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Khuri- Treiman Representation and Perturbation Theory
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It is characteristic of decay amplitudes that the spectral functions for their integral representations have
branch points overlapping the integration contour. For the amplitude satisfying the Khuri-Treiman dis-
persion representation, the prescription for passing the branch points is shown to be incomplete. The full
prescription is obtained using perturbation theory as a guide. It turns out that the perturbation theory pre-
scription contradicts the "naive" dispersion theory prescription in part, even in the physical decay region
of the amplitude. An interpretation is offered for this contradiction. In the perturbation analysis it is found
that a non-Landau or second-type singularity appears on the unphysical boundary of the physical sheet of
the decay amplitude. In view of this unexpected result, the usual Landau analysis of perturbation amplitudes
is extended to include examination of the singularity of the complex non-Landau surface on the physical
sheet. Such an extension is valuable when an explicit formula for the spectral function is unavailable. Here
the extended Landau analysis facilitates comparison of the present results with previous work on decay
amplitudes. One part of the discussion presents and makes use of an analysis in which an internal mass is
taken as a complex variable.

1. INTRODUCTION

~DECAY amplitudes to three-body final states de-
' pend on two scalar variables. In general such

amplitudes have complex branch points when con-
sidered as an analytic function of one of the variables,
with the second variable fixed in its physical range. '
This circumstance has forced physicists to concentrate
on the subset of decay amplitudes in perturbation
theory which have only normal branch points. In
particular, Khuri and Treiman' have presented a
dispersion representation for the sum of this subset of
amplitudes. Although we are not concerned here with
the question of the accuracy of the Khuri and Treiman
(KT) amplitude as an approximation to the true decay
amplitude, we point out that the KT amplitude includes
the effect of two-body rescattering of the final-state
particles upon leaving the decay region. This property
has led to interest in the KT representation as a model
for production processes where final-state scattering is
important. ' Of course the representation has been
applied to the discussion of decay processes as well. '

Up to the present time, calculations based on the KT
representation have started with one of three simplify-
ing restrictions. Either the final-state scattering has
been assumed to be weak, or only one pair of final-state
particles has been permitted to rescatter strongly, or
one of the Anal-state particles has been assumed to be
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infinitely massive. In essence these restrictions have
been made because the dynamical equation which
follows from the KT representation is a singular linear
integral equation whose kernel has branch points which
overlap the contour of integration. Since the kernel
must be defined in part by analytic continuation, the
proper manner of passing the branch points becomes a
matter requiring a careful discussion. The restrictions
mentioned above allow one to avoid the problem of the
branch points, either by removing the difficult addend
of the kernel altogether, or by greatly simplifying the
analytic structure of the kernel.

It is the purpose of this paper to obtain a well-defined
dynamical equation from the KT representation. With
this equation one can study the inhuence of overlapping
final-state rescattering on decay and production
amplitudes without any dynamical or kinematical
restrictions. We follow Peierls and Tarski' in designating
final-state rescattering to be overlapping when one or
more of the final-state particles scatters strongly with
the other two. In the course of our analysis we encounter
several results which are interesting outside the context
of the KT representation. In particular, we find that a
non-Landau singularity can appear on the unphysical
boundary of the physical sheet of the triangle diagram
in perturbation theory. We therefore extend the usual
Landau analysis to include the possibility of singu-
larities on the complex non-Landau surface. We also
compare our results with a previous treatment of decay
amplitudes in perturbation theory, ' elucidating a subtle
point involving the choice of complex variables.

In Sec. 2 we write down the KT representation and
its attendant dynamical equation. We consider the
analytic continuation of the kernel of the equation, and
show that the continuation involves us in an ambiguity.

4 G. Barton and C. Kacser, Nuovo Cimento 21, 593 (1961).
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Here Ms(s, ) is the s-wave projection of M in the frame
Pb+Pt= Psr —P~=0.
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Ms(s, )=- d(cos8b. )M(s, cos8b,),
2 -1

COS8br, =R(sg)sb)/[U(s~)]

R(s„sb) = —s,'+ (M'+3 —2sb)s„

(2.4)

FIG. 1. Paths of the branch points s~(X') (cf. 2.7).

In Sec. 3 we circumvent the ambiguity by studying the
analytic properties of one of the perturbation arnpli-
tudes contributing to the KT sum. We find that the
kernel given by perturbation theory is different from
the kernel given by KT even in part of the physical
region. This finding is discussed and related to the choice
of complex variables mentioned above. In Sec. 4 the
problems of choice of complex variables and non-Landau
or second-type singularities are studied from a more
general point of view; in particular we present a
perturbation theory analysis of the singularities of the
triangle graph, as a function of an internal mass varia-
ble. The techniques are general, and should prove useful
in many problems.

$a M a )

$6 M b )

$c M c

p~z M2 p
2 pb2 p 2=1.

These variables are related by the relation

s.+sb+s, =M'+3.

(2.1)

(2.2)

I.et the decay amplitude for particle M be M(s„sb,s,).
The KT dispersion representation for M is'

1
"

Azg*(X2)3IIs(X2)
M(sg)sb, sg) =

4 X'—$ —is
1 "d)tsg*(X2)Me(V)

4 X'—Sy—i&

1 "dhsg*(X2)Me()t2)

4 1'—S,—i&
(2 3)

's

~ Of course, one should perform at least one subtraction. We do
not exhibit this explicitly since it does not aGect the results.

2. THE KHURI-TREIMAN DYNAMICAL EQUATION

For simplicity consider the decay of a spin zero
particle of mass M)3 into three identical spin zero
particles, a, b, and c, each of mass j..Again for simplicity,
we ignore isotopic spin and assume that only $-wave
scattering between any pair of the outgoing particles is
large. We denote the two-particle scattering amplitude
in the center-of-mass system by g= e" sin8. Our process
depends upon two of the three scalar variables s„s~, s,.

U(s.)=s.[s.—4][s.—(M—1)'][s,—(M+1)'].

We specify [U(s,)]'~2)0 for s, within the physical
decay limits 4 &~s, ~& (M—1)'.

We obtain the KT dynamical equation for Ms(s, ) by
integrating (2.3) over cos8b,

"A,zg*() 2)M, O 2)

Mo(s.) =—
2X —s,—ze

where

00

B.'E(s.,)
'—z.)g*() ')M, () '), (2.5)

IC(s,X —ze) =
[U(s)]'" i x—R(s X'—ze)/[U(s)]'"

s R(S,X2—it) [U(s)]' '
ln . (2.6)

[U(s)]' ' R(s,)~' —ie)+[U(s)]'"

s =s~ (X') —ie[BS~(X')/8) ')
s~() ') = (E(X',0)a[U()~')]'~2)/2)t' (2.7)

As 'A' moves along its arc, the branch points move along
the trajectories shown in Fig. 1. The displacement of
the branch points from the real $ axis, due to e, is shown
only when Re s&4. As X' increases from 4 to ~, the
branch points pass through the letters on the trajectories
in alphabetical order. Values of s and X2 associated with
the letters are given in Table I.

Clearly, once we have Ms(s) on the arc 4~&s& ~, we
can recover the KT amplitude from (2.3). We note that
the boundary prescription 'A2 —bus —it for E(S,X2) is
uniquely dictated to us by the arguments presented in
the KT paper.

In order that (2.5) be completely defined, we must
specify E(s,X2—it) throughout the quadrant 4 &~s,
X'& ~. However, in our angular integration we are
forced to take 4 ~& s~& (M—1)', so Ernust be defined in'
part by continuing s above (M—1)'. This in turn
requires us to study the analytic structure of E, con-
sidered as a function of $, near the arc 4~& s& . X' is to
be taken as a parameter along the arc 4~& X'& ~.

We see from (2.6) that E'(S,X2—ie) has logarithmic
branch points whenever E(S,X2—ie)/[U(s)]i~2= &1.
This equation may be solved for $, and for fixed )' the
two branch points in the s plane are located at
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One problem is ilrnnediately evident from Fig. 1. As
we increase s above (M—1)', we cross the trajectory of
s+(X') at B. Let us postpone dealing with this point
until Sec. 3. Then we see that there are no logarithmic
branch points above s= (M 1)'—when X' is on the
relevant arc. However, there are two additional possible
branch points of E to consider. These are the branch
points of [U(s)]'' at s=(M—1)' and s=(M+1)'.
There is a cut between these two branch points, and
since [U(s)]'f )0 for 4&~s~& (M—1)s, we see that just
below the cut [U(s)]' '=+i~ U(s) (' ', while just above
the cut [U(s)]' '= —i[ U(s) [' s

Froin the integral representation of E(s,X'—ie), (2.6),
we see that for s just below (M—1)' the pole of the
integrand is near in6nity, and we are on the principal
(real) branch of the logarithm. Thus, just above
(M—1)'

K(s,X' ie)—= [2s/W
~
U(s)

~

'"]
&&tan

—'[a
i U(s) i'"/R(s, X')]. (2.8)

The upper sign goes with the upper branch of [U(s)]i",
and the lower sign goes with the lower branch. Since we
start out on the principal (vanishing) branch of the
arctangent at (M—1)', E is independent of the branch
of [U(s)]'~' chosen, and has no cut between (M 1)'—
and (M+1)' even though [U(s)]' ' does.

For M+1&X', E(s,)') does not vanish between
s= (M—1)' and s= (M+1)'. The arctangent remains on
its principal branch and returns to zero at s= (M+1)'.
Thus for M+1&X', E is analytic at s= (M+1)', and
there is no problem in continuing E.On the other hand,
if 4&~As(M+1, R(s,Xs) changes from positive to
negative as s moves from (M—1)' to (M+1)'. Then
s= (M+ 1)' becomes a branch point of E.We point out
that this is a second-type or non-Landau singularity, '
and that it arises because the arctangent has moved
onto its second sheet.

We sununarize by saying that E(s,'A' —ie) has a
branch point at s= (M+1)' for 4~&X'&M+1. Since
U(s) is independent of X', the presence of the small

imaginary term does not move the non-Landau singu-

larity oG the real s line. We must look beyond the KT
representation to determine how to pass the branch

TABLE I.Values of s and X' when the branch points of E(s,X' sc)—
are located at the lettered points in Fig. 1.

Point

FIG. 2. The rele-
vant perturbation
theory diagrams.

(b)

point, and we do this by turning to perturbation theory.
We note here that perturbation theory will turn out to
disagree with the KT speci6cation of the branch of E.
We will find that in perturbation theory E( Xs' —ie) is
always analytic at s= (M+1)'.

3. PERTURBATION THEORY

The diagram we study is shown in Fig. 2(a). The
perturbation amplitude corresponding to this diagram
is presumably an addend of the KT amplitude. Since
the perturbation amplitude represents the situation in
which rescattering between one pair of final-state
particles is followed by rescattering between a second
pair, we are not surprised to find that the spectral
function of the dispersion representation for the ampli-
tude involves an integral over E, as in (2.6). Thu's we
obtain the proper branch of E directly from a study
of Fig. 2(a).

Figure 2(a) has already been studied by Barton and
Kacser. ' They show that the amplitude for Fig. 2(a),
E(s,Ms), can be expressed as an integral over the
amplitude for the simpler triangle diagram of Fig. 2(b).
If we call the amplitude for the latter diagram

f(s,M', ) '),

(3 1)

where a()P) is the renormalized propagator spectral
function for the final state particles. Barton and Kacser4
show that f(s,M', X') satisfies a normal dispersion
representation, and it thus follows that we have a
dispersion representation for Ii.

A
8
C
D
K
F

-', (M' —1)
(m —1)2

&+1—&+1
0

F(s,M') =
"ds'P (s',M')

IS —S—Ze
(3.2)

The spectral function obtained by Barton and Kacser4 is

See D. B. Fairlie, P. V. Landshoff, J. Nuttall, 'and J. C.
Polkinghorne, J. Math. Phys. 3, 594 (1962), and Phys. Letters 3,
55 (1962). Also see M. Fowler, J. Math. Phys. 3, 936 (1962),
and Nuovo Cimento 27, 952 (1963).

f (s,M') = [(s—4)/s]'~' dX'o (X')E(s,X ) . (3.3)
4

Barton and K.acser4 find that the overlapping branch
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s=s (x )

s s+(x )

Im X

B2o

G2

CI

Re X
A

variables,

E(s lt' —se)

=s/[U(s) 5'"
—i x—R (s 2—i e)/[ U (s)5' '

Is
= —s/[U(s)]'" (3.4)

i x+R(s,V i—e)/[U(s) 5'"

Bl &

FIG. 3. The path of the pole in the integral
representation for E' (cf. 2.6).

points of E (s,X') are to be removed from the real s axis
in (3.3) either by giving M' a small positive imaginary
part, or by giving X a small negative imaginary part.
They assert that the prescriptions are interchangeable.
Ke 6nd, contrary to this, that it takes some work to
show that the two prescriptions yield the same expres-
sion for Ii. As we shall see, it is precisely the appearance
of )' rather than M' as the second complex variable in
(2.6) which leads to the difficulty in the determination
of the proper branch of E. In what follows we will erst
choose X' as a complex variable, and at the end we will
show what changes when M' is chosen instead.

In the next section we will see that f(s,M', Xs) is real
for s&2 and X') (M—1)' It follows that E(s,ks —ie)
must be real for all s&~ 4, and X') (M—1)'. This is our
reference region for studying E in perturbation theory.
To extend this region, we note that Fig. 2 (b) represents
a definite amplitude for all real X'&0. Thus the proper
way to continue E out of the reference region is to
obtain E for all s before changing X'. Moreover, we
note from Fig. 1 that no branch point of E lies above
s= (M+1)'. By continuity, for s) (M+1)', E must
be real. Thus our program is to take E to be real,
s) (M+ 1)'. For fixed X' we reduce s towards 4 and take
what comes. After we have found E for s~&4 in this
way, we reduce X' until some difficulty is encountered.
The lettered points of Fig. 1 turn out to divide the real

line into intervals along which E has uniform
analytic properties. Ke already know that E is real
for X') (M—1)'. We have three further ranges of X' to
consider.

Range 1:—', (M' —1) &3P & (M —1)'

We use the integral representation (2.6) to study E.
The Inotion of the pole of the integrand in the complex
x-plane as s is changed is shown in Fig. 3. Starting at A,
the pole moves to ~ along the positive x axis as s
approaches (M+1)'. Thus E is real for s) (M+1)', as
required. Just below s= (M+1)', the pole appears at 81
if we take the upper branch of [U(s)5'~s, and at B2 if
we take the lower branch. However, E is independent
of which choice we make, for by a trivial change of

Thus our earlier result is verified. E(s,hs —ie) has no
cut between s= (M 1)' an—d s= (M+1)'. E is also real
between (M—1)' and (M+1)'

E(s,z' —i.)
sR( sX' ie)—

IU(s) I i x'+R'(s, li' —ie)/I U(s)
I

zs
(3.5)

I U(s) I'" i x'+R'(s, lt' —ie)/I U(s) I

ImE(s, X'—ic) =~s/[U(s)5r" s PP) &s&s (X')

-,'(M' —1)&)8& (M—1)'
=0, other s&4,

-'(M' —1)&X'& (M—1)'. (3.6)

Range 2: M+1&X'&-'(M' —1)

We condense our discussion. The same analysis as
that given for range 4 applies to range 2 with one
delicate modification: the point of reversal E in Fig. 3
disappears. As s decreases from (M—1)' to 4, the pole
progresses steadily to the right, passing x=+1 when
s=s (li'). However, this alteration in no way affects
the conclusions as to the branch of E. The trans-
cendental factor of E remains on its principal sheet for
all s and M+1&As& —',(M' —1). The imaginary part of
E is still given by (3.6) for X' in range 2.

The second integrand is odd in x, and vanishes. Finally,
it is important that R(s,X') does not vanish for
s (M' —1)&'A'& (M—1)'. This means that the pole
never pushes through the integration contour in Fig. 3.
At C1 or C2, depending on the branch of [U(s)5ii', the
pole reverses its motion and withdraws to ~ as s
approaches (M—1)'. Just below (M—1)', the pole
appears at D on the negative s axis, and it reaches
x= —1 when s= s+PP). Because X' bears a small
negative imaginary part, the pole moves just above the
integration contour. At E it reverses its motion, and
moves to —~ when s goes to 4. These results show that
the transcendental (logarithmic or arctangent) factor
of E stays on its principal sheet when -', (M' —1)&X'
& (M—1)', and
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Range 3:4&~32 &I+1
The analysis given for range 1 applies to range 3 as

long as s& (M+1)'. However, now R(s,X') vanishes for
some s in the range (M—1)'~&s&~(M+1)'. Thus the
pole pushes through the integration contour in Fig. 3
when s=sp(X'), where

sp(} ') =M'y3 —2}'. (3.7)

In order to remain on the physical sheet of E(s,X' ip)—,
we must deform the integration contour so that it
remains ahead of the intruding pole. We adopt the
equivalent procedure of allowing the pole to jump
across the contour, picking up the discontinuity as an
additive term. In this way E is analytic at so, but is
now given by the expression

E(s }'—p.)=
CU( )O'" —*—R(,}i'—)/LU( ))'"

s) sp(X'), 4&~}%.'&M+1;
2%i

CU(s) O'" LU(s) j'"
1 dx

X
~ )

i x R(s—)X' i )/p—t U( )js'"

(M—1)'&s(sp(X') 4 &~ X'(M+1. (3.8)

The (minus, plus) sign in (3.8) goes with the (upper,
lower) branch of LU(s))'~'. We see that E remains
independent of the branch of LU(s) j' ' taken between
(M—1)' and (M+1)'.

Now we encounter a branch point of E(s,X'—ip) at
s= (M—1)'. This non-Landau singularity is related to
that of the KT kernel at s= (M+1)p for 4~& X'& M+1,
but now it is found at the lower branch point of
(U(s) )'~'. We should point out that one of these branch
points of $U(s) j'~' is necessarily a singularity of E for
4&~X'&M+1. This is due to the fact that when R
vanishes at so, the arctangent factor of E passes to its
second sheet.

As yet, we have no instruction of how to pass the
branch point of Eat s= (M—1)'.'The instruction we

need is given by Fig. 1. Just as we pass from range 3 to
range 4, the branch point s+()P) passes through
s=(M—1)' into the lower half s plane. We cannot
permit ourselves to cross the trajectory AB of s+(}~P)

without passing onto an unphysical sheet of E. The
situation is analogous to the onset of an anomalous
threshold for a loosely bound system. In that case a
branch point of the spectral function crosses the inte-
gration contour as an internal mass like X' is changed.
The branch point pushes the contour ahead of it, and
an anomalous threshold appears. ' In our case the cut
structure is not altered, since AB is within e of the real
s axis. Nevertheless, we must take care to stay on the
physical sheet of E, and to do this we must choose the
lower sign in (3.8). We note that for (M—1)'&s
&spP.'), the arctangent factor of E is between 7r/2
and s. In (3.9) we will see that for s~(X') &s & (M—1)'
the logarithm factor of E has the imaginary part 2xi.
Only in the region s+ (}') & s & sp(}~'), 4 ~& ~'&M+1 is the
transcendental factor of E oG its principal sheet.

We have seen that we must pass below the non-
Landau singularity at s= (M 1)', and—also under the
branch point s+(X'), even though the negative imagi-
nary part attached to X' would cause us to pass above
s+(X'). When this is taken into account, we 6nd that
there is a deformation of the x-integration contour in
Fig. 3 as we pass s (X'). When this second deformation
is taken into consideration, we 6nd that

ImE(s, X'—ip) = 2~s/LU(s) ji"
s+(}~p)&s& (M—1)' 4& X'&M+1.

=m-s/LU(s)$'tP,

s (X')&s&s+(X'), 4~&X'&M+1;
=0, other s)4, 4&~X'&M+1. (3.9)

Now let us examine the implications of what we have
found. From (3.6) and (3.9) we see that even in the
physical decay region, 4~&s~& (M—1)', perturbation
theory disagrees with KT by the presence of the extra
imaginary part ImE(s, XP—ip) = 27rs/LU(s)]'}P for
s+(X')&s&(M—1)', and 4&X'&M+1. This con.tra-
diction seems to imply that if we believe perturbation
theory, then Mp(s) as given by (2.5) is not the s-wave
projection of 3f after all. We take the resolution of this
apparent paradox to be the following. Suppose that in
the KT representation M' has to be given a small
positive imaginary part +ib in order for the branch of
E(s,X' ip) to be—properly chosen. Our claim is that it
is the +ib attached to MP which specifies the physical
branch of E, not the —i& attached to X'. If this alterna-
tive boundary prescription is correct, then

E(s,}i')=
LU(s)]'" R(s,X') 8 R(s,X"")

x- ——i'
fU(s)g' ' c}M' LU(s)g'"

(3.10)

Using (3.10) one can show that E(s,X') is now con-
sistent with perturbation theory. Briefly, this is

' S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).' In Barton and Kacser' the possibility of second-type singu-

because s~P') never crosses into the lower half s plane
in Fig. 1. At the same time the cut of LU(s))' ' moves

larities on the physical sheet was overlooked. Thus their spectral
function does not agree with the results of Sec. 3.
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slightly into the upper half s plane. Thus one never
need take s off the real s axis when considering (s,M')
as complex variables. It was essentially the necessity of
ducking under s+(X') for 4&~)'&M+1 that led to the
discrepancy between KT and perturbation theory when

(s,)') were taken as complex variables.
The branch of E(s,)') obtained using the boundary

prescription M' ~ M'+ib has been discussed by
Anisovich, Ansel'm, and Gribov. ' However, as we have
emphasized before, initially we are given the boundary
prescription X' —+ X'—ie by KT, and an analysis such
as that presented in this section is required to show the
relevance of the work cited above.

We have

4.1 The (s,M') Analysis

give full details. We find that there are complex singu-
larities. These do not prevent analytic continuation in
X' of the single s-variable dispersion relation satisfied by
the amplitude. However the complex singularities do
prevent a straightforward ) ' continuation of the spectral
function. The prescription for dealing with this is
easily obtained, and agrees precisely with that given
in Sec. 3.

4. GENERAL PERTURBATION THEORY RESULTS
f(s,M', X') = dn, d~s dnsSl g u;—1 lA-' (4.1)

0 0

In the previous section we have shown explicitly that
analytic continuation of the spectral function for

f(s,M', Xs) may be carried out with respect to M' or to
X'. The results are unique in each case and agree,
provided adequate care is taken when the continuation
is made in P'. In this section we rederive the same
results using the general methods developed for study-
ing analyticity properties in perturbation theory. "We
wish to see in a more general context what requires us
to take special precautions when X' is chosen as the
second complex variable. In addition, we want to extend
the usual analysis to include the determination of
whether second-type singularities are present on the
physical sheet. Our approach will not make use of the
actual reason why second-type singularities exist.
Rather we take the simpler view that since they are in
evidence in the explicit spectral function, they must be
included in a consideration of the singularities of the
amplitude. Thus for the sake of clarity we deliberately
restrict our methods.

We first consider the triangle graph of Fig. 2(b) as a
function of the two complex variables s and M' for fixed
real arbitrary X')4. This is essentially the Barton and
Kacser4 analysis, but it includes the possibility of
second-type singularities being present. We prove that
the amplitude satisfms a Mandelstam representation in
s and M', being analytic in the product of the two
planes cut along the real axes 4~&s& ~ and ()+1)'
~&M'(~. This immediately enables us to perform
analytic continuations in M' for both the amplitude
and the spectral function, which lead to the same results
as presented in Sec. 3. The conclusion is that M +i5 is
a satisfactory perturbation theory prescription ever in
the presence of second-type singularities on the physical
sheet.

To resolve the apparent convict with the dispersion
theory X'—ie prescription, we finally consider s and P'

as complex variables, for fixed M'&9. Such an ie/ere@i
variable analysis has not been carried out before, so we

V. V. Anisovich, A. A. Ansel'm, an(I V. N. Gribov, Zh.
Eksperim. i Teor. Fiz. 42, 224 (1962) Ltranslation: Soviet Phys. —
JETP 15, 159 (1962)g."L.D. Landau, Nucl. Phys. 13, 181 (1959).

A rrl)i +tr2+Qs Ql&2 rr2Q3$ QSQlM se (4 2)

with

A. = (x,s~(z, =nZo. (4.3)

—X2

~-,
' (As+ 1—M')

—y, (),)sri+. ski

-,'(2 —s)

—'()i'+ 1—M')
—,'(2 —s)

1

(4.4)

F and Z touch at two real points X and I'.

X s= ()'—2)' M'= ()'—1)' s= (M—1)'

F s=0, 3P= 1. (4.8)

where y,;= (m;s+m, '—p;p)/2m, nr;. By inspection, A

never vanishes in the undistorted region of o. integra-
tions for the following domains (recall y» ——stX) 1):

(a) Ims) 0, ImM') 0;

(b) All y, ;~& 0; i.e., s ~& 2, M'~& 1+X';

(c) ly„l &1, y»&0;
i.e., 0~&s ~&4, M'~& 1+),';

(d)
i.e., s~& 2, () —1)'~&M'&~P,+1)'. (4.5)

In (b)—(d) we consider only real variables.
The possible singularities of f are:

(1) Xormal thresholds. y» ———1 and y» ———1. These
are at M'= (X+1)' and s=4. From (b) above, the cuts
are to be taken to s= ~ and M'= ~.

(Z) The leading Landau curve I'. dety;, =0. This is

r—=$9,'+s)i' —SX'(M'+3)+ (M' —1)'=0. (4.6)

(3) The non Landau singula-rity curve Z. This is the
locus of (s,M') for which the three external momenta
are collinear. ' One finds immediately

Z=—Ls—(M—1)s)Ls—(M+1)'j
=—s' —2s (M'+ 1)+(M' —1)'=0.



KHURI —TREI MAN REPRESENTATION AND PERTURBATION THEORY 2709

We do not examine the singularity of DX, QXP, and
VS' in the noncurve limits here, for to do so would
involve us in a detailed consideration of the cause of
second-type singularities not relevant to our present
purpose. We have proved that f has no complex
singularities for 6xed )2&4. Thus

1 ds
f(s,M', X')=-

s —s—z6

X p(",M s,) s)
()+1)2~ 2 @f2

00

—p(s', M', )I') .
4 S —S—ZC

(4.9)

FIG. 4. The Landau and non-Landau surfaces in the real
(s,3/P) plane. The various points are at: 8 3P=2X'+1; C,
s=M+1=X+2; I, s=(X'—2)') M'=(X' —1)', R, M'=9 Y'

M'=1 U M'=1.

This may be shown either by an extension of standard
dual diagram analysis, or simply by looking at the
simultaneous solutions of (4.5) and (4.6). We show the
real section of the singularity curves in Fig. 4, in which
the relative location of all points is correct. I' and I'+
are the two branches of the hyperbola 1;Z is a parabola.
From (4.5) we see that I' is nonsingular on the physical
sheet. Likewise, the SYTU arc of Z is nonsingular on
the physical sheet. Since Z and F have no real or com-

plex corrunon points other than X and Y, one may
continue along the complex surface starting on I' and
reach F+ without reaching any point where F can be-
come singular. Thus there are no complex singularities
associated with I', nor are the real arcs of I'+ singular in
their curve limits. In the usual way the arcs ABCX of
F+ can be made singular by continuing around the
normal thresholds, thus arriving at the noncurve limits.
At this point we cannot say anything about the arc DX
in the noncurve limit. (So far we have just repeated the
method of Barton and Kacser4; see also.")

We now turn to Z. We have seen that the arc SYTU
of Z is nonsingular, and hence neither are the complex
Z surfaces leaving SYTU, as long as they do not make
contact with other singularities. This enables us to
continue over the entire complex surface, and all of the
real section, in the curve limits. Since QRSFTUV lies
below the M2 cut, the distinction between curve and
noncurve limits disappears, so that this part of the. real
section is never singular. We are left only QXP and VIV
as possible singularities of Z in the noncurve limits. .

"M. Fowler, P. V. Landshoff, and R. g, Lardner, Kuovo
Cimento 17, 956 (1960).

Here P is the Bonnevay spectral function. "
Both the amplitude f and the spectral function p can

be analytically continued in 3P, provided M2 goes above
the branch point at (X+1)'.The correct prescription is
in.deed obtained by putting M' —+M'+ib in p, as
already done at the end of Sec. 3.

4.2 The (sP.') Analysis

We return to (4.1)—(4.4), but treat M' as real and
fixed )9, taking s and X' as the complex variables.

A never vanishes in the undistorted region of o.

integration for the domains

(a) Ims) 0, ImX'&0.

(b) All z,;&~0, i.e., s~&2, X'&~M' —1

(here s and Xs are real) . (4.10)

The form A. =nZn is a homogeneous quadratic form and
hence it has end point and coincident singularities
obtained by the usual criteria applied to the matrix Z.
The possible singularities are:

(1) Single contraction, single real coincidence

nr=0: $=4& ns/ns+0
s=0, ns/ns&0

ns ——0: X'= (M—1)', nr/ns)0
)'= (M+1)', nr/ns&0

ns ——0: X'=4, nr/ns)0
Xs =0, nt ——1, ns ——0. (4.11)

Thus the contractions give physical sheet singularities
at s =4, at X'= (M—1)' and at ) '=0."

'~ G. Bonnevay, in Proceedings of the 1060 Annual International
Conferertce ort Hsgh Energy Physics at Rochester (-Interscience
Publishers Inc. , New York, 1960), p. 523.

"We emphasize that all the other singularities in (4.11) are not
on the physical sheet, and that the contraction singularities found
on the physical sheet are independent of each other. It is irrelevant
when approaching the nonphysical singularity at X2=4 whether
one has passed above or below the branch point at Xs= (M' —1)',
since the latter branch point is not a feature of the comatrix of
s33. This is a novel feature of an analysis in terms of an internal
mass,
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2
(M —I)

QI

4 b P

(M-I)
(M+ I) s

s
C

(Z) The Lartdau singularity curve This . is given by
dets, ,=0, which irruriediately reduces to dety;;=0. We
obtain the singularity curve F as given in (4.6).

(3) The rton Lartdau s-i ugutarities (4.7).

The real section of all possible singularity curves is
shown in Fig. 5. F is tangent to the four lines )'=0, 4,
(M—1)' and (M+1)', and because of its (s,X') sym-
metry to the same lines with s replacing X'. We warn the
reader that the (s,X') symmetry does not hold as regards
analyticity.

We can now use the techniques developed by Tarski'4
and Cook and Tarski" to analyze whether the possible
curves are in fact singular on the physical sheet. In
particular we use theorem 3.2 of Ref. 15 which states:
If a singularity curve S is tangent to the one-further-
contraction curve T, which is singular in a particular
limit, then in that limit S is singular on one side of the
point of tangency, and nonsingular on the other side.
Conversely, if in some limit T is nonsingular, in that
limit the two sides of S are either both singular or both
nonsingular. "

With these preparations, we now identify the physical
sheet singularities of f. We start on the real curve Ft in
Fig. 5, which from (4.10) is nonsingular. We can
continue on the complex surfaces leaving F~ and arrive

"J.Tarski, J. Math. Phys. 1, 149 (1960).
'~ L. F. Cook, Jr., and J. Tarski, J. Math. Phys. 3, 1 (1962).' The case in which both sides of S are singular and yet T is

nonsingular seems paradoxial (see the remark at the end oi
Sec. 3 of Ref. 13), but is resolved when one realizes that the 0,;
integration contour may be pinched close to n;=0; yet due to
some other branch cuts in the 0,;plane, the contour detours around
these other branch points before returning to 0,;=0.The only case
that cannot occur is one where S is singular on one side of the
point of tangency but not on the other, while T is nonsingular.
For then one could drop a Cauchy integration loop over the
singular arc of S, and so remove the singularity.

FIG. 5. The Landau surface in the real (s,X') plane. The various
points are at: o X~= —(Ms —1); b, s=~(M~ —1); c, As=M+1;
e, s=3f+1; C, )'= —3/I+1; E, s= —3f+1.

at F4 without becoming singular. Thus the arcs ae and
ed of F4 are nonsingular in the curve limits. We can
move past d to arc dc on F4, and from there along the
complex surface to DC on F3 without encountering a
singularity on the physical sheet. However, by going
around the appropriate singular normal thresholds we

can reach the arcs ce and edc in their noncurve limits,
in which they are singular.

We now concentrate on F4. We know that ae is non-
singular in its curve limits (+,+) and (—,—), and
singular in the other limits (+,—) and (—,+).Further-
more, the tangent at a, which is the one-further-
contraction curve, is singular in all limits, Thus by the
theorem quoted, the arc ab is singular in the (+,+)
and (—,—) limits and nonsingular in the (+,—) and

(—,+) limits. The latter are the appropriate curve
limits, so the complex surfaces abAB are nonsingular.

From the arc ab of F4, we continue our analysis to the
arc bc. The tangent at b is the appropriate one-further-
contraction curve, and it is nonsingular in all limits.
Hence bc is singular in the limits (+,+) and (—,—) and
nonsingular in the limits (+,—) and (—,+). The
former limits, which are singular, are the curve limits,
so the whole of the complex surfaces bcBC are singular.

This analysis has not relied on any detailed discussion
of the non-Landau singularities, nor even the somewhat
unusual singularity at A'=0. The complex singularities
which we have found include, as a particular case, those
in s for X' real, 0&X'&4, previously discussed in Refs. 11
and 17.Their presence prevents us from writing a double
dispersion representation in s and 'A'. However, we can
write a single variable representation in s for real
) '& (M—1)'.

ds'
f(s,M', X') =— p(s', M' X')

S —S—Ze

with

' P. V. Landshoff and S. B.Treiman, Nuovo Cimento 19, 1249
(1961).

p(z Ms &s) =f(z+ze Ms &s)—f(z t',e Ms &s) (4—13)

We now attempt to continue (4.12) and (4.13)
analytically in X onto its physical cut; i.e., we go
around the branch point X'= (M—1)' from below. For s
in its upper half-plane, the continuation can be per-
formed immediately (4.10a); thus the left-hand side of
(3.12) can be analytically continued in X'. Further, for
all real X'&4, there are no complex singularities in s,
so the right-hand side of (4.12) still stands. Next we
consider how the continuation of p can be carried out
in (4.13).The term f(s t',e,Ms, ) s) cause—s some difficulty
since for s in the range (M 1)'&s& (M+1)' t—here are
complex singularities in the lower half 'A2 plane. By
following Fig. 5 in the (—,—) limit along the arc BC,
then the complex surface with real s from C to c, and
finally the arc cb, we can trace out the locus of the
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FIG. 6. The locus
of one singularity of
p(sM'x') in the )'
complex plane.

-M+I 0 4 M+)
Re X

singularity in the X plane. This locus is shown in Fig. 6.
(Note that this singularity passes off the physical sheet
at b in Fig. 5.) The locations of the points in Fig. 5 are
C:X'= —M+1; c:X'=M+1; b: s=sr(M' —1).

We see from Fig. 6 that we cannot immediately
continue the spectral function p(s, Ms, X') into the region
4~&X &M+1. This is precisely the special interval
found in Sec. 3. However, the proper procedure at this
point is immediately evident. We keep the negative
imaginary term is in f(s——ie,M', X') finite, continue
in X', and only as the last step let e —+0. This corre-
sponds to the "ducking" into the lower half-plane in
Sec. 2, and keeps the singularities well down in the lower
half A' plane in Fig. 6 while the continuation is being
carried out.

4.3 Further Comments on the Second-Type
Singularities

Although we have not used any detailed properties
of second-type singularities, we have not obtained
complete information about them. In particular, in the
(s,M') analysis we have not determined whether the
second-type curves are singular on the physical sheet,
in the noncurve limits, on the arcs PQR and VW of
Fig. 4. The explicit continuations presented in Sec. 3
show that the arc XI' is a physical sheet singularity of
the spectral function p, and that this singularity lies in
the upper half s plane. Accordingly, there is a second

type singularity of the amplitude in the limit s—ie,
Ms+9 when 4&&X'(M+1.rs In the (s,)s) analysis this
corresponds to the portion cp of the singularity line
s= (M—1)' in Fig. 5. No other parts of the non-Landau
singularity curves are singular in any limit on the
physical sheet for X')4.

With these results we can present the Bonnevay
spectral function P(s,M', )') introduced in (4.10), and
correct the expression given by Barton and Kacser'.
We have seen explicitly that p is real for Xs) (M—1)',
i.e., for Ms below its threshold. Hence P is real and is
therefore the imaginary part of p. A(l is nonzero only
inside the region ABCXP of Fig. 4, and from (3.8) and
(3.11),

P(s,Ms X') =s-
s(s—4) '"

U(s)
in ABCXD of Fig. 4

-s(s—4) '"
U($)

in DXP of Fig. 4. (4.14)

Barton and Kacser failed to notice the support for P
in region DXI'. They also integrated over X' from 4 to
~. They found that the support for the Bonnevay
spectral function for F(s,M') is bounded by s=4 and
arc RQP in Fig. 4. This conclusion is still correct. "
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