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In the limit of molecular rotation sufficiently rapid to give a "white spectrum" to the dipole interaction, it
is shown that the longitudinal and transverse components of nuclear magnetization relax in an identical
manner for a system of an arbitrary number of identical nuclei with arbitrary spin, provided Boltzmann-like
initial conditions are assumed. This gives generalization to the specific result obtained by Hubbard for four
equivalently located spin —, nuclei as well as to the familiar T& ——T2 for two identical spins. The Hamiltonian
studied consists of Zeeman and dipole-dipole terms. If chemical shifts or scalar spin-spin interactions are
included, the results remain valid for equivalent spins but cannot be applied to nonequivalent spins. As an
example, Hubbard s three-spin calculation is repeated to include the transverse component, and it is il-

lustrated that if other than Boltzmann-like initial conditions are used, the components need not relax
identically.

I. INTRODUCTION

A WELL—KNOWN feature of the theory of nuclear
magnetic relaxation in liquids consisting of identi-

cal nuclei interacting through their dipole moments may
be summarized as follows: For a system of two spin--,'
nuclei, both the longitudinal (direction of the dc mag-
netic field along which the spins are aligned in equi-
librium) and the transverse components of rnagnetiza-
tion return to equilibrium via simple exponential decay,
the longitudinal component decaying with time con-
stant T1 and the transverse component with time con-
stant T2,' ' i.e., the Bloch equations have precise
validity. If all molecular movements are rapid as com-
pared with the precessional motion of the spins, then
one finds the fundamental result T1=T2.

When the system is enlarged to contain more than
two spins or the nuclear spin allowed to be greater than

~, the relaxation is no longer describable in such simple
terms. However, we are able to show in the present
paper that in the limit of a "white spectrum, "and under
certain other conditions, the longitudinal and transverse
components still relax in an identical manner. If the
Hamiltonian consists only of Zeeman and dipole-dipole
terms, the treatment is valid for an arbitrary number
of identical spins (whose spin need not be restricted to
—,) provided that initial conditions of a Boltzmann
nature are assumed, i.e., that the magnetization is
initially describable in terms of a spin temperature.
The results also may be extended to a system of identi-
cal spins in equivalent locations if chemical shifts or
scalar spin-spin interactions are included, but they can-
not be applied to nonequivalent spins in such a case.
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This is because our argument requires that all spins in
the system have the same resonance frequency as well
as the same spin. Since the dipolar Hamiltonian averages
to zero at any position within a randomly rotating mole-
cule, this requirement is satisfied for nonequivalent
spins interacting only via their dipole moments, but it
is not satisfied if scalar perturbations are included.

Considerable generalization may thus be given to the
original T&=T2 result of BPP theory and to a more
recent calculation by Hubbard' in which he shows that
the longitudinal and transverse components relax in
identical fashion for the case of four identical spin- —,

nuclei equivalently placed on the corners of an equi-
lateral tetrahedron. In the neglect of interactions other
than the Zeeman and dipole-dipole ones, equal trans-
verse and longitudinal relaxation occur for liquids whose
molecules consist of identical spins, once all motions are
suKciently rapid to give a white spectrum to the di-
polar interaction, regardless of the number of spins
involved. The fact that large differences between T2
and T2 have been observed in complex liquids, ' ' and
that the concept of a distribution of correlation fre-
quencies'' has not been completely successful in re-
solving these differences, was a motivation for this work.

In Sec. II proof is given of the equality of transverse
and longitudinal relaxation when Boltzmann-like initial
conditions are imposed. In Sec. III Hubbard s original
calculation of the relaxation of the longitudinal com-
ponent of magnetization in a three-spin molecule' is
repeated in order to include relaxation of the transverse
component as well. This example illustrates that if
initial conditions other than those describable by a
spin temperature are employed, the longitudinal and
transverse components do not, in general, have identi-
cal relaxation.

' P. S. Hubbard, Phys. Rev. 128, 650 (1962).
s J. G. Powies and K. Luszczynscki, Physica 25, 455 (1959).
7 J. G. Powles, Polymer 1, 219 (1960).

P. S. Hubbard, Phys. Rev. 109, 1153 (1958).
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II. EQUALITY OF TRANSVERSE AND
LONGITUDINAL RELAXATION

A. Formal Preliminaries

Abragam has intimated the fundamental reason
why T&= T2 in the two-identical-spin case, and the ap-
proach here will be to give a perhaps more detailed
statement of the reasoning and to extend it to a number
of identical spins. The point of departure is the semi-
classical theory of relaxation as developed by Red-
Geld" in which the spin variables are treated quantum
mechanically and the lattice coordinates classically.
This is the same technique used in previous calculations'
and is described in detail by Abragam. '

Following Abragam's notation as closely as possible,
we therefore write the Hamiltonian of the spin system as

K=AXp+AXi,

where MCp is the Zeeman Hamiltonian and LK'.~ is the
relaxation-inducing perturbation. The state of the spin
system is characterized by the time-dependent density
inatrix, o-(t), and thus the expectation value of any
operator, Q, acting on the spin variables is given by

(Q) = trL&Q]. (2)

Development of the density matrix with time is con-
veniently described by the interaction representation—or, equivalently, the rotating frame. If Q is any
operator, including the density operator, then its value
in the interaction representation, Q*, is given by

Q*=exp(iKpt)Q exp( —iXpt). (3)

Time-dependent perturbation theory then yields as the
equation of motion for the interaction —representation
density matrix, o-*,

= —r.(LX,*(t), LX,*(t), ~*]]&...

under the following conditions and assumptions:

(1) The random motions of the lattice coordinates
are all sufGciently rapid that the correlation function
of Ki*(t) reduces to

(K,*(t)Ki*(t—r)).»= 2r.(Xi*(t)Xi*(t)),»5(r), (5)

or, in other words, Ki*(t) has a "white spectrum. "Here,
as in Eq. (4), the averaging is done over the classical
lattice variables. The above equation also serves as a
definition of r, as used in. Eq. (4).

(2) The perturbation, Ki(t), is a random function of
time so that any terms of the form (Ki„„(t)Xi„.(t)).
are independent of time; and it is also assumed that
(Ki(t)), =0. The quantity a.* in (4) is the difference
between 0-* and its time-independent thermal equi-

e A. Abragam, The Preucdples of Nuclear MagrMttsm (Oxford
University Press, New York, 1961), Chap. VIII.

"A. G. Redfield, IBM J. Res. Develop. I, No. 1 (1957).

librium value, crp~,

It also should be understood that a* used in (4) is an
average density operator since averaging over the lat-
tice coordinates is assumed throughout. Detailed dis-
cussion of the derivation of (4) may be found in
Abragam's text. '

—(Q)*=-"trL(LXi*(t), I.Xi*(t), Q]]&-"] (7a)
dt

= — (KX '(t) LX '(t) Q]]&-)*, (7b)

where (Q)* is the expectation value of a spin operator,
Q, in the interaction representation. Relaxation of the
longitudinal and transverse components of magneti-
zation is obtained by using, respectively, I, and I„the
total s and x components of spin, for Q. The funda-
rnental argument for the equality of transverse and
longitudinal relaxation is based upon showing that, for
identical spins, Ki*(t) may be replaced by Ki(t) in (4)
and (7) as a result of performing the ensemble averages.
Hence, assuming the perturbation Ki(t) to be symmetric
in the coordinates x, y, and s, i.e., independent of the
choice of axis of quantization, if performing the opera-
tion in (7) with Q=I, yields a single exponential decay
with time constant T&, then the symmetry of the prob-
lem demands that one also obtain a single exponential
decay with time constant Tp Ti when Q

—i—s taken to
be I,.

If Xi(t) is symmetric in x, y, and s, then the definition
(3) shows that Xi*(t) itself will not be symmetric in
the coordinates since, for the customary dc magnetic
field, Bp, applied in the 2' direction, we have

BCp = —QIzII p

where y is the gyromagnetic ratio. YVe thus must show
that ensemble averaging does permit the replacement
of Xi*(t) by Xi(t) in (4) and (7). To do this it is con-
venient to re-express (4) in matrix representation by

a&t =P @&&i ppe appi+
dt pp'

in which the Greek indices represent states of the un-
perturbed Hamiltonian (8). We then require that

~aa' pp' ~aa' pp' ~ (10)

From the nature of (4) it is evident that R,pp
* con-

sists of a combination of products of matrix elements
in the form

(Xie„*(t)xie,*(t)).,

B. Symmetry of Equations

By multiplying both sides of (4) by Q, taking the
trace, and noting its invariance properties and that o~

may be averaged independently, ' we have
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Hence the task reduces to demonstrating that have, from. (13) and (17),

«'*(I)X."'*(I)):=(X..(I)X, (I)),. («) « ..*(I)X., *(I))..= Z Z L(P;, (I)p.,(' (I)),
i,j,k, l q, q'

The perturbation is now written explicitly as the
mutual dipole-dipole interaction,

(12)

vrhere the orientation of r;k, the vector connecting spins
I; and I&, with respect to any fixed set of axes is as-
sumed to be a random function of time. Symmetry of
the perturbation is apparent from the form (12); how-

ever, as is common in relaxation &alculations, it is useful
to re-express (12) as

Xi(I)= p Q p.~(e) (])A .~(c)
j&k q~2

where the F;),«) (t) are lattice functions,

F;~(0)=r, ~-'(1—3 cos'0 ~) (14a)

where

A ),(') = —~')))I Q~ (15c)

(16)

and A;k&
—q~ is the Hermitian conjugate of A, k«'.

Consider a representation in which I,=g; I;„and
consequently Xo, Eq. (8), is diagonal. For a number of
identical spins, the energy levels of the unperturbed
system (8) are highly degenerate and may be labeled by
the magnetic quantum number, m, of the total z com-
ponent of spin, I,. It follows from the well-known

properties of the raising and lowering operators, I;+
and I;, respectively, that, in such a representation, the
spin operator A;~«) as defined in (15) has nonzero
matrix elements only between states for which hm=q.
Then, since the eigenvalues are equally spaced with
separation ))Ice between adjacent levels, we see from (3)
that matrix elements of A;k«' in the interaction repre-
sentation are given by

A;, & &„,*=A;,& )„,e- -, (17)

for a set of states in which Kt) is diagonal and where
0)=QHp.

For the ensemble average (Xi„„*(t)X)„,~(I)), we

F (,")=r~), I sine, ), cosa;),e '&~7' (14b)

(14c)

where 8„.k and q, k are the, respective, polar and azi-
muthal angles of r;k with respect to the x-y-z laboratory
axes, and J";k& q& is the complex conjugate of P;k«&. The
quantities A;k«& are spin operators:

A;(, ( )=y'h((I, ,I(„~(I;+I) +I;M~)), (15a)

A; ("= ,' 'A(I;,I +I—,+—I,), (15b)

yA . . (c)Ay(, , (e')(-~(Q+Q') &] (18)

By the definitions (14) of F@«)(t), it is evident that

(p,. ( ) ($)p, ( ') (I)) = ( ~
p, ( ) (I)

~ )
from the orthogonality properties of spherical har-
monics. Furthermore, even if the motion of r;; may be
correlated to that of rk~/r;;, as is the case for a rigid
molecule containing a number of spins, so that terms of
the form (F;,«)(t)p&&«')(t)), are not automatically
zero, one may still show from an Euler-angle description
of the isotropic rotation of a solid' that

(P, (e) (I)P&&(e')(I)) —(P, (a) (I)P&&(
—a) (I)) g ~ (19)

Since the averaging process thus restricts one to
I7+g'=0, the exponential time factor disappears from
(18) and the expression (18) is the same in the interac-
tion representation (rotating frame) as in the x-y-s
laboratory system. Hence, the validity of (10) and
equivalently the replacement of Xi*(t) by Xi(I) in (4)
and (7) is established for a rigid molecule with an arbi-
trary number of spins —as well as, of course, for a sys-
tem in which some of the motions are uncorrelated.

It may be remarked that replacement of Xi*(t) by
X&(t) in the pertinent equations means that these
equations are automatically secularized as a result of
ensemble averaging, i.e., all exponential time factors
are already eliminated f(18) and (19)), and it is super-
Quous to state —for identical spins —that only secular
terms should be retained in the equation of motion for
0-*. For nonidentical spins the longitudinal and trans-
verse relaxation are not identical, "and the reason for
this is readily seen from the above. Although (19) is
still valid, the relation (17) no longer holds since, for
example, in a system containing two spins, 1 and 2, with
respective resonance frequencies eo&, and ~2, a transition
in which spin 1 increases its magnetic quantum number

by one unit and spin 2 decreases its magnetic quantum
number by one unit has hm =0 but a diGerence in energy
between initial and final states of h((d2 —sr)). Thus,
A;,»"' ~A;,„„'for such a transition, and the spatial
averaging is not sufhcient to preserve the symmetry in

x, y, and s since the asymmetric X&*(I)is not replaceable
by the symmetric Xi(t). Or, in other words, for non-
identical spins spatial averaging does not completely
secularize the equation of motion.

Similarly, if the spins of a given molecule are identical
but in nonequivalent positions, they will not have equal
resonance frequencies once chemical shifts or scalar
spin-spin couplings are included in the Hamiltonian.
Thus, if these interactions are important, the replace-
ment of X&*(t) by X&(t) will be rigorously correct only
if the spins are equivalent as well as identical. "
"The author is indebted to P. S. Hubbard for pointing this out.
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with T,,= T;,. Determination of the coefFicients a;, and
a;„however, depends upon initial conditions; so re-
placement of xi*(t) by xi(t) does not by itself make it
obvious that (I,)* and (I,) relax identically, i.e., that
the exponentials combine in the same manner.

C. Initial Conditions

Thermal equilibrium at a temperature T is described
by the density matrix

o z ——exp( —x/k T)/tr[exp (—x/kT)]. (20)

For the present case of a spin system aligned along a dc
magnetic field, Ho, in the s direction and kT&&ASCOT&ARi,

we have
o r ——o.r*=C(1+%,),

where, from (8) and (20),

X=yAII p//k T

(21)

(22)

and C '=tr[1), the dimensions of the density matrix.
Previous to time t=0 this equilibrium distribution is
rotated through a certain angle by suitable application
of rf pulses; and at t=0 the rf fields are removed, with
the magnetization now aligned along an axis f'. Hence,
the initial conditions are assumed to be described by
the density matrix, "op= o(t =0), . .

o p
——o.p*=C(1+X,Ir), (23)

where, for the sake of generality, ), may or may not be
equal to X. Initial conditions are thus said to be "Boltz-
mann-like" in the sense that a Boltzrnann distribution
is assumed for alignment about an arbitrary axis, t.

Taking cx, n„, and n, as the respective direction
cosines of the t axis with x-y-s axes then gives for
op= o(t=0),

As pointed out by Abragam and mentioned at the
beginning of this section, replacement of Xr*(t) by
Xi(t) is sufficient to guarantee equal relaxation for
(I,) and (I,)* for the two-spin case in which the Bloch
equations are valid. If several spins are involved, the
decay of (I,) or (I,)*contains a number of exponentials,
however. In such a case, one can argue from the x, y, s
symmetry of xi(t) that any characteristic root of the
equation for (I,) must also serve for (I,)*and vice versa.
That is, if one writes as the solution to (7)

(I,)—Ip ——P, a;,e
—'ir2,

where I p is the thermal equilibrium value of (I,), then
he can equally well write

from (6), (21), and (23). Consider now (d/dt)(I, ) at
t=0. This is obtained from (7a) by using I, for Q and
replacing o.* by 00. We first note that

[([x,(t), [x,(t), I,))I,),)=0 (25)

as a result of the spatial averaging. This is because, by
the same reasoning (19) used to replace Xi*(t) by Xi(t)
in (4), products of energy-representation matrix ele-
ments in the form (Xi„,(t)Xi„, (t)), are nonzero only
if o2„„=p2„„,Where o2„„=o2(m„m—„) With m„and m, the
respective magnetic quantum numbers of the states
p and v. But since I, has matrix elements only be-
tween states for which Am=0 and I, has matrix
elements only for Am= &1 transitions, it follows that
([Xi(t), [Xr(t), I,)]I,), can have no diagonal elements
in this particular representation and is therefore trace-
less in any representation. Thus, the time derivative of
(I,) at t=O is given by

&dt

((I,)2 p
—Ip)

tr[I,')

«L(Lx (t), [x (t), I.)]I*)-) (26)

where (24) has been used in (2) to obtain (I,)& p
—Ip.

For the transverse components it is somewhat simpler
to calculate (Iz)*=(I,&iI„)* than (I,)* itself. Pro-
ceeding in an identical manner, one can show that

—r.(I+)*2 p

tr[I,')

«rL&Lx (t), Lx (t), I*]]I*)-].

and invariance properties of the trace are used to show
that

t DLx (t) Lx (t), I+))I-)-)
= 2 tr[([Xi(t), [Xi(t), I,]]I,).].

I rom (26) and (27) it, thus, follows that if Xi(t) is
symmetric in x, y, and s, then

The argument leading to (27) is the same as that used to
deduce (26): Spatial averaging eliminates all diagonal
elements of (PCi(t), PC2(t),I~)]I~), as well as of
([Xi(t), pCi(t), I,)]I+), . We are thus left with an
expression of the form

tr[(Lxi(t) Lxi(t) I+1]I-) )

C2'~ 2'+ "2 ) Cp, X" )I" (24~ —2 )')
dt |, 0

'~ For a more rigorous treatment of initial conditions see, for
example, A. Sher and H. Primako6, Phys. Rev. 119, 178 (196O),
where it is shown that for application of a 90' pulse in the y direc-
tion, the initial condition is given by (23) with )=a.

(I+)*2 p

d

dt
((I.)2 p

—Ip). (28)
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Higher order derivatives may also be evaluated at (=0
and similar reasoning employed to show that, for any
Order )

dt" 4=o

(I+)*4-o

((I.)4 o
—Io). (29)

The procedure is to take successive derivatives of (4)
with respect to t, perform the required trace operations,
and note that, because of ensemble averaging, when
calculating the relaxation of (I,) only the term in I,
need be included in the expression for 0 o (24), and that a
similar rule applies for relaxation of the transverse com-
ponent. Assuming Taylor series expansions for (I,) and
(I+)*we therefore conclude that

I»= I+--&,
16)= I

—+—
&

I7&= I

——+&

(31)

IIL EXAMPLE: THREE SPIN-&~ NUCLEI ON
VERTICES OF EQUILATERAL TRIANGLE

By way of example and as illustration of the fact that
arbitrary initial conditions do rot produce equal relaxa-
tion of the transverse and longitudinal components, we
treat the case of a rigid molecule consisting of three spin-
—,
' nuclei located on the vertices of an equilateral triangle.
Hubbard' has already discussed this problem and solved
for the decay of the s component, and he has also shown
the equality of longitudinal and transverse relaxation
for four equivalent spin- —,'nuclei. ' It is, however, in-
structive to extend his earlier work, which employs
simpler notation than that used in Ref. 5, to include
x-y components as well. He introduces a representation
defined by the states

in an obvious notation in which the s component of an
so that the longitudinal and transverse components individual spin is diagonal and has eigenvalue &—'
relax in a completely identical manner. ccor ing to q ~ an g ~, we ave

D. Summary (I,)—Io——-', (3m+ y) (32)

A system containing an arbitrary number of identical
spins coupled by their dipole interactions has been shown
to possess equal transverse and longitudinal relaxation
in the limit of a "white spectrum" for the molecular
motion. The basic reason is that the averaging neces-
sitated by the random character of the lattice functions
limits the number of nonzero matrix elements to the
point that, for the relaxation part of the problem, the
perturbation, 74X1(t), has the same appearance in the
rotating frame as it does in the laboratory frame—
provided the spins are identical and chemical shifts or
scalar spin-spin interactions may be neglected —and is,
thus, symmetric in x, y, and z in the rotating frame as
well as in the laboratory frame. This enables one to say
that any exponential characterizing relaxation of the s
component must also characterize relaxation of the x
component. If initial conditions describable by a Boltz-
mann distribution of spins aligned along an arbitrary
axis (such as obtained by a rotation of the thermal equi-
librium magnetization into the x-y plane by a 90' pulse)
are assumed, the stronger statement is then made that
the exponentials combine in the same manner so that
the longitudinal and transverse components relax in
identical fashion. Although only the dipole-dipole in-
teraction has been explicitly treated, it is evident that
any perturbation symmetric in x, y, and s which
possesses the orthogonality relations necessary to re-
place K1*(/) by BC1(t) in (4) satisfies the requirements for
equal transverse and longitudinal relaxation.

and

with

(I~)*=74+s,

X=0 yy
—088, (34a)

y= 47ss+ o'ss+ 4744 oss —&ss —4777—& (34b)

M=&12 +&ls +&14 +oss +&os +078 (3&a)

7 =02s +&27 +&ss + o s7 +&4s +&4s ~ (35b)

Since it is necessary to solve a set of simultaneous equa-
tions indicated by (9), additional matrix elements in the
combinations

s Re(o'so+074+ os4—ass —os7 —os7) (36a)

741—=&ss +&so +0'47 (36b)

are also needed for the computation of (I.) and (I+)~,
respectively.

The equal distances among the spins do, however,

present a high degree of symmetry so that three inde-

pendent equations are sufhcient to describe the relaxa-
tion. Hubbard found that the equations for the longi-
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tudinal component could be written as'3

(
20 d 23T—o +—x—+-,'y —4s= 0,
9 dt 4

9 20 d 59 19
-x+ Tp —+ —y+——s= 0,
4 9 dt 12 12

9 19 20 d 55——x+—y+ To —+ —s=—0,
8 24 9 dt 12

(37b)

(37c)

and transverse components may be expressed by

(I,)—Ip

1- (61)'~ Syo- (14/3)so=— 1— 21+ e
—t/Ty

2 183 »o+yp
1- (61)'" Syp —(14/3)zp)

+— 1+ 21+ (4o)
2 183 3xo+yo

With

Tp '=—y'A'rp 'r„
(I+)* 1 (61)'~' ( 4po —Su'o

(I+)*, , 2 183 & uo+vo

where rp is the distance between any two spins. Simi-
larly, we have arrived at the following set for the trans-
verse components:

20 d 23
T, +—u+—P4p——Pou =0,

9 dt 4

1 (61) ( 4pp —Swp
+— 1+ I 21+ (41)

2 183 ~ uo+ po

where, by (32) and (33),

3xp+yp
=(I,)i o

—Io,
(20 d 73

—,'u+
~

Tp + —o+—-p'w ———0,
k9 dt 12

(38b) uo+&o=(I+) ~=o ~

5 20 d 41—4u+ —p+ —Tp—+—vr =0 .
12 9 dt 12

(38c)

Equations (37) and (38) are solvable in terms of decay-
ing exponentials with time constants given by

T, '= (207/80)To —',
T& &= (9/80)L19 (61)

T '= (9/80)L19+ (61)'~ojTp '

(39a)

(39b)

(39c)

'3The codhcient of y in (37c) is erroneously typewritten as
19/12 in Ref. 8.

the same characteristic roots serving for either set of
equations, as is to be expected from the general argu-
ments of Sec. II.

Only Tb and T, contribute to the decay of the com-
ponents of magnetization; and one can show that for
arbitrary initial conditions,

x (f=0)—=xo, y (1=0)=yp s (1=0)—=sp,

with similar definitions for Ip, mp, and m p, the longitudinal

Ke see that for arbitrary initial conditions the ex-
ponentials do not necessarily combine in the same
manner for (I+)* and for (I,). However, it is readily
established that Boltzmann-like initial conditions (24)
imply xp ——

yp, sp ——0 and up ——ep, mp
——0; and under these

circumstances, identical relaxation results, as predicted,
with

(I,)—Ip (I+)* 1 23
1 (61)'i' e " '

(Is) t=o Io (I+)*~=o—2 — 183

23+- 1+ (61)'" e " ' (42)
2 183

as found by Hubbard for the longitudinal component
and in which the coeKcient of e '/~I' is somewhat less
than 1 &0 of the coefficient of e "~&.
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