course an exact knowledge of the
physical region (4(s& co) phase shifts gives complete
information everywhere; the problem is one of mini-
mizing computational inaccuracies arising from two
possible sources.

In our present paper we have specidcally excluded the
case in which f has second-sheet resonance poles in N~,
since these lead to extra (logarithmic) singularities
in H/' . This case is the one studied by Bonnevay. He
deals with the function f; M;/k, which has poles arising
directly from f*, and also the extra singularity in W .
After performing the continuation described in para-
graph 2, these "resonance" singularities are the singu-
larities which lie closest to the physical sheet. Bonnevay
proposes an iterative solution of the resultant integral
equation in which the resonance contributions are
treated as the inhomogeneous term (the residue at the
pole being treated as an unknown parameter). The in-
homogeneous term is then to be used as the first approxi-
mation in the iteration of the homogeneous terms.

It is a sad privilege to acknowledge that a study of
Bonnevay's paper has enabled me to remove some initial
errors in the present work, by restricting its applica-
bility to cases with no resonance in the domains up. The
case with such a resonance is the one explicitly treated
by Bonnevay. The two papers therefore complement
each other.

As a 6nal remark, an integral equation sommhat
similar to the Khuri-Treiman equation has been trans-
formed into a so/nble integral equation by V. V. Aniso-
vich, Zh. Eksperim. i Teor. Fiz. 44, 1593 (1963) /trans-
lation: Soviet Phys. —JETP 17, 1072 (1963)$. I am
grateful to Professor Anisovich for sending me a reprint
of the original article.

APPENDIX: ALTERNATIVE FORMULATION

In Eq. (3.9) we have

Bz(sz) =- d~'P(~')
2F (sz)z-

d$2

7

S —$2
(A1)

where I' and C are eomintersecting contours given in
Figs. 6 and 7. It is therefore permissible to perform the
s2 integration first, i.e.,

B1 ($1) ds'P (s') ln
2F (sz)w

s —s (sz)
(A2)

S'—S~(Sz)

where the suffix C on the ln specifies how the imaginary
part of the ln is to be evaluated. One can next perform
an integration by parts. Thus, define

(A3)

Then

Bz(sz) = ds'b(s')
2F (sz)z. s —s+, s —s g

ds'b(s')1

z fLs' —G(sz)g' —F(sz)')c
(A4)

Form (A2) is appropriate when treating Bi as a
function of a real variable, for then P —+ I'0. For complex

s&, the distortion of P is necessary, and hence one carrot
give a unique prescription for the logarithmic kernel
for all s~, with s' restricted to lie on the real range
4&s'& ~. One can, of course, investigate the function
8 defined in (3.5), but this does Not have the correct
physical limit for 4&sr&m+1.

Form (A4) is most appropriate to our problem, and

it is easy to see that it leads to the same cuts and dis-

continuities as presented above. The cuts occur when

one or both of s~ or s crosses P (not Ps!), and the dis-

continuity is then simply the residue at the pole or
poles which crossed& viz. (i/F)b(s+), etc. , precisely as
found in (3.19).
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g=p Total Cross Section between 2.7 and 5.2 &eV/c*

A. N. DznnENs, l E. W. JzNKzNs, T. F. KvczA, ANn K. F. RzLEY$

Brookhaven National Laboratory, Upton, Sew Fork

(Received 6 May 1963)

The K=P total cross section has been measured between 2.7 and 3.2 BeV/c, by means of a transmission

experiment. Points with about 3% statistical errors have been obtained at momenta approximately 2QQ

MeV/c apart.

PREVIOUS measurements of the Z' -p total cross
section at momenta of about' ' 4 BeV/c are widely

spaced but collectively they are not consistent with a
*Work performed under the auspices of the U. S.Atomic Energy

Commission.
t On leave of absence from CERN, Geneva, Switzerland.
t Permanent address: Clare College, Cambridge, England.

smooth variation of the cross section with momentum.
In order to investigate this region Inore thoroughly, a
transmission experiment was undertaken, the results
of which are reported.

' V. Cook, B.Cork, T. F. Hoang, D. Keefe, L. T. Kerth, %'. A.
Wenzel, and T. F. Zipf, Phys. Rev. 123, 320 (1961).
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